Regular Articles
The Expression of AIP-Related Molecules in Elucidation of Cellular Pathways in Pituitary Adenomas

https://doi.org/10.2353/ajpath.2009.081131Get rights and content

Germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene predispose to the development of pituitary adenomas. Here, we characterized AIP mutation positive (AIPmut+) and AIP mutation negative (AIPmut−) pituitary adenomas by immunohistochemistry. The expressions of the AIP-related proteins aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT), cyclin-dependent kinase inhibitor 1B encoding p27(Kip1), and hypoxia-inducible factor 1-α were examined in 14 AIPmut+ and 53 AIPmut− pituitary adenomas to detect possible expression differences. In addition, the expression of CD34, an endothelial and hematopoietic stem cell marker, was analyzed. We found ARNT to be less frequently expressed in AIPmut+ pituitary adenomas (P = 0.001), suggesting that AIP regulates the ARNT levels. AIP small interfering RNA-treated HeLa, HEK293, or Aip-null mouse embryonic fibroblast cells did not show lowered expression of ARNT. Instead, in the pituitary adenoma cell line GH3, Aip silencing caused a partial reduction of Arnt and a clear increase in cell proliferation. We also observed a trend for increased expression of nuclear AHR in AIPmut+ samples, although the difference was not statistically significant (P = 0.06). The expressions of p27(Kip1), hypoxia-inducible factor 1-α, or CD34 did not differ between tumor types. The present study shows that the expression of ARNT protein is significantly reduced in AIPmut+ tumors. We suggest that the down-regulation of ARNT may be connected to an imbalance in AHR/ARNT complex formation arising from aberrant cAMP signaling.

Cited by (0)

Supported by the Helsinki Biomedical Graduate School, the Academy of Finland (the Center of Excellence in Translational Genome-Scale Biology, grant 6302352), the Sigrid Jusélius Foundation (grant 4701169), and the Cancer Society of Finland (grant 4700325).

E.H. and A.R. contributed equally to this work.

View Abstract