Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 3, 143 - 154, 26.12.2019
https://doi.org/10.33187/jmsm.500819

Abstract

References

  • [1] K. R. Bhatnagar, A. Sapovadia, D. Gupta, P. Kumar, H. Jasani, Dry eye syndrome: A rising occupational hazard in tropical countries, Medical J. Dr. D. Y. Patil Uni., 7 (2014), 13–18.
  • [2] K. C. Gokul, D. B. Gurung, P. R. Adhikary, Transient thermal model of airflow effects in human eye temperature, Kathmandu Uni. J. Uni. Sci. Eng. Tech., 9 (2013), 47–58.
  • [3] K. C. Gokul, D. B. Gurung, P. R. Adhikary, Modeling airflow effects in human eye temperature with and without eyelids, Int. J. Appl. Math. Mech., 10 (2014), 82–98.
  • [4] J. A. Scott, The computation of temperature rises in the human eye induced by infrared radiation, Phys. Med. Biol., 33 (1988), 243–257.
  • [5] R. Mapstone, Determinants of corneal temperature, British J. Ophthalmology, 52 (1968), 729–741.
  • [6] D. H. Sliney, Physical factors in cataractogenesis: Ambient ultraviolet radiation and temperature, Investigative Ophthalmology Vis. Sci., 27 (1986), 781–790.
  • [7] H. Fujishima, I. Toda, M. Yamada, N. Sato, K. Tsubota, Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry, British J. Ophthalmology, 80 (1996), 29–32.
  • [8] J. J. Lagendijk, A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermia treatment, Phys. Med. Biol., 27 (1982), 1301–1311.
  • [9] V. M. M. Flycket, B. W. Roaymakers, J. J. W. Lagendijk, Modeling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficient versus the pennes bioheat model versus discrete blood vessels, Phys. Med. Biol., 51 (2006), 5007–5021.
  • [10] J. A. Scott, A finite element model of heat transport in the human eye, 51(33) (1988), 227–241.
  • [11] M. Shafahi, K. Vafai, Human eye response to thermal disturbances, J. Heat Transfer, 133 (2011), Article ID 011009.
  • [12] N. Sharon, P. Z. B. Yoseph, B. Bormusov, A. Dovrat, Simulation of heat exposure and damage to the eye lens in a neighborhood bakery, Experiment. Eye Res., 87 (2008), 49–55.
  • [13] E. Y. K. Ng, E. H. Ooi, Fem simulation of the eye structure with bio-heat analysis, Comput. Methods Programs Biomedicine, 82 (2006), 268–276.
  • [14] E. H. Ooi, E. Y. K. Ng, Simulation of aqueous humor hydrodynamics in human eye heat transfer, Computer. Biol. Med., 38 (2007), 252–262.
  • [15] K. C. Gokul, D. B. Gurung, P. R. Adhikary, Effects of blood perfusion and metabolism in temperature distribution in human eye, Adv. Appl. Math. Biosci., 4 (2013), 13–23.
  • [16] S. A. Schellini, A. A. Sampaio, E. Hoyama, A. A. V. Cruz, C. R. Padovani, Spontaneous eye blink analysis in the normal individual, Orbit, 24 (2005), 239–242.
  • [17] D. B. Gurung, K. C. Gokul, Mathematical model of thermal effects of blinking in human eye, Int. J. Biomath., 9 (2016), 1650006.
  • [18] L. Kessel, L. Johnson, H. Aridsson, M. Larsen, The relationship between body and ambient temperature and corneal temperature, Investigative Ophthalmology Vis. Sci., 51 (2010), 6593–6597.
  • [19] I. A. Butovich, J. C. Arciniega, J. C. Wojtowicz, Meibomian lipid films and the impact of temperature, Investigative Ophthalmology Vis. Sci., 51 (2010), 5508–5518.
  • [20] D. B. Gurung, V. P. Saxena, Pheripheral temperature distribution in human subjects exposed to wind flow, Int. J. Math. Engrg., 2 (2010), 728–740.
  • [21] S. Koh, C. Tung, R. Kottaiyan, J. Zavislam, G. Yoon, J. Aquavella, Effect of airlfow exposure on the tear mensiscus, J. Ophthalmology, (2012), Article ID 983182.
  • [22] K. Nakamori, M. Odawara, T. Nakajima, T. Mizutani, K. Tsubota, Blinking is controlled primarily by ocular surface conditions, Amer. J. Ophthalmology 124 (1997), 23–30.
  • [23] H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiology, 85 (1998), 5–34.
  • [24] R. J. Dear, E. Arens, Z. Hui, Convective and radiative heat transfer coefficients for individual human body segments, Int. J. Biometeorol, 40 (1997), 141–156.
  • [25] J. P. Holman, Heat Transfer, eighth si metric ed., Mc Graw Hill, India, 2001.
  • [26] K. C. Gokul, D. B. Gurung, P. R. Adhikary, Thermal effects of eyelid in human eye tempearture, J. Appl. Math. Inform., 32 (2014), 649–663.
  • [27] K. C. Gokul, D. B. Gurung, Mathematical model: Comparative study of thermal effects of laser in corneal refractive surgeries, Appl. Appl. Math., 10 (2015), 609–619.
  • [28] A. Hirata, S. Watanabe, O. Fujiwara, M. Kojima, K. Sasaki, T. Shiozawa, Temperature elevation in the eye of anatomically based human head models for plane-wave exposures, Phys. Med. Biol., 52 (2007), 6389–6399.
  • [29] M. Cvetkovic, D. Poljak, A. Peratta, Fetd computation of the temperature distribution induced into a human eye by a pulsed laser, Prog. Electromagn., 120 (2011), 403–421.
  • [30] J. Kaminer, A. S. Powers, K. G. Horn, C. Hui, C. Evinger, Characterizing the spontaneous blink generator: An animal model, J. Neurosci., 31 (2011), 11256–11267.
  • [31] S. Iwata, M. A. Lemp, F. J. Holly, C. H. Dohlman, Evaporation rate of water from the precorneal tear film and cornea in the rabbit, Investigative Ophthalmology Vis. Sci., 8 (1969), 613–619.
  • [32] S. Acharya, D. B. Gurung, V. P. Saxena, Effect of metabolic reactions on thermoregulation in human males and females body, Appl. Math., 4 (2013), 39–48.
  • [33] A. H. Rantamaki, M. Javanainen, I. Vattulainen, J. H. Holopainen, Do lipids retard the evaporation of the tear fluid?, Investigative Ophthalmology Vis. Sci., 53 (2012), 6442–6447.
  • [34] R. D. Freeman, I. Fatt, Environmental influences on ocular temperature, Investigative Ophthalmology Vis. Sci., 12 (1973), 596–602.

