Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 23, 2012

Puma, a critical mediator of cell death — one decade on from its discovery

  • Paweł Hikisz EMAIL logo and Zofia Kiliańska

Abstract

PUMA (p53 upregulated modulator of apoptosis) is a pro-apoptotic member of the BH3-only subgroup of the Bcl-2 family. It is a key mediator of p53-dependent and p53-independent apoptosis and was identified 10 years ago. The PUMA gene is mapped to the long arm of chromosome 19, a region that is frequently deleted in a large number of human cancers. PUMA mediates apoptosis thanks to its ability to directly bind known anti-apoptotic members of the Bcl-2 family. It mainly localizes to the mitochondria. The binding of PUMA to the inhibitory members of the Bcl-2 family (Bcl-2-like proteins) via its BH3 domain seems to be a critical regulatory step in the induction of apoptosis. It results in the displacement of the proteins Bax and/or Bak. This is followed by their activation and the formation of pore-like structures on the mitochondrial membrane, which permeabilizes the outer mitochondrial membrane, leading to mitochondrial dysfunction and caspase activation. PUMA is involved in a large number of physiological and pathological processes, including the immune response, cancer, neurodegenerative diseases and bacterial and viral infections.

[1] Green, D.R. and Reed, J.C. Mitochondria and apoptosis. Science 281 (1998) 1309–1312. http://dx.doi.org/10.1126/science.281.5381.130910.1126/science.281.5381.1309Search in Google Scholar

[2] Zhivotovsky, B. and Orrenius, S. Cell cycle and cell death in disease: past, present and future. J. Intern. Med. 268 (2010) 395–409. http://dx.doi.org/10.1111/j.1365-2796.2010.02282.x10.1111/j.1365-2796.2010.02282.xSearch in Google Scholar

[3] Caroppi, P., Sinibaldi, F., Fiorucci, L. and Santucci, R. Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome c as proapoptotic protein. Curr. Med. Chem. 16 (2009) 4058–4065. http://dx.doi.org/10.2174/09298670978937820610.2174/092986709789378206Search in Google Scholar

[4] Plati, J. and Khosravi-Far, R. Apoptotic cell signaling in cancer progression and therapy. Integr. Biol. 3 (2011) 279–296. http://dx.doi.org/10.1039/c0ib00144a10.1039/c0ib00144aSearch in Google Scholar

[5] Evan, G. and Vousden, K.M. Proliferation, cell cycle and apoptosis in cancer. Nature 111 (2001) 342–348. http://dx.doi.org/10.1038/3507721310.1038/35077213Search in Google Scholar

[6] Green, D.R. Apoptotic pathway: paper wraps stone blunts scissors. Cell 102 (2000) 1–4. http://dx.doi.org/10.1016/S0092-8674(00)00003-910.1016/S0092-8674(00)00003-9Search in Google Scholar

[7] Hengartner, M.O. The biochemistry of apoptosis. Nature 407 (2000) 770–776. http://dx.doi.org/10.1038/3503771010.1038/35037710Search in Google Scholar

[8] Green, D.R. and Evan, G.J. A matter of life and death. Cancer Cell 1 (2002) 19–30. http://dx.doi.org/10.1016/S1535-6108(02)00024-710.1016/S1535-6108(02)00024-7Search in Google Scholar

[9] Mohamed, N., Gutierrez, A., Nunez, M., Cocca, C., Marit, G., Cricco, G., Medina, V., Rivera, E. and Bergoc, R. Mitochondrial apoptotic pathways. Biocell 29 (2005) 149–161. Search in Google Scholar

[10] van Gurp, M., Festjens, N., van Loo, G., Saelens, X. and Vandenabeele, P. Mitochondrial intermembrane proteins in cell death. Biochem. Biophys. Res. Commun. 304 (2003) 487–497. http://dx.doi.org/10.1016/S0006-291X(03)00621-110.1016/S0006-291X(03)00621-1Search in Google Scholar

[11] Cain, K., Bratton, S.B., Langlais, C., Walker, G., Brown, D.G., Sun, X.M. and Cohen, G.M. Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4 MDa apoptosome complex. J. Biol. Chem. 275 (2000) 6067–6070. http://dx.doi.org/10.1074/jbc.275.9.606710.1074/jbc.275.9.6067Search in Google Scholar PubMed

[12] Hill, M.M., Adrian, C. and Martin, S.J. Portrait of a killer: the mitochondrial apoptosome emerges from the shadows. Mol. Interv. 3 (2003) 19–26. http://dx.doi.org/10.1124/mi.3.1.1910.1124/mi.3.1.19Search in Google Scholar

[13] Riedl, S.J. and Salvesen, G.S. The apoptosome: signaling platform of cell death. Nat. Rev. Mol. Cell. Biol. 8 (2007) 405–413. http://dx.doi.org/10.1038/nrm215310.1038/nrm2153Search in Google Scholar

