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Difference-in-differences (DD) is both the most common and the oldest quasi-experimental 

research design, dating back to Snow’s (1855) analysis of a London cholera outbreak.1 A DD 

estimate is the difference between the change in outcomes before and after a treatment (difference 

one) in a treatment versus control group (difference two): �𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑃𝑃𝑃𝑃𝑃𝑃 � − �𝑦𝑦𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −

𝑦𝑦𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑃𝑃𝑃𝑃𝑃𝑃 �. That simple quantity also equals the estimated coefficient on the interaction of a 

treatment group dummy and a post-treatment period dummy in the following regression: 

                          𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛾𝛾 + 𝛾𝛾𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛾𝛾𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡 + 𝛽𝛽2𝑥𝑥2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡 + 𝑢𝑢𝑖𝑖𝑖𝑖                      (1) 

The elegance of DD makes it clear which comparisons generate the estimate, what leads to bias, 

and how to test the design. The expression in terms of sample means connects the regression to 

potential outcomes and shows that, under a common trends assumption, a two-group/two-period 

(2x2) DD identifies the average treatment effect on the treated. All econometrics textbooks and 

survey articles describe this structure,2 and recent methodological extensions build on it.3  

Most DD applications diverge from this 2x2 set up though because treatments usually occur 

at different times.4 The processes that generate treatment variables naturally lead to variation in 

timing. Local governments change policy. Jurisdictions hand down legal rulings. Natural disasters 

strike across seasons. Firms lay off workers. In this case researchers estimate a regression with 

dummies for cross-sectional units (𝛼𝛼𝑖𝑖) and time periods (𝛼𝛼𝑡𝑡), and a treatment dummy (𝐷𝐷𝑖𝑖𝑖𝑖): 

                                                    𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑡𝑡 + 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖                                                      (2) 

                                                      
1 A search from 2012 forward of nber.org, for example, yields 430 results for “difference-in-differences", 360 for 
“randomization” AND “experiment” AND “trial”, and 277 for “regression discontinuity” OR “regression kink”. 
2 This includes, but is not limited to, Angrist and Krueger (1999), Angrist and Pischke (2009), Heckman, Lalonde, 
and Smith (1999), Meyer (1995), Cameron and Trivedi (2005), Wooldridge (2010). 
3 Inverse propensity score reweighting: Abadie (2005), synthetic control: Abadie, Diamond, and Hainmueller (2010), 
changes-in-changes: Athey and Imbens (2006), quantile treatment effects: Callaway, Li, and Oka (forthcoming). 
4 Half of the 93 DD papers published in 2014/2015 in 5 general interest or field journals had variation in timing. 
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In contrast to our substantial understanding of the canonical 2x2 DD model, we know 

relatively little about the two-way fixed effects DD model when treatment timing varies. We do 

not know precisely how it compares mean outcomes across groups.5 We typically rely on general 

descriptions of the identifying assumption like “interventions must be as good as random, 

conditional on time and group fixed effects” (Bertrand, Duflo, and Mullainathan 2004, p. 250), 

and consequently lack well-defined strategies to test the validity of the DD design with timing. We 

have limited understanding of the treatment effect parameter that regression DD identifies. Finally, 

we often cannot evaluate when alternative specifications will work or why they change estimates.6 

This paper shows that the two-way fixed effects DD estimator in (2) is a weighted average 

of all possible 2x2 DD estimators that compare timing groups to each other. Some use units treated 

at a particular time as the treatment group and untreated units as the control group. Some compare 

units treated at two different times, using the later group as a control before its treatment begins 

and then the earlier group as a control after its treatment begins. As in any least squares estimator, 

the weights on the 2x2 DD’s are proportional to group sizes and the variance of the treatment 

dummy within each pair. Treatment variance is highest for groups treated in the middle of the 

panel and lowest for groups treated at the extremes. This result clarifies the theoretical 

interpretation and identifying assumptions of the general DD model and creates simple new tools 

for describing the design and analyzing problems that arise in practice. 