Mathematical Model: Thermal Effects of Two Wheeler Rider’s Speed in His/Her Eye

Year 2019, Volume: 2 Issue: 3, 143 - 154, 26.12.2019
https://doi.org/10.33187/jmsm.500819

Abstract

High speed airflow into the cornea accelerates evaporation and heat transfer. Eyelid blinking increases with increased airflow speed into the eye. Increased blinking increases corneal temperature when drops below normal level. In cold climatic condition high speed airflow causes rapid temperature drop. Most often, eye injuries caused by cold exposure occur in individuals who try to force their eyes open in high speed wind and cold weather such as two wheeler rider. The purpose of this study is to investigate the temperature changes in two wheeler rider’s cornea, considering eyelid blinking, in his/her different speed. Thus, in this paper, bio-heat transfer process is simulated using finite element method at rider’s different speed in transient state cases. In still air, blinking increases corneal temperature by $2.74^oC$ at normal ambient temperature $22.5^oC$ than in open eye. At ambient temperature $0^oC$ and rider’s speed $60km=hr$, corneal temperature drops to $5.45^oC $ in open eye, while blinking increases this temperature by 6:28oC. Similarly at ambient temperature $40^oC$, blinking reduces corneal temperature by $0.51^oC$. Corneal temperature approaches steady state quickly at higher rider’s speed.