[14] Borner, C. The Bcl-2 protein family: sensors and checkpoints for life-ordeath decisions. Mol. Immunol. 39 (2003) 615–647. http://dx.doi.org/10.1016/S0161-5890(02)00252-310.1016/S0161-5890(02)00252-3Search in Google Scholar

[15] Adams, J.M. and Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26 (2007) 1324–1337. http://dx.doi.org/10.1038/sj.onc.121022010.1038/sj.onc.1210220Search in Google Scholar

[16] Lanave, C., Santamaria, M. and Saccone, C. Comparative genomics: the evolutionary history of the Bcl-2 family. Gene 333 (2004) 71–79. http://dx.doi.org/10.1016/j.gene.2004.02.01710.1016/j.gene.2004.02.017Search in Google Scholar

[17] Willis, S.N. and Adams, J.M. Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell Biol. 17 (2005) 617–625. http://dx.doi.org/10.1016/j.ceb.2005.10.00110.1016/j.ceb.2005.10.001Search in Google Scholar

[18] Lomonosova, E. and Chinnadurai, G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27 (2008) 2–19. http://dx.doi.org/10.1038/onc.2009.3910.1038/onc.2009.39Search in Google Scholar

[19] Letai, A., Bassik, M.C., Walensky, L.D., Sorcinelli, M.D., Weiler, S. and Korsmeyer, S.J. Distinct BH3 domains either sensitize or acrivate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2 (2002) 183–192. http://dx.doi.org/10.1016/S1535-6108(02)00127-710.1016/S1535-6108(02)00127-7Search in Google Scholar

[20] Chipuk, J.E., Moldoveanu, T., Llambi, F., Parsons, M.J. and Green, D.R. The BCL-2 family reunion. Mol. Cell 37 (2010) 299–310. http://dx.doi.org/10.1016/j.molcel.2010.01.02510.1016/j.molcel.2010.01.025Search in Google Scholar PubMed PubMed Central

[21] Elkholi, R., Floros, K.V. and Chipuk, J.E. The role of BH3-only proteins in tumor cell development, signaling and treatment. Genes Cancer 2 (2011) 523–537. http://dx.doi.org/10.1177/194760191141717710.1177/1947601911417177Search in Google Scholar PubMed PubMed Central

[22] Fricker, M., O’Prey, J., Tolkovsy, A.M and Ryan, K.M. Phosphorylation of Puma modulates its apoptotic function by regulating protein stability. Cell Death Dis. 1 (2010) DOI: e59; doc: 10.1038/cddis.2010.38. Search in Google Scholar

[23] Jeffers, J.R., Parganas, E., Lee, Y., Yang, C., Wang, J., Brennan, J., MacLean, K.H., Han, J., Chittenden, T., Ihle, J.N., McKinnon, P.J., Cleveland, J.L. and Zambetti, G.P. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4 (2003) 321–328. http://dx.doi.org/10.1016/S1535-6108(03)00244-710.1016/S1535-6108(03)00244-7Search in Google Scholar

[24] Yu, J. and Zhang, L. PUMA, a potent killer with or without p53. Oncogene 27 (2008) S71–S83. http://dx.doi.org/10.1038/onc.2009.4510.1038/onc.2009.45Search in Google Scholar

[25] Yu, J., Zhang, L., Hwang, P.M., Kinzler, K.W. and Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell. 7 (2001) 673–682. http://dx.doi.org/10.1016/S1097-2765(01)00213-110.1016/S1097-2765(01)00213-1Search in Google Scholar

[26] Nakano, K. and Vousden, K.H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell. 7 (2001) 683–694. http://dx.doi.org/10.1016/S1097-2765(01)00214-310.1016/S1097-2765(01)00214-3Search in Google Scholar

[27] Han, J., Flemington, C., Houghton, A.B., Gu, Z., Zambetti, G.P., Lutz, R.J., Zhu, L. and Chittenden, T. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc. Natl. Acad. Sci. USA 98 (2001) 11318–11323. http://dx.doi.org/10.1073/pnas.20120879810.1073/pnas.201208798Search in Google Scholar PubMed PubMed Central

[28] Yu, J., Wang, Z., Kinzler, K.W., Vogelstein, B. and Zhang, L. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc. Natl. Acad. Sci. USA 100 (2003) 1931–1936. http://dx.doi.org/10.1073/pnas.262798410010.1073/pnas.2627984100Search in Google Scholar PubMed PubMed Central

[29] Yee, K.S. and Vousden, K.H. Contribution of membrane localization to the apoptotic activity of PUMA. Apoptosis 13 (2008) 87–95. http://dx.doi.org/10.1007/s10495-007-0140-210.1007/s10495-007-0140-2Search in Google Scholar PubMed

[30] Day, C.L., Smits, C., Fan, C.F., Lee, E.F., Fairlie, W.D. and Hinds, M.G. Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1. J. Mol. Biol. 380 (2008) 958–971. http://dx.doi.org/10.1016/j.jmb.2008.05.07110.1016/j.jmb.2008.05.071Search in Google Scholar PubMed