By decomposing the DD estimator into its sources of variation (the 2x2 DD’s) and 

providing an explicit interpretation of the weights in terms of treatment variances, my results 

                                                      
5 Imai, Kim, and Wang (2018) note “It is well known that the standard DiD estimator is numerically equivalent to the 
linear two-way fixed effects regression estimator if there are two time periods and the treatment is administered to 
some units only in the second time period. Unfortunately, this equivalence result does not generalize to the multi-
period DiD design…Nevertheless, researchers often motivate the use of the two-way fixed effects estimator by 
referring to the DiD design (e.g., Angrist and Pischke, 2009).” 
6 This often leads to sharp disagreements. See Neumark, Salas, and Wascher (2014) on unit-specific linear trends, Lee 
and Solon (2011) on weighting and outcome transformations, and Shore-Sheppard (2009) on age time fixed effects. 
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extend recent research on DD models with heterogeneous effects.7 Assuming equal counterfactual 

trends, Abraham and Sun (2018), Borusyak and Jaravel (2017), and de Chaisemartin and 

D’HaultfŒuille (2018b) show that two-way fixed effects DD yields an average of treatment effects 

across all groups and times, some of which may have negative weights. My results show how these 

weights arise from differences in timing and thus treatment variances, facilitating a connection 

between models of treatment allocation and the interpretation of DD estimates.8 I also explain why 

the negative weights occur: when already-treated units act as controls, changes in their treatment 

effects over time get subtracted from the DD estimate. This negative weighting only arises when 

treatment effects vary over time, in which case it typically biases regression DD estimates away 

from the sign of the true treatment effect. This does not imply a failure of the underlying design, 

but it does caution against the use of a single-coefficient two-way fixed effects specification to 

summarize time-varying effects. 

I also show that because regression DD uses group sizes and treatment variances to weight 

up simple estimates that each rely on common trends between two groups, its identifying 

assumption is a variance-weighted version of common trends between all groups. The extent to 

which a group’s differential trend biases the overall estimate equals the difference between how 

much weight it gets when it acts as the treatment group and how much weight it gets when it acts 

as the control group. When the earliest and/or latest treated units have low treatment variance, they 

can get more weight as controls than treatments. In designs without untreated units they always 

                                                      
7 Early research in this area made specific observations about stylized specifications such as models with no unit fixed 
effects (Bitler, Gelbach, and Hoynes 2003), or it provided simulation evidence (Meer and West 2013). 
8 Related results on the weighting of heterogeneous treatment effects does not provide this intuition. Abraham and 
Sun (2018, p 9) describe the weights in a DD estimate with constant treatment effects as “residual[s] from predicting 
treatment status, 𝐷𝐷𝑖𝑖,𝑡𝑡 with unit and time fixed effects.” de Chaisemartin and D’HaultfŒuille (2018b, p 7) and Borusyak 
and Jaravel (2017) describe these same weights as coming from an auxiliary regression and Borusyak and Jaravel 
(2017, p 10-11) note that “a general characterization of [the weights] does not seem feasible.” Athey and Imbens 
(2018) also decompose the DD estimator and develop design-based inference methods for this setting. Strezhnev 
(2018) expresses 𝛽̂𝛽𝐷𝐷𝐷𝐷 as an unweighted average of DD-type terms across pairs of observations and periods.  
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do. These weights, derived from the estimator itself, form the basis of a new balance test that 

generalizes the traditional notion of balance between treatment and control groups, and improves 

on existing strategies that test between treated/untreated units or early/later treated units.  

Finally, I use the weighted average result to develop simple tools to describe the general 

DD design and evaluate why estimates change across specifications. Simply plotting the 2x2 DD’s 

against their weight displays heterogeneity in the estimated components and shows which terms 

or groups matter most. Summing the weights on the timing comparisons versus treated/untreated 

comparisons quantifies “how much” of the variation comes from timing (a common question in 

practice). Additionally, the difference between DD estimates across specifications can often be 

written as a Oaxaca-Blinder-Kitagawa style decomposition allowing researchers to calculate how 

much comes from the 2x2 DD’s, the weights, or the interaction of the two. The source of instability 

matters because changes due to different weighting reflect changes in the estimand (not bias), 

while changes in the 2x2 DD’s suggest that covariates address confounding. Scatter plots of the 

2x2 DD’s (or the weights) from different specifications show which specific terms drive these 

differences. I develop this approach for models that weight, use triple-differences, control for unit-

specific time trends (or pre-trends only), and control for disaggregated time fixed effects. 

To demonstrate these methods I replicate Stevenson and Wolfers (2006) two-way fixed 

effects DD study of the effect of unilateral divorce laws on female suicide rates. The two-way 

fixed effects model suggest that unilateral divorce leads to 3 fewer suicides per million women. 

