ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Functionalized hydroxyapatite scaffolds coated with sodium alginate and chitosan for controlled drug delivery; pp. 193–199
PDF | doi: 10.3176/proc.2012.3.08

Authors
Arita Dubnika, Dagnija Loca, Liga Berzina-Cimdina
Abstract

Due to its bioactivity, hydroxyapatite (HAp) is one of the most perspective materials for controlled drug delivery. Biodegradable polymers like chitosan and sodium alginate are used as coating materials for ceramic scaffolds. In this work the application of HAp/sodium alginate or chitosan composite materials which provide controlled lidocaine release is discussed. The polymers and lidocaine hydrochloride were incorporated in porous HAp scaffolds. Release of lidocaine hydrochloride was determined using high-performance liquid chromatography (HPLC). Depending on the polymer type used for coating, the crystal structure of the incorporated drug was determined. Drug/bioceramic scaffold/polymer interactions are discussed. The use of polymer coatings sustained lidocaine release from one day up to four days, compared with lidocaine impregnated but uncoated scaffolds.

References

  1. Currey. J. Biomaterials: sacrificial bonds heal bone. Nature, 2001, 25, 3829–3835.

  2. Son, J. S., Appleford, M., Ong, J. L., Wenke, J. C., Kim, J. M., Choi, S. H., and Oh, D. S. Porous hydro­xyapatite scaffold with three-dimensional localized drug delivery system using biodegradable micro­spheres. J. Control. Release, 2011, 153, 133–140.
http://dx.doi.org/10.1016/j.jconrel.2011.03.010

  3. Habraken, W. J. E. M., Wolke, J. G. C., and Jansen, J. A. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug. Deliver. Rev., 2007, 59, 234–248.
http://dx.doi.org/10.1016/j.addr.2007.03.011

  4. Paital, S. R. and Dahotre, N. B. Calcium phosphate coatings for bio-implant applications: materials, per­formance factors, and methodologies. Mater. Sci. Eng., 2009, R66, 1–70.

  5. Jin, H. H. and Lee, C. H. In-situ formation of the hydroxyapatite/chitosan-alginate composite scaffolds. Mater. Lett., 2008, 62, 1630–1633.
http://dx.doi.org/10.1016/j.matlet.2007.09.043

  6. Han, J. and Zhou, Z. Alginate–chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. Int. J. Biol. Macromol., 2010, 46, 199–205.
http://dx.doi.org/10.1016/j.ijbiomac.2009.11.004

  7. Rajkumar, M. and Meenakshisundaram, N. Development of nanocomposites based on hydroxyapatite/sodium alginate: synthesis and characterisation. Mater. Charact., 2011, 62, 469–479.
http://dx.doi.org/10.1016/j.matchar.2011.02.008

  8. Pillai, C. K. S. and Paul, W. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009, 34, 641–678.
http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001

  9. Jayakumar, R., Deepthy, M., Manzoor, K., Nair, S. V., and Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials – a short review. Carbohyd. Polym., 2010, 82, 227–232.
http://dx.doi.org/10.1016/j.carbpol.2010.04.074

10. Ribeiro, C. C., Barrias, C. C., and Barbosa, M. A. Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials, 2004, 25, 4363–4373.
http://dx.doi.org/10.1016/j.biomaterials.2003.11.028

11. Vallet-Regi, M., Balas, F., and Colilla, M. Drug confine­ment and delivery in ceramic implants. Drug Metab. Lett., 2007, 1, 37–40.
http://dx.doi.org/10.2174/187231207779814382

12. Salas, S., Talero, B., Rabasco, A. M., and González-Rodriguez, M. L. Development and validation of a reverse-phase liquid chromatographic method for the assay of lidocaine hydrochloride in alginate-Gantrez® microspheres. J. Pharmaceut. Biomed. Anal., 2008, 47, 501–507.
http://dx.doi.org/10.1016/j.jpba.2008.01.045

13. Zhang, L. F. and Yang, D. J. An ionically crosslinked hydrogel containing vancomycin coating on a porous scaffold for drug delivery and cell culture. Int. J. Pharm., 2008, 353, 74–87.
http://dx.doi.org/10.1016/j.ijpharm.2007.11.023