References

  • [1] K. R. Bhatnagar, A. Sapovadia, D. Gupta, P. Kumar, H. Jasani, Dry eye syndrome: A rising occupational hazard in tropical countries, Medical J. Dr. D. Y. Patil Uni., 7 (2014), 13–18.
  • [2] K. C. Gokul, D. B. Gurung, P. R. Adhikary, Transient thermal model of airflow effects in human eye temperature, Kathmandu Uni. J. Uni. Sci. Eng. Tech., 9 (2013), 47–58.
  • [3] K. C. Gokul, D. B. Gurung, P. R. Adhikary, Modeling airflow effects in human eye temperature with and without eyelids, Int. J. Appl. Math. Mech., 10 (2014), 82–98.
  • [4] J. A. Scott, The computation of temperature rises in the human eye induced by infrared radiation, Phys. Med. Biol., 33 (1988), 243–257.
  • [5] R. Mapstone, Determinants of corneal temperature, British J. Ophthalmology, 52 (1968), 729–741.
  • [6] D. H. Sliney, Physical factors in cataractogenesis: Ambient ultraviolet radiation and temperature, Investigative Ophthalmology Vis. Sci., 27 (1986), 781–790.
  • [7] H. Fujishima, I. Toda, M. Yamada, N. Sato, K. Tsubota, Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry, British J. Ophthalmology, 80 (1996), 29–32.
  • [8] J. J. Lagendijk, A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermia treatment, Phys. Med. Biol., 27 (1982), 1301–1311.
  • [9] V. M. M. Flycket, B. W. Roaymakers, J. J. W. Lagendijk, Modeling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficient versus the pennes bioheat model versus discrete blood vessels, Phys. Med. Biol., 51 (2006), 5007–5021.
  • [10] J. A. Scott, A finite element model of heat transport in the human eye, 51(33) (1988), 227–241.
  • [11] M. Shafahi, K. Vafai, Human eye response to thermal disturbances, J. Heat Transfer, 133 (2011), Article ID 011009.
  • [12] N. Sharon, P. Z. B. Yoseph, B. Bormusov, A. Dovrat, Simulation of heat exposure and damage to the eye lens in a neighborhood bakery, Experiment. Eye Res., 87 (2008), 49–55.
  • [13] E. Y. K. Ng, E. H. Ooi, Fem simulation of the eye structure with bio-heat analysis, Comput. Methods Programs Biomedicine, 82 (2006), 268–276.
  • [14] E. H. Ooi, E. Y. K. Ng, Simulation of aqueous humor hydrodynamics in human eye heat transfer, Computer. Biol. Med., 38 (2007), 252–262.
  • [15] K. C. Gokul, D. B. Gurung, P. R. Adhikary, Effects of blood perfusion and metabolism in temperature distribution in human eye, Adv. Appl. Math. Biosci., 4 (2013), 13–23.
  • [16] S. A. Schellini, A. A. Sampaio, E. Hoyama, A. A. V. Cruz, C. R. Padovani, Spontaneous eye blink analysis in the normal individual, Orbit, 24 (2005), 239–242.
  • [17] D. B. Gurung, K. C. Gokul, Mathematical model of thermal effects of blinking in human eye, Int. J. Biomath., 9 (2016), 1650006.
  • [18] L. Kessel, L. Johnson, H. Aridsson, M. Larsen, The relationship between body and ambient temperature and corneal temperature, Investigative Ophthalmology Vis. Sci., 51 (2010), 6593–6597.
  • [19] I. A. Butovich, J. C. Arciniega, J. C. Wojtowicz, Meibomian lipid films and the impact of temperature, Investigative Ophthalmology Vis. Sci., 51 (2010), 5508–5518.
  • [20] D. B. Gurung, V. P. Saxena, Pheripheral temperature distribution in human subjects exposed to wind flow, Int. J. Math. Engrg., 2 (2010), 728–740.
  • [21] S. Koh, C. Tung, R. Kottaiyan, J. Zavislam, G. Yoon, J. Aquavella, Effect of airlfow exposure on the tear mensiscus, J. Ophthalmology, (2012), Article ID 983182.
  • [22] K. Nakamori, M. Odawara, T. Nakajima, T. Mizutani, K. Tsubota, Blinking is controlled primarily by ocular surface conditions, Amer. J. Ophthalmology 124 (1997), 23–30.
  • [23] H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiology, 85 (1998), 5–34.
  • [24] R. J. Dear, E. Arens, Z. Hui, Convective and radiative heat transfer coefficients for individual human body segments, Int. J. Biometeorol, 40 (1997), 141–156.
  • [25] J. P. Holman, Heat Transfer, eighth si metric ed., Mc Graw Hill, India, 2001.
  • [26] K. C. Gokul, D. B. Gurung, P. R. Adhikary, Thermal effects of eyelid in human eye tempearture, J. Appl. Math. Inform., 32 (2014), 649–663.
  • [27] K. C. Gokul, D. B. Gurung, Mathematical model: Comparative study of thermal effects of laser in corneal refractive surgeries, Appl. Appl. Math., 10 (2015), 609–619.
  • [28] A. Hirata, S. Watanabe, O. Fujiwara, M. Kojima, K. Sasaki, T. Shiozawa, Temperature elevation in the eye of anatomically based human head models for plane-wave exposures, Phys. Med. Biol., 52 (2007), 6389–6399.
  • [29] M. Cvetkovic, D. Poljak, A. Peratta, Fetd computation of the temperature distribution induced into a human eye by a pulsed laser, Prog. Electromagn., 120 (2011), 403–421.
  • [30] J. Kaminer, A. S. Powers, K. G. Horn, C. Hui, C. Evinger, Characterizing the spontaneous blink generator: An animal model, J. Neurosci., 31 (2011), 11256–11267.
  • [31] S. Iwata, M. A. Lemp, F. J. Holly, C. H. Dohlman, Evaporation rate of water from the precorneal tear film and cornea in the rabbit, Investigative Ophthalmology Vis. Sci., 8 (1969), 613–619.
  • [32] S. Acharya, D. B. Gurung, V. P. Saxena, Effect of metabolic reactions on thermoregulation in human males and females body, Appl. Math., 4 (2013), 39–48.
  • [33] A. H. Rantamaki, M. Javanainen, I. Vattulainen, J. H. Holopainen, Do lipids retard the evaporation of the tear fluid?, Investigative Ophthalmology Vis. Sci., 53 (2012), 6442–6447.
  • [34] R. D. Freeman, I. Fatt, Environmental influences on ocular temperature, Investigative Ophthalmology Vis. Sci., 12 (1973), 596–602.
There are 34 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Gokul Kc 0000-0002-7471-8088