More than a third of the identifying variation comes from treatment timing and the rest comes from 

comparisons to states with no reforms during the sample period. Event-study estimates show that 

the treatment effects vary strongly over time, however, which biases many of the timing 

comparisons. The DD estimate (-3.08) is therefore a misleading summary estimate of the average 
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post-treatment effect, which is closer to -5. My proposed balance test detects significantly higher 

per-capita income and male/female sex ratios in reform states, in contrast to joint tests of covariate 

balance across timing groups, which cannot reject the null of balance. Finally, my results show 

that much of the sensitivity across specifications comes from changes in weights, or a small 

number of 2x2 DD’s, and need not indicate bias. 

I. THE DIFFERENCE-IN-DIFFERENCES DECOMPOSITION THEOREM 
When units experience treatment at different times, one cannot estimate equation (1) because the 

post-period dummy is not defined for control observations. Nearly all work that exploits variation 

in treatment timing uses the two-way fixed effects model in equation (2) (Cameron and Trivedi 

2005 pg. 738). Researchers clearly recognize that differences in when units received treatment 

contribute to identification, but have not been able to describe how these comparisons are made.9  

The simplest way to illustrate how treatment timing works is to consider a balanced panel 

dataset with 𝑇𝑇 periods (𝑡𝑡) and 𝑁𝑁 cross-sectional units (𝑖𝑖) that belong to either an untreated group, 

𝑈𝑈; an early treatment group, 𝑘𝑘, which receives a binary treatment at 𝑡𝑡𝑘𝑘∗; and a late treatment group, 

ℓ, which receives the binary treatment at 𝑡𝑡ℓ∗ > 𝑡𝑡𝑘𝑘∗ . Figure 1 plots this structure.  

Throughout the paper I use “group” or “timing group” to refer to collections of units either 

treated at the same time or not treated. I refer to units that do not receive treatment as “untreated” 

rather than “control” units because, while they obviously act as controls, treated units do, too. 𝑘𝑘 

will denote an earlier treated group and ℓ will denote a later treated group. Each group’s sample 

share is 𝑛𝑛𝑘𝑘 and the share of time it spends treated is 𝐷𝐷�𝑘𝑘. I use 𝑦𝑦𝑏𝑏
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎) to denote the sample mean 

of 𝑦𝑦𝑖𝑖𝑖𝑖 for units in group 𝑏𝑏 during group 𝑎𝑎’s post period, [𝑡𝑡𝑎𝑎∗ ,𝑇𝑇]. (𝑦𝑦𝑏𝑏
𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎) is defined similarly.) 

                                                      
9 Angrist and Pischke (2015), for example, lay out the canonical DD model in terms of means, but discuss regression 
DD with timing in general terms only, noting that there is “more than one…experiment” in this setting.  
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The challenge in this setting has been to articulate how estimates of equation (2) compare 

the groups and times depicted in figure 1. We do, however, have clear intuition, for 2x2 designs in 

which one group’s treatment status changes and another’s does not. We could form several such 

designs, estimable by equation (1), in the three-group case. Figure 2 plots them.  

Panels A and B show that with only one of the two treatment groups, an estimate from 

equation (2) reduces to the canonical case comparing a treated to an untreated group: 

                       𝛽𝛽�𝑗𝑗𝑗𝑗
2𝑥𝑥2

≡ �𝑦𝑦𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑗𝑗) − 𝑦𝑦𝑗𝑗

𝑃𝑃𝑃𝑃𝑃𝑃(𝑗𝑗)� − �𝑦𝑦𝑈𝑈
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑗𝑗) − 𝑦𝑦𝑈𝑈

𝑃𝑃𝑃𝑃𝑃𝑃(𝑗𝑗)�  ,    𝑗𝑗 = 𝑘𝑘, ℓ  .                      (3) 

If instead there were no untreated units, the two way fixed effects estimator would be identified 

only by the differential treatment timing between groups 𝑘𝑘 and ℓ. For this case, panels C and D 

plot two clear 2x2 DD’s based on sub-periods when only one group’s treatment status changes. 