14. Li, Z. and Ramay, H. R. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 2005, 26, 3919–3928.
http://dx.doi.org/10.1016/j.biomaterials.2004.09.062

15. Zhang, J., Wang, Q., and Wang, A. In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomater., 2010, 6, 445–454.
http://dx.doi.org/10.1016/j.actbio.2009.07.001

16. Sivakumar, M., Manjubala, I., and Panduranga Rao, K. Preparation, characterization and in-vitro release of gentamicin from coralline hydroxyapatite-chitosan composite microspheres. Carbohyd. Polym., 2002, 49, 281–288.
http://dx.doi.org/10.1016/S0144-8617(01)00331-9

17. Pasparakis, G. and Bouropoulos, N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate-chitosan beads. Int. J. Pharm., 2006, 323, 34–42.
http://dx.doi.org/10.1016/j.ijpharm.2006.05.054

18. Högberg, C. J., Maliniak, A., and Lyubartsev, A. P. Dynamical and structural properties of charged and uncharged lidocaine in a lipid bilayer. Biophys. Chem., 2007, 125, 416–425.
http://dx.doi.org/10.1016/j.bpc.2006.10.005

19. Loca, D, Locs, J., Gulbis, J., Salma, I., and Berzina-Cimdina, L. Lidocaine loaded Ca/P scaffolds for bone regeneration and local drug delivery. Adv. Mat. Res., 2011, 222, 289–292.
http://dx.doi.org/10.4028/www.scientific.net/AMR.222.289

20. Malenovic, A., Medenica, M., and Ivanovic, D. Develop­ment and validation of RP–HPLC method for cetrimonium bromide and lidocaine determination. Il Farmaco, 2005, 60, 157–161.
http://dx.doi.org/10.1016/j.farmac.2004.11.004

21. Kevadiya, B. D., Joshi, G. V., Mody, H. M., and Bajaj, H. C. Biopolymer–clay hydrogel composites as drug carrier: host–guest intercalation and in vitro release study of lidocaine hydrochloride. Appl. Clay Sci., 2011, 52, 364–367.
http://dx.doi.org/10.1016/j.clay.2011.03.017

22. Powell, M. F. Lidocaine and lidocaine hydrochloride. Anal. Profiles Drug Subs., 1986, 15, 761–779.
http://dx.doi.org/10.1016/S0099-5428(08)60428-1

23. Farzadi, A., Solati-Hashjin, M., and Bakhshi, F. Synthesis and characterization of hydroxyapatite/b-tricalcium phosphate nanocomposites using microwave irradia­tion. Ceram. Int., 2011, 37, 65–71.
http://dx.doi.org/10.1016/j.ceramint.2010.08.021

24. Zalite, V., Locs, J., Vempere, D., and Berzina-Cimdina, L. The effect of pore forming agent particle size on the porosity, microstructure and in vitro studies of hydroxyapatite ceramics. Key. Eng. Mat., 2012, 493–494, 277–280.
http://dx.doi.org/10.4028/www.scientific.net/KEM.493-494.277

25. Rapacz-Kmitaa, A., Paluszkiewicza, C., and Ślósarczyk, A. FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. J. Mol. Struct., 2005, 744–747, 653–656.
http://dx.doi.org/10.1016/j.molstruc.2004.11.070

26. Palasz, A. T. and Beltran Brena, P. The effect of different zwitterionic buffers and PBS used for out-of-incubator procedures during standard in vitro embryo production on development, morphology and gene expression of bovine embryos. Theriogenology, 2008, 70, 1461–1470.
http://dx.doi.org/10.1016/j.theriogenology.2008.06.092

27. Dulbecco, R. and Vogt, M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J. Exp. Med., 1954, 99, 167–182.
http://dx.doi.org/10.1084/jem.99.2.167

28. Wei, L., Cai, C., Lin, J., Wang, L., and Zhang, X. Degrada­tion controllable biomaterials constructed from lysozyme-loaded Ca-alginate microparticle/ chitosan composites. Polymer, 2011, 52, 5139–5148.
http://dx.doi.org/10.1016/j.polymer.2011.09.006

Back to Issue