[31] Cregan, S.P., Arbour, N.A., Maclaurin, J.G., Callaghan, S.M., Fortin, A., Cheung, E.C., Guberman, D.S., Park, D.S. and Slack, R.S. p53 activation domain 1 is essential for PUMA upregulation and p53-mediated neuronal cell death. J. Neurosci. 24 (2004) 10003–10012. http://dx.doi.org/10.1523/JNEUROSCI.2114-04.200410.1523/JNEUROSCI.2114-04.2004Search in Google Scholar PubMed PubMed Central

[32] Wang, X., Wang, J., Lin, S., Geng, J., Wang, J. and Jiang., B. Sp1 is involved in H2O2-induced PUMA gene expression and apoptosis in colorectal cancer cells. J. Exp. Clin. Cancer Res. 24 (2008) 27–44. Search in Google Scholar

[33] Ming, L., Wang, P., Bank, A., Yu, J. and Zhang, L. PUMA dissociated Bax and Bcl-XL to induce apoptosis in colon cancer cells. J. Bioch. Chem. 28 (2006) 16034–16042. http://dx.doi.org/10.1074/jbc.M51358720010.1074/jbc.M513587200Search in Google Scholar PubMed

[34] Chipuk, J.E, Bouchier-Hayes, L., Kuwana, T., Newmayer, D.D. and Green, D.R. PUMA couples the nucler and cytoplasmic proapoptotic function of p53. Science 309 (2005) 1732–1735. http://dx.doi.org/10.1126/science.111429710.1126/science.1114297Search in Google Scholar PubMed

[35] Zhang, C., Junxia, Z., Zhang, A., Wang, Y., Han, L., You, Y., Pu, P. and Kang, C. PUMA is a novel target of miR-221/222 in human epithelial cancers. Int. J. Oncol. 37 (2010) 1621–1626. http://dx.doi.org/10.3892/ijo_0000066210.3892/ijo_00000662Search in Google Scholar PubMed

[36] Zhang, C., Zhang, J., Zhang, A., Shi, Z., Han, L., Jia, Z., Yang, W., Wang, G., Jiang, T., You, Y., Pu, P., Cheng, J. and Kang, C. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol. Cancer 9 (2010) 1–9. Search in Google Scholar

[37] Jabbour, A.M., Daunt, C.P., Green, B.D., Vogel, S., Gordon, L., Lee, R.S., Silke, N., Pearson, R.B., Vandenberg, C.J., Kelly, P.N., Nutt, S.L., Strasser, A., Borner, C. and Ekert, P.G. Myeloid progenitor cells lacking p53 exhibit delayed up-regulation of Puma and prolonged survival after cytokine deprivation. Blood 115 (2010) 344–352. http://dx.doi.org/10.1182/blood-2009-07-23073010.1182/blood-2009-07-230730Search in Google Scholar PubMed PubMed Central

[38] Ming, L., Sakaida, T., Yue, W., Jha, A., Zhang L. and Yu J. Sp1 and p73 activate PUMA following serum starvation. Carcinogenesis 29 (2008) 1878–1884. http://dx.doi.org/10.1093/carcin/bgn15010.1093/carcin/bgn150Search in Google Scholar PubMed PubMed Central

[39] Ray, R.M., Bhattacharya, S. and Johnson, L.R. Mdm2 inhibition induces apoptosis in p53 deficient human colon cancer cells by activating p73- and E2F1-mediated expression of PUMA and Siva-1. Apoptosis 16 (2011) 35–44. http://dx.doi.org/10.1007/s10495-010-0538-010.1007/s10495-010-0538-0Search in Google Scholar PubMed

[40] You, H., Pellegrini, M., Tsuchihara, K., Yamamoto, K., Häcker, G., Erlacher, M., Villunger, A. and Mak T.W. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J. Exp. Med. 203 (2006) 1657–1663. http://dx.doi.org/10.1084/jem.2006035310.1084/jem.20060353Search in Google Scholar PubMed PubMed Central

[41] Dudgeon, C., Wang, P., Sun, X., Peng, R., Sun, Q., Yu, J. and Zhang, L. PUMA induction by FoxO3a mediates the anticancer activities of the broadrange kinase inhibitor UCN-01. Mol. Cancer Ther. 9 (2010) 2893–2902. http://dx.doi.org/10.1158/1535-7163.MCT-10-063510.1158/1535-7163.MCT-10-0635Search in Google Scholar PubMed PubMed Central

[42] Hershko, T. and Ginsberg, D. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J. Biol. Chem. 279 (2004) 8627–8634. http://dx.doi.org/10.1074/jbc.M31286620010.1074/jbc.M312866200Search in Google Scholar PubMed

[43] Wu, B., Qiu, W., Wang, P., Yu, H., Cheng, T., Zambetti, G.P., Zhang, L. and Yu J. p53 independent induction of PUMA mediates intestinal apoptosis in response to ischaemia-reperfusion. Gut 56 (2007) 645–654. http://dx.doi.org/10.1136/gut.2006.10168310.1136/gut.2006.101683Search in Google Scholar PubMed PubMed Central

