IMR Press / FBL / Volume 8 / Issue 4 / DOI: 10.2741/949

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Article
Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia
Show Less
1 Reproductive Biology Unit and Division of Reproductive Medicine, Department of Obstetrics Gynecology and Cellular Molecular Medicine, University of Ottawa, Ontario, Canada
Front. Biosci. (Landmark Ed) 2003, 8(4), 222–237; https://doi.org/10.2741/949
Published: 1 January 2003
Abstract

Mammalian ovarian follicular development and atresia is closely regulated by the cross talk of cell death and cell survival signals, which include endocrine hormones (gonadotropins) and intra-ovarian regulators (gonadal steroids, cytokines and growth factors). The fate of the follicle is dependent on a delicate balance in the expression and actions of factors promoting follicular cell proliferation, growth and differentiation and of those inducing programmed cell death (apoptosis). As an important endocrine hormone, FSH binds to its granulosa cell receptors and promotes ovarian follicle survival and growth not only by stimulating proliferation and estradiol secretion of these cells, but also inhibiting the apoptosis by up-regulating the expression of intracellular anti-apoptotic proteins, such as XIAP and FLIP. In addition, intra-ovarian regulators, such as TGF-alpha and TNF-alpha, also play an important role in the control of follicular development and atresia. In response to FSH, Estradiol-17 beta synthesized from the granulosa cells stimulates thecal expression of TGF-alpha, which in turn increases granulosa cell XIAP expression and proliferation. The death receptor and ligand, Fas and Fas ligand, are expressed in granulosa cells following gonadotropin withdrawal, culminating in caspase-mediated apoptosis and follicular atresia. In contrast, TNF-alpha has both survival and pro-apoptotic function in the follicle, depending on the receptor subtype activated, but has been shown to promote granulosa cell survival by increasing XIAP and FLIP expression via the IkappaB-NFkappaB pathway. The pro-apoptotic action of TNF-alpha is mediated through the activation of caspases, via its receptor- (i.e. Caspases-8 and -3) and mitochrondria- (i.e. Caspase-9 and -3) death pathways. In the present manuscript, we have reviewed the actions and interactions of gonadotropins and intra-ovarian regulators in the control of granulosa cell fate and ultimately follicular destiny. We have highlighted the role and regulation of granulosa cell XIAP and FLIP expression, as well as their interactions with the death signaling pathways in the maintenance of granulosa cell survival during follicular development. We have provided strong evidence for these intracellular survival factors as key determinants for ovarian follicular destiny (growth versus atresia), the expression of which is regulated by a highly integrated endocrine, paracrine and autocrine mechanism. Further studies in these aspects will lead to a better understanding of the molecular and cellular regulation of follicular development and atresia, and provide invaluable insight into novel strategies in assisted reproduction in human infertility as well as in increasing reproductive efficiency in livestock industries.

Share
Back to top