Before 𝑡𝑡ℓ∗, the early units act as the treatment group because their treatment status changes, and 

later units act as controls during their pre-period. We compare outcomes between the window 

when treatment status varies, 𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ), and group 𝑘𝑘’s pre-period, 𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘): 

                                𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘

≡  �𝑦𝑦𝑘𝑘
𝑀𝑀𝐼𝐼𝐼𝐼(𝑘𝑘,ℓ) − 𝑦𝑦𝑘𝑘

𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)� − �𝑦𝑦ℓ
𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘,ℓ) − 𝑦𝑦ℓ

𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)�                                (4) 

The opposite situation, shown in panel D, arises after 𝑡𝑡𝑘𝑘∗  when the later group changes treatment 

status but the early group does not. Later units act as the treatment group, early units act as controls, 

and we compare average outcomes between the periods 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ) and 𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ): 

                                𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,ℓ

≡ �𝑦𝑦ℓ
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ) − 𝑦𝑦ℓ

𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘,ℓ)� − �𝑦𝑦𝑘𝑘
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ) − 𝑦𝑦𝑘𝑘

𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘,ℓ)�                               (5) 

The already-treated units in group 𝑘𝑘 can serve as controls even though they are treated because 

treatment status does not change. 

My central result is that any two-way fixed effects DD estimator is a weighted average of 

well-understood 2x2 DD estimators, like those plotted in figure 2. To see why, first assume a 
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balanced panel and partial out unit and time fixed effects from 𝑦𝑦𝑖𝑖𝑖𝑖 and 𝐷𝐷𝑖𝑖𝑖𝑖 using the Frisch-Waugh 

theorem (Frisch and Waugh 1933). Denote grand means by 𝑥𝑥 = 1
𝑁𝑁𝑁𝑁
∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 , and adjusted 

variables by 𝑥𝑥�𝑖𝑖𝑖𝑖 = (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥) − (𝑥𝑥𝑖𝑖 − 𝑥𝑥) − (𝑥𝑥𝑡𝑡 − 𝑥𝑥). 𝛽𝛽�
𝐷𝐷𝐷𝐷

 then equals the univariate regression 

coefficient between adjusted outcome and treatment variables:  

𝑐𝑐𝑐𝑐𝑐𝑐� (𝑦𝑦�𝑖𝑖𝑖𝑖 ,𝐷𝐷�𝑖𝑖𝑖𝑖)
𝑣𝑣𝑣𝑣𝑣𝑣� (𝐷𝐷�𝑖𝑖𝑖𝑖)

=
1
𝑁𝑁𝑁𝑁∑ ∑ 𝑦𝑦�𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 𝐷𝐷�𝑖𝑖𝑖𝑖

1
𝑁𝑁𝑁𝑁∑ ∑ 𝐷𝐷�𝑖𝑖𝑖𝑖

2
𝑡𝑡𝑖𝑖

 

The numerator equals the sample covariance between 𝑦𝑦𝑖𝑖𝑖𝑖 and 𝐷𝐷𝑖𝑖𝑖𝑖 minus the sample covariances 

between unit means and between time means: 

𝑐𝑐𝑐𝑐𝑐𝑐� (𝑦𝑦�𝑖𝑖𝑖𝑖 ,𝐷𝐷�𝑖𝑖𝑖𝑖) =
1
𝑁𝑁𝑁𝑁

��(
𝑡𝑡𝑖𝑖

𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦)(𝐷𝐷𝑖𝑖𝑡𝑡 − 𝐷𝐷) −
1
𝑁𝑁
�(
𝑖𝑖

𝑦𝑦𝑖𝑖 − 𝑦𝑦)(𝐷𝐷𝑖𝑖 − 𝐷𝐷) −
1
𝑇𝑇
�(
𝑡𝑡

𝑦𝑦𝑡𝑡 − 𝑦𝑦)(𝐷𝐷𝑡𝑡 − 𝐷𝐷)  (6) 

The appendix shows how to simplify this covariance using the binary nature of 𝐷𝐷𝑖𝑖𝑖𝑖, and by 

replacing the 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑡𝑡 terms with weighted averages of pre- and post-treatment means or means 

in each group.10 This gives the following theorem: 

Theorem 1. Difference-in-Differences Decomposition Theorem 
Assume that the data contain 𝑘𝑘 = 1, . . . ,𝐾𝐾 groups of units ordered by the time when they receive 
a binary treatment, 𝑡𝑡𝑘𝑘∗ ∈ (1,𝑇𝑇]. There may be one group, 𝑈𝑈, that never receives treatment. The 
OLS estimate,  𝛽𝛽�

𝐷𝐷𝐷𝐷
, in a two-way fixed-effects model (2) is a weighted average of all possible two-

by-two DD estimators. 
 