[44] Li, J., Lee, B. and Lee A.S. Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J. Biol. Chem. 281 (2006) 7260–7270. http://dx.doi.org/10.1074/jbc.M50986820010.1074/jbc.M509868200Search in Google Scholar PubMed

[45] Nickson, P., Toth, A. and Erhardt, P. PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress. Cardiovasc. Res. 73 (2007) 48–56. http://dx.doi.org/10.1016/j.cardiores.2006.10.00110.1016/j.cardiores.2006.10.001Search in Google Scholar PubMed PubMed Central

[46] Webster, K.A. Puma joins the battery of BH3-only proteins that promote death and infarction during myocardial ischemia. Am. J. of Physiol. Heart Circ. Physiol. 291 (2006) 20–22. http://dx.doi.org/10.1152/ajpheart.00111.200610.1152/ajpheart.00111.2006Search in Google Scholar PubMed

[47] Toth, A., Jeffers, J.R., Nickson, P., Min, J-Y., Morgan, J.P., Zambetti, G.P. and Erhardt, P. Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 291 (2006) 52–60. http://dx.doi.org/10.1152/ajpheart.01046.200510.1152/ajpheart.01046.2005Search in Google Scholar PubMed

[48] Cazanave, S.C., Elmi, N.A., Akazawa, Y., Bronk, S.F., Mott, J.L. and Gores, G.J. CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am. J. Physiol. Gastrointest. Liver Physiol. 299 (2010) 236–243. http://dx.doi.org/10.1152/ajpgi.00091.201010.1152/ajpgi.00091.2010Search in Google Scholar PubMed PubMed Central

[49] Fernandez, P.C., Frank, S.R., Wang, L., Schroeder, M., Liu, S, Greene, J., Cocito, A. and Amati B. Genomic targets of the human c-Myc protein. Genes Dev. 17 (2003) 1115–1129. http://dx.doi.org/10.1101/gad.106700310.1101/gad.1067003Search in Google Scholar PubMed PubMed Central

[50] Garrison, S.P., Jeffers, J.R., Yang, C., Nilsson, J.A., Hall, M.A., Rehg, J.E., Yue, W., Yu, J., Zhang, L., Onciu, M., Sample, J.T., Cleveland, J.L. and Zambetti, G.P. Selection against PUMA gene expression in Myc-driven Bcell lymphomagenesis. Mol. Cell. Biol. 28 (2008) 5391–5402. http://dx.doi.org/10.1128/MCB.00907-0710.1128/MCB.00907-07Search in Google Scholar PubMed PubMed Central

[51] Happo, L., Strasser, A. and Scott, C.L. BH3-only Proteins. in: Cell Death (Melino, G. and Vaux, D., Ed.), 1th edition, John Wiley&Sons — Ltd, 2010, 75–90. Search in Google Scholar

[52] Erlacher, M., Michalak, E.M., Strasser, A. and Villunger, A. The BH3-only proteins Puma and Noxa: Two Brothers in Arms. in: Apoptosis and Cancer Therapy: From Cutting-edge Science to Novel Therapeutic Concepts, (Debatin, K.M. and Fulda, S., Ed.), Wiley-VCH Verlag GmbH, Weinheim, Germany. DOI: 10.1002/9783527619665.ch13, 2008, 379–402. 10.1002/9783527619665.ch13Search in Google Scholar

[53] Lozano, G. and Zambetti, G.P. What have animals models taught us about the p53 pathway? J. Pathol. 205 (2005) 206–220. http://dx.doi.org/10.1002/path.170410.1002/path.1704Search in Google Scholar PubMed

[54] Zapaśnik, M. and Cymerys, J.M. p53 protein — guardian of the genome in the viral infection. Post. Biol. Kom. 36 (2009) 565–582. Search in Google Scholar

[55] Michalak, E.M., Villunger, A., Adams, J.M. and Strasser, A. In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ. 15 (2008) 1019–1029. http://dx.doi.org/10.1038/cdd.2008.1610.1038/cdd.2008.16Search in Google Scholar PubMed PubMed Central

[56] Qiu, W., Carson-Walter, E.B., Liu, H., Epperly, M., Greenberger, J.S., Zambetti, G.P., Zhang, L., Yu, J. PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2 (2008) 576–583. http://dx.doi.org/10.1016/j.stem.2008.03.00910.1016/j.stem.2008.03.009Search in Google Scholar PubMed PubMed Central

[57] Wang, P., Yu, J. and Zhang, L. The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage. Proc. Natl. Acad. Sci. USA 104 (2007) 4054–4059. http://dx.doi.org/10.1073/pnas.070002010410.1073/pnas.0700020104Search in Google Scholar PubMed PubMed Central

[58] Charvet, C., Wissler, M., Brauns-Schubert, P., Wang, S-J., Tang, Y., Sigloch, F.C., Mellert, H., Brandenburg, M., Lindner, S.E., Breit, B., Green, D.R., McMahon, S.B., Borner, C., Gu, W. and Maurer U. Phosphporylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53. Mol. Cell. 42 (2011) 584–596. http://dx.doi.org/10.1016/j.molcel.2011.03.03310.1016/j.molcel.2011.03.033Search in Google Scholar PubMed PubMed Central