Dil Bahadur Gurung This is me 0000-0002-0570-6024

Publication Date December 26, 2019
Submission Date December 22, 2018
Acceptance Date August 31, 2019
Published in Issue Year 2019 Volume: 2 Issue: 3

Cite

APA Kc, G., & Gurung, D. B. (2019). Mathematical Model: Thermal Effects of Two Wheeler Rider’s Speed in His/Her Eye. Journal of Mathematical Sciences and Modelling, 2(3), 143-154. https://doi.org/10.33187/jmsm.500819
AMA Kc G, Gurung DB. Mathematical Model: Thermal Effects of Two Wheeler Rider’s Speed in His/Her Eye. Journal of Mathematical Sciences and Modelling. December 2019;2(3):143-154. doi:10.33187/jmsm.500819
Chicago Kc, Gokul, and Dil Bahadur Gurung. “Mathematical Model: Thermal Effects of Two Wheeler Rider’s Speed in His/Her Eye”. Journal of Mathematical Sciences and Modelling 2, no. 3 (December 2019): 143-54. https://doi.org/10.33187/jmsm.500819.
EndNote Kc G, Gurung DB (December 1, 2019) Mathematical Model: Thermal Effects of Two Wheeler Rider’s Speed in His/Her Eye. Journal of Mathematical Sciences and Modelling 2 3 143–154.
IEEE G. Kc and D. B. Gurung, “Mathematical Model: Thermal Effects of Two Wheeler Rider’s Speed in His/Her Eye”, Journal of Mathematical Sciences and Modelling, vol. 2, no. 3, pp. 143–154, 2019, doi: 10.33187/jmsm.500819.
ISNAD Kc, Gokul - Gurung, Dil Bahadur. “Mathematical Model: Thermal Effects of Two Wheeler Rider’s Speed in His/Her Eye”. Journal of Mathematical Sciences and Modelling 2/3 (December 2019), 143-154. https://doi.org/10.33187/jmsm.500819.
JAMA Kc G, Gurung DB. Mathematical Model: Thermal Effects of Two Wheeler Rider’s Speed in His/Her Eye. Journal of Mathematical Sciences and Modelling. 2019;2:143–154.
MLA Kc, Gokul and Dil Bahadur Gurung. “Mathematical Model: Thermal Effects of Two Wheeler Rider’s Speed in His/Her Eye”. Journal of Mathematical Sciences and Modelling, vol. 2, no. 3, 2019, pp. 143-54, doi:10.33187/jmsm.500819.
Vancouver Kc G, Gurung DB. Mathematical Model: Thermal Effects of Two Wheeler Rider’s Speed in His/Her Eye. Journal of Mathematical Sciences and Modelling. 2019;2(3):143-54.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.