                      𝛽𝛽�
𝐷𝐷𝐷𝐷

= �𝑠𝑠𝑘𝑘𝑘𝑘
𝑘𝑘≠𝑈𝑈

𝛽𝛽�𝑘𝑘𝑘𝑘
2𝑥𝑥2

+ ��𝑠𝑠𝑘𝑘ℓ
ℓ>𝑘𝑘𝑘𝑘≠𝑈𝑈

[𝜇𝜇𝑘𝑘ℓ 𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘

+ (1 − 𝜇𝜇𝑘𝑘ℓ)𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,ℓ

]                          (7) 

 
Where the two-by-two DD estimators are: 
 

𝛽𝛽�𝑘𝑘𝑘𝑘
2𝑥𝑥2

  ≡ �𝑦𝑦𝑘𝑘
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘) − 𝑦𝑦𝑘𝑘

𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)� − �𝑦𝑦𝑈𝑈
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑗𝑗) − 𝑦𝑦𝑈𝑈

𝑃𝑃𝑃𝑃𝑃𝑃(𝑗𝑗)�     

                                                      
10 Note that the first two terms in equation (6) collapse to a function of pre/post mean differences because 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝐷𝐷�𝑖𝑖 =
0 in the untreated group, 𝐷𝐷𝑖𝑖𝑖𝑖 = 0 in pre-treatment periods, and 𝑦𝑦𝑖𝑖 = 𝐷𝐷𝑘𝑘𝑦𝑦𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘) − (1 − 𝐷𝐷𝑘𝑘)𝑦𝑦𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘). The sums over 𝑖𝑖 

thus include only the treated units and the sum over 𝑡𝑡 includes only post-periods (𝑡𝑡 > 𝑡𝑡𝑘𝑘∗). Similarly, sum over time 
can be broken into pieces based on the different groups’ treatment times, and the time means of 𝑦𝑦𝑖𝑖𝑖𝑖  weight together 
each group’s mean. 𝑣𝑣𝑣𝑣𝑣𝑣� (𝐷𝐷�𝑖𝑖𝑖𝑖) follows from replacing 𝑦𝑦𝑖𝑖𝑖𝑖 with 𝐷𝐷𝑖𝑖𝑖𝑖  in the expression for 𝑐𝑐𝑐𝑐𝑐𝑐� (𝑦𝑦�𝑖𝑖𝑖𝑖 ,𝐷𝐷�𝑖𝑖𝑖𝑖). 
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𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘

≡  �𝑦𝑦𝑘𝑘
𝑀𝑀𝐼𝐼𝐼𝐼(𝑘𝑘,ℓ) − 𝑦𝑦𝑘𝑘

𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)� − �𝑦𝑦ℓ
𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘,ℓ) − 𝑦𝑦ℓ

𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)� 

𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,ℓ

≡ �𝑦𝑦ℓ
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ) − 𝑦𝑦ℓ

𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘,ℓ)� − �𝑦𝑦𝑘𝑘
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ) − 𝑦𝑦𝑘𝑘

𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘,ℓ)� 

the weights are: 

𝑠𝑠𝑘𝑘𝑘𝑘 =
𝑛𝑛𝑘𝑘𝑛𝑛𝑈𝑈𝐷𝐷�𝑘𝑘(1 − 𝐷𝐷�𝑘𝑘)

𝑣𝑣𝑣𝑣𝑣𝑣� (𝐷𝐷�𝑖𝑖𝑖𝑖)

𝑠𝑠𝑘𝑘ℓ =
𝑛𝑛𝑘𝑘𝑛𝑛ℓ(𝐷𝐷�𝑘𝑘 − 𝐷𝐷�ℓ)(1 − (𝐷𝐷�𝑘𝑘 − 𝐷𝐷�ℓ))

𝑣𝑣𝑣𝑣𝑣𝑣� (𝐷𝐷�𝑖𝑖𝑖𝑖)

𝜇𝜇𝑘𝑘ℓ =
1 − 𝐷𝐷�𝑘𝑘

1 − (𝐷𝐷�𝑘𝑘 − 𝐷𝐷�ℓ)

 

and  ∑ 𝑠𝑠𝑘𝑘𝑘𝑘𝑘𝑘≠𝑈𝑈 + ∑ ∑ 𝑠𝑠𝑘𝑘ℓℓ>𝑘𝑘𝑘𝑘≠𝑈𝑈 = 1. 
 
Proof: See appendix A. 
 