[59] Tang, Y., Luo, J., Zhang, W. and Gu, W. Tip60-dependent acetylation of p53modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 24 (2006) 827–839. http://dx.doi.org/10.1016/j.molcel.2006.11.02110.1016/j.molcel.2006.11.021Search in Google Scholar PubMed

[60] Sykes, S.M., Mellert, H.S., Holbert, M.A., Li, K., Marmorstein, R., Lane, W.S. and McMahon, S.B. Acetylation of the p53 DNA binding domain regulates apoptosis induction. Mol. Cell 24 (2006) 841–851. http://dx.doi.org/10.1016/j.molcel.2006.11.02610.1016/j.molcel.2006.11.026Search in Google Scholar PubMed PubMed Central

[61] Ibrahim, S.H., Akazawa, Y., Cazanave, S.C., Bronk, S.F., Elmi, N.A., Werneburg, N.W., Billadeau, D.D. and Gores, G.J. Glycogen synthase kinase-3 (GSK-3) inhibition attenuates hepatocyte lipoapoptosis. J. Hepatol. 54 (2011) 765–772. http://dx.doi.org/10.1016/j.jhep.2010.09.03910.1016/j.jhep.2010.09.039Search in Google Scholar PubMed PubMed Central

[62] Hetz, C. and Glimcher, L. The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology. Trends Cell Biol. 18 (2007) 38–44. http://dx.doi.org/10.1016/j.tcb.2007.10.00310.1016/j.tcb.2007.10.003Search in Google Scholar PubMed

[63] Luo, X., He, Q., Huang, Y. and Sheikh, M.S. Transcriptional upregulation of PUMA modulates endoplasmic reticulum calcium pool depletioninduced apoptosis via Bax activation. Cell Death Differ. 12 (2005) 1310–1318. http://dx.doi.org/10.1038/sj.cdd.440165910.1038/sj.cdd.4401659Search in Google Scholar PubMed

[64] Jiang, C.C., Lucas, K., Avery-Kiejda, K.A., Wade, M., deBock, C.E., Thorne, R.F., Allen, J., Hersey, P. and Zhang, X.D. Up-regulation of Mcl-1 is critical for survival of human melanoma cells upon endoplasmic reticulum stress. Cancer Res. 68 (2008) 6708–6717. http://dx.doi.org/10.1158/0008-5472.CAN-08-034910.1158/0008-5472.CAN-08-0349Search in Google Scholar PubMed

[65] Wei, J., O’Brien, D., Vilgelm, A., Piazuelo, M.B., Correa, P., Washinghton, M.K., El-Rifai, W., Peek, R.M. and Zaika A. Interaction of Helicobacter pylori with gastric epithelial cells is mediated by the p53 protein family. Gastroenterology 134 (2008) 1412–1423. http://dx.doi.org/10.1053/j.gastro.2008.01.07210.1053/j.gastro.2008.01.072Search in Google Scholar PubMed PubMed Central

[66] Perfettini, J-L., Roumier, T., Casted, M., Larochette, N., Boya, P., Raynal, B., Lazar, V., Ciccosanti, F., Nardacci, R., Penninger, J., Piacentini, M. and Kroemer, G. NF-κB and p53 qre the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope. J. Exp. Med. 199 (2004) 629–640. http://dx.doi.org/10.1084/jem.2003121610.1084/jem.20031216Search in Google Scholar PubMed PubMed Central

[67] Rodrigues, R., Paranhos-Baccala, G., Vernet, G. and Peyrefitte, C.N. Crimean-congo hemorrhagic fever virus-infected hepatocytes induced ERstress and apoptosis crosstalk. PLoS 7 (2012) 1–11. Search in Google Scholar

[68] Bauer, A., Villunger, A., Labi, V., Fischer, S.F., Strasser, A., Wagner, H., Schmid, R.M. and Häcker, G. The NF-κB regulator Bcl-3 and the BH3-only proteins Bim and Puma control the death of activated T cells. Proc. Natl. Acad. Sci. USA 103 (2006) 10979–10984. http://dx.doi.org/10.1073/pnas.060362510310.1073/pnas.0603625103Search in Google Scholar PubMed PubMed Central

[69] Fisher, S.F., Belz, G.T. and Strasser, A. BH3-only protein Puma contributes to death of antigen-specific T cells during shutdown of an immune response to acute viral infection. Proc. Natl. Acad. Sci. USA 105 (2008) 3035–3040. http://dx.doi.org/10.1073/pnas.070691310510.1073/pnas.0706913105Search in Google Scholar PubMed PubMed Central

[70] Häcker, G., Bauer, A. and Villunger, A. Apoptosis in activated T cells: what are the triggers, and what the signal transducers? Cell Cycle 5 (2006) 2421–2424. http://dx.doi.org/10.4161/cc.5.21.339710.4161/cc.5.21.3397Search in Google Scholar PubMed

[71] Hildeman, D., Jorgensen, T., Kappler, J. and Marrack P. Apoptosis and the homeostatic control of immune responses. Curr. Opin. Immunol. 19 (2007) 516–521. http://dx.doi.org/10.1016/j.coi.2007.05.00510.1016/j.coi.2007.05.005Search in Google Scholar PubMed PubMed Central

[72] Steckley, D., Karajgikar, M., Dale, L.B., Fuerth, B., Swan, P., Drummond-Main, C., Poulter, M.O., Ferguson, S.S., Strasser, A. and Cregan, S.P. Puma is a dominant regulator of oxidative stress induced Bax activation and neuronal apoptosis. J. Neurosci. 27 (2007) 12989–12999. http://dx.doi.org/10.1523/JNEUROSCI.3400-07.200710.1523/JNEUROSCI.3400-07.2007Search in Google Scholar PubMed PubMed Central

[73] Sandow, J.J. Regulation of the BH3-only protein PUMA by growth factor signalling. Ph.D. Thesis of the University of Adelaide, School of Medicine, 2011, 1–144. Search in Google Scholar

[74] Dewson, G. and Kluck, R.M. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J. Cell Sci. 122 (2009) 2801–2808. http://dx.doi.org/10.1242/jcs.03816610.1242/jcs.038166Search in Google Scholar PubMed PubMed Central

[75] Häcker, G. and Weber A. BH3-only proteins trigger cytochrome c release, but how? Arch. Biochem. Biophys. 462 (2007) 150–155. http://dx.doi.org/10.1016/j.abb.2006.12.02210.1016/j.abb.2006.12.022Search in Google Scholar PubMed

[76] Kim, H., Tu, H.C., Ren, D., Takeuchi, O., Jeffers, J.R., Zambetti, G.P., Hsieh, J.J. and Cheng, E.H. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol. Cell 36 (2009) 487–499. http://dx.doi.org/10.1016/j.molcel.2009.09.03010.1016/j.molcel.2009.09.030Search in Google Scholar PubMed PubMed Central

[77] Gallenne, T., Gautier, F., Oliver, L., Hervouet, E., Noël, B., Hickman, J.A., Geneste, O., Cartron, P.F., Vallette, F.M., Manon, S. and Juin, P. Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. J. Cell Biol. 185 (2009) 279–290. http://dx.doi.org/10.1083/jcb.20080915310.1083/jcb.200809153Search in Google Scholar PubMed PubMed Central

[78] Kuwana, T., Bouchier-Hayes, L., Chipuk, J.E., Bonzon, C., Sullivan, B.A., Green, D.R., and Newmeyer, D.D. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17 (2005) 525–535. http://dx.doi.org/10.1016/j.molcel.2005.02.00310.1016/j.molcel.2005.02.003Search in Google Scholar PubMed

[79] Westphalm D., Dewson, G., Czabotar, P.E. and Kluck, R.M. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta 1813 (2011) 521–531. http://dx.doi.org/10.1016/j.bbamcr.2010.12.01910.1016/j.bbamcr.2010.12.019Search in Google Scholar PubMed

[80] Lindsay, J., Esposti, M.D. and Gilmore, A.P. Bcl-2 proteins and mitochondria-specificity in membrane targeting for death. Biochim. Biophys. Acta 1813 (2011) 532–539. http://dx.doi.org/10.1016/j.bbamcr.2010.10.01710.1016/j.bbamcr.2010.10.017Search in Google Scholar PubMed

[81] Ghiotto, F., Fais, F. and Bruno, S. BH3-Only Proteins: The death puppeteer’s wires. Cytometry A 77 (2010) 11–21. Search in Google Scholar

[82] Giam, M., Huang, D.S.C. and Bouillet, P. BH3-only proteins and their roles in programmed cell death. Oncogene 27 (2009) 128–136. http://dx.doi.org/10.1038/onc.2009.5010.1038/onc.2009.50Search in Google Scholar PubMed

[83] Shamas-Din, A., Brahmbhatt, H., Leber, B. and Andrews, D.W. BH3-only proteins: orchestrators of apoptosis. Biochim. Biophys. Acta 1813 (2010) 508–520. http://dx.doi.org/10.1016/j.bbamcr.2010.11.02410.1016/j.bbamcr.2010.11.024Search in Google Scholar PubMed

[84] Leber, B., Lin, J. and Andrews, D. W. Embedded Together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 12 (2007) 897–911. http://dx.doi.org/10.1007/s10495-007-0746-410.1007/s10495-007-0746-4Search in Google Scholar PubMed PubMed Central

[85] Chipuk, J.E. and Green, D.R. How do BCL-2 proteins induce mitochondria outer membrane permeabilization? Trends Cell Biol. 18 (2008) 157–164. http://dx.doi.org/10.1016/j.tcb.2008.01.00710.1016/j.tcb.2008.01.007Search in Google Scholar PubMed PubMed Central

[86] Shore, G.C. Apoptosis: it’s BAK to VDAC. EMBO Rep. 10 (2009) 1311–1313. http://dx.doi.org/10.1038/embor.2009.24910.1038/embor.2009.249Search in Google Scholar PubMed PubMed Central

[87] Gavathiotis, E., Suzuki, M., Davis, M.L., Pitter, K., Bird, G.H., Katz, S.G., Tu, H.C., Kim, H., Cheng, E.H., Tjandra, N. and Walensky, L.D. BAX activation is initiated at a novel interaction site. Nature 455 (2008) 1076–81. http://dx.doi.org/10.1038/nature0739610.1038/nature07396Search in Google Scholar PubMed PubMed Central

[88] Willis, S.N., Fletcher, J.I., Kaumann, T., van Delft, M.F., Chen, L., Czabotar, P.E., Lerino, H., Lee, E.F., Fairlie, W.D., Bouillet, P., Strasser, A., Kluck, R.M., Adams, J.M. and Huang, D.C.S. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315 (2007) 856–859. http://dx.doi.org/10.1126/science.113328910.1126/science.1133289Search in Google Scholar PubMed

[89] Jabbour, A.M., Heraud, J.E., Daunt, C.P., Kaufmann, T., Sandow, J., O’Reilly, L.A., Callus, B.A., Lopez, A., Strasser, A., Vaux, D.L. and Ekert, P.G. Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim. Cell Death Differ. 16 (2009) 555–563. http://dx.doi.org/10.1038/cdd.2008.17910.1038/cdd.2008.179Search in Google Scholar PubMed

[90] Chipuk, J.E., Fisher, J.C., Dillon, C.P., Kriwacki, R.W., Kuwana, T. and Green, D.R. Mechanism of apoptosis induction by inhibition of the antiapoptotic BCL-2 proteins. Proc. Natl. Acad. Sci. USA. 105 (2008) 20327–20332. http://dx.doi.org/10.1073/pnas.080803610510.1073/pnas.0808036105Search in Google Scholar

[91] Chen, L., Willis, S.N., Wei, A., Smith, B.J., Fletcher, J.I., Hinds, M.G., Colman, P.M., Day, C.L., Adams, J.M. and Huang, D.C. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17 (2005) 393–403. http://dx.doi.org/10.1016/j.molcel.2004.12.03010.1016/j.molcel.2004.12.030Search in Google Scholar

[92] Vaseva, A.V. and Moll, U.M. The mitochondrial p53 pathway. Biochim. Biophys. Acta 1787 (2009) 414–420. http://dx.doi.org/10.1016/j.bbabio.2008.10.00510.1016/j.bbabio.2008.10.005Search in Google Scholar

[93] Vousden, K.H. Apoptosis - p53 and PUMA: a deadly duo. Science 309 (2005) 1685–1686. http://dx.doi.org/10.1126/science.111823210.1126/science.1118232Search in Google Scholar

[94] Chipuk, J.E., Bouchier-Haues, L., Kuwana, T., Newmeyer, D.D. and Green D.R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309 (2005) 1732–1735. http://dx.doi.org/10.1126/science.111429710.1126/science.1114297Search in Google Scholar

[95] Wolff, S., Erster, S., Palacios, G. and Moll, U.M. p53’s mitochondrial translocation and MOMP action is independent of Puma and Bax and severaly disrupts mitochondrial membrane integrity. Cell Res. 18 (2008) 733–744. http://dx.doi.org/10.1038/cr.2008.6210.1038/cr.2008.62Search in Google Scholar

[96] Yoo, N.J., Lee, J.W., Jeong, E.G. and Lee, S.H. Immunohistochemical analysis of pro-apoptotic PUMA protein and mutational analysis of PUMA gene in gastric carcinomas. Dig. Liver Dis. 39 (2007) 222–227. http://dx.doi.org/10.1016/j.dld.2006.11.00610.1016/j.dld.2006.11.006Search in Google Scholar

[97] Kuroda J. and Taniwaki, M. Involvement of BH3-only proteins in hematologic malignancies. Crit. Rev. Oncol. Hematol. 71 (2009) 89–101. http://dx.doi.org/10.1016/j.critrevonc.2008.10.00410.1016/j.critrevonc.2008.10.004Search in Google Scholar

[98] Pietsch, E.C., Sykes, S.M., McMahon, S.B. and Murphy, M.E. The p53 family and programmed cell death. Oncogene 27 (2008) 6507–6521. http://dx.doi.org/10.1038/onc.2008.31510.1038/onc.2008.315Search in Google Scholar

[99] Hoque, M.O., Begum, S., Sommer, M., Lee, T., Trink, B., Ratovitski, E. and Sidransky, D. PUMA in head and neck cancer. Cancer Lett. 199 (2003) 75–81. http://dx.doi.org/10.1016/S0304-3835(03)00344-610.1016/S0304-3835(03)00344-6Search in Google Scholar

[100] Ahn, C.H., Jeong, E.G., Kim, S.S., Lee, J.W., Lee, S.H., Kim, S.H., Kim, M.S., Yoo, N.J. and Lee, S.H. Expressional and mutational analysis of proapoptotic Bcl-2 member PUMA in hepatocellular carcinomas. Dig. Dis. Sci. 53 (2008) 1395–1399. http://dx.doi.org/10.1007/s10620-007-9987-x10.1007/s10620-007-9987-xSearch in Google Scholar PubMed

[101] Kim, M.R, Jeong, E.G., Chae, B., Lee, J.W., Soung, Y.H., Nam, S.W., Lee, J.Y., Yoo, N.J. and Sug H Lee. Pro-apoptotic PUMA and antiapoptotic phospho-BAD are highly expressed in colorectal carcinomas. Dig. Dis. Sci. 52 (2007) 2751–2756. http://dx.doi.org/10.1007/s10620-007-9799-z10.1007/s10620-007-9799-zSearch in Google Scholar PubMed

[102] Michalak, E.M., Jansen, E.S., Happo, L., Cragg, M.S., Tai, L., Smyth, G.K., Strasser, A., Adams, J.M. and Scott, C.L. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ. 16 (2009). 10.1038/cdd.2008.195Search in Google Scholar PubMed PubMed Central

[103] Sharma, A.D., Narain, N., Händel, E-M., Iken, M., Singhal, N., Cathomen, T., Manns, M.P., Schöler, H.R., Ott, M. and Cantz, T. MicroRNA-221 regulates FAS-induced fulminant liver failure. Hepatology 53 (2011) 1651–1661. http://dx.doi.org/10.1002/hep.2424310.1002/hep.24243Search in Google Scholar PubMed

[104] Shao, L., Sun, Y., Zhang, Z., Feng, W., Gao, Y., Cai, Z., Wang, Z.Z., Look, A.T. and Wu, W.S. Deletion of proapototic Puma selectively protects hematopoietic stem and progenitor cells against high dose radiation. Blood 115 (2010) 4707–4714. http://dx.doi.org/10.1182/blood-2009-10-24887210.1182/blood-2009-10-248872Search in Google Scholar PubMed PubMed Central

[105] Yu, H., Shen, H., Yuan, Y., Xu-Feng, R., Hu, X., Garrison, S.P., Zhang, L., Yu, J., Zambetti, G.P. and Cheng, T. Deletion of Puma protects hematopoietic stem cells and confers long term survival in response to high-dose radiation. Blood 115 (2010) 3472–3480. http://dx.doi.org/10.1182/blood-2009-10-24827810.1182/blood-2009-10-248278Search in Google Scholar PubMed PubMed Central

[106] Labi, V., Erlacher, M., Krumschnabel, G., Manzl, C., Tzankov, A., Pinon, J., Egle, A. and Villunger, A. Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation. Genes Dev. 25 (2010) 1602–1607. http://dx.doi.org/10.1101/gad.194021010.1101/gad.1940210Search in Google Scholar PubMed PubMed Central

[107] Michalak, E.M., Vandenberg, C.J., Delbridge, A.R.D., Wu, L., Scott, C.L., Adams, J.M. and Strasser, A. Apoptosis-promoted tumorgenesis: γ-irradiation-induced thymic lymphpomagenesis requires Puma-driven leukocyte death. Genes Dev. 24 (2010) 1608–1613. http://dx.doi.org/10.1101/gad.194011010.1101/gad.1940110Search in Google Scholar PubMed PubMed Central

[108] Qiu, W., Wang, X., Leibowitz, B., Yang, W., Zhang, L. and Yu, J. PUMAmediated apoptosis drives chemical hepatocarcinogenesis in mice. Hepatology 54 (2011) 1249–1258. http://dx.doi.org/10.1002/hep.2451610.1002/hep.24516Search in Google Scholar PubMed PubMed Central

[109] Llambi, F. and Green, D.R. Apoptosis and oncogenesis: give and take in the BLC-2 family. Curr. Opin. Genet. Dev. 21 (2011) 12–20. http://dx.doi.org/10.1016/j.gde.2010.12.00110.1016/j.gde.2010.12.001Search in Google Scholar PubMed PubMed Central

[110] Li, F., Huang, Q., Chen, J., Peng, Y., Roop, D., Bedford, J.S. and Li, C-Y. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci. Signal. 3 (2010) 10.1126/scisignal.2000634. Search in Google Scholar

[111] Baumgartner, F., Villunger, A. Apoptosis: a barrier against cancer no more? Hepatology 54 (2011) 1121–1124. http://dx.doi.org/10.1002/hep.2463710.1002/hep.24637Search in Google Scholar PubMed

[112] Labi, V. and Villunger, A. PUMA-mediated tumor suppression. Cell cycle 9 (2010) 4269–4275. http://dx.doi.org/10.4161/cc.9.21.1366610.4161/cc.9.21.13666Search in Google Scholar PubMed

Published Online: 2012-9-23
Published in Print: 2012-12-1

© 2012 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-012-0032-5/html
Scroll to top button