Theorem 1 completely describes the sources of identifying variation in a general DD model 

and their importance. With 𝐾𝐾 timing groups, one could form 𝐾𝐾2 − 𝐾𝐾 “timing-only” estimates that 

either compare an earlier- to a later-treated timing group (𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘

) or a later- to earlier-treated timing 

group (𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,ℓ

). With an untreated group, one could form 𝐾𝐾 2x2 DD’s that compare each timing 

group to the untreated group (𝛽𝛽�𝑘𝑘𝑘𝑘
2𝑥𝑥2

). Therefore, with 𝐾𝐾 timing groups and one untreated group, the 

DD estimator comes from 𝐾𝐾2 distinct 2x2 DDs.  

The weights come both from group sizes, via the 𝑛𝑛𝑗𝑗’s, and the treatment variance in each 

pair.11 With one treated group, the variance of the treatment dummy is 𝐷𝐷�𝑘𝑘(1 − 𝐷𝐷�𝑘𝑘), and is highest 

                                                      
11 Many other least-squares estimators weight heterogeneity this way. A univariate regression coefficient equals an 
average of coefficients in mutually exclusive (and demeaned) subsamples weighted by size and the subsample 𝑥𝑥 -
variance:  

𝛼𝛼� =
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑖𝑖

∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑖𝑖
2 =

∑ (𝐴𝐴 𝑦𝑦 − 𝑦𝑦)(𝑥𝑥 − 𝑥𝑥) + ∑ (𝐵𝐵 𝑦𝑦 − 𝑦𝑦)(𝑥𝑥 − 𝑥𝑥)
∑ (𝑖𝑖 𝑥𝑥 − 𝑥𝑥)2

=
𝑛𝑛𝐴𝐴𝑠𝑠𝑥𝑥𝑥𝑥𝐴𝐴 + 𝑛𝑛𝐵𝐵𝑠𝑠𝑥𝑥𝑥𝑥𝐵𝐵

𝑠𝑠𝑥𝑥𝑥𝑥2
=
𝑛𝑛𝐴𝐴𝑠𝑠𝑥𝑥𝑥𝑥

2,𝐴𝐴

𝑠𝑠𝑥𝑥𝑥𝑥2
𝛼𝛼�𝐴𝐴 +

𝑛𝑛𝐵𝐵𝑠𝑠𝑥𝑥𝑥𝑥
2,𝐵𝐵

𝑠𝑠𝑥𝑥𝑥𝑥2
𝛼𝛼�𝐵𝐵 

Similarly, the Wald/IV theorem (Angrist 1988) shows that any IV estimate is a linear combination of Wald estimators 
that compare two values of the instrument. Gibbons, Serrato, and Urbancic (2018) show a nearly identical weighting 
formula for one-way fixed effects. Panel data provide another well-known example: a pooled regression coefficients 
equals a variance-weighted average of two distinct estimators that each use less information: the between estimator 
for subsample means, and the within estimator for deviations from subsample means.  
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for units treated in the middle of the panel with 𝐷𝐷�𝑘𝑘 = 0.5. With two treated groups, the variance 

of the difference in treatment dummies is (𝐷𝐷�𝑘𝑘 − 𝐷𝐷�ℓ)(1− (𝐷𝐷�𝑘𝑘 − 𝐷𝐷�ℓ)), and is highest for pairs 

whose treatment shares differ by 0.5. Figure 2 sets 𝑡𝑡𝑘𝑘∗  and 𝑡𝑡ℓ∗ so that 𝐷𝐷�𝑘𝑘 = 0.67 and 𝐷𝐷�ℓ = 0.15, 

which means that 𝐷𝐷�𝑘𝑘(1 − 𝐷𝐷�𝑘𝑘) = 0.22 > 0.13 = 𝐷𝐷�ℓ(1 − 𝐷𝐷�ℓ). Because it has higher treatment 

variance, group 𝑘𝑘’s comparison to the untreated group, 𝛽𝛽�𝑘𝑘𝑘𝑘
2𝑥𝑥2

, gets more weight (𝑠𝑠𝑘𝑘𝑘𝑘 = 0.365) than 

the corresponding term for group ℓ,  𝛽𝛽�ℓ𝑈𝑈
2𝑥𝑥2

  (𝑠𝑠ℓ𝑈𝑈 = 0.202). The difference in treated shares is 𝐷𝐷�𝑘𝑘 −

𝐷𝐷�ℓ = 0.52, so 𝑠𝑠𝑘𝑘ℓ = 0.412.12  

 This decomposition theorem also shows how DD compares groups treated at different 

times. A two-group “timing-only” estimator is itself a weighted average of the 2x2 DD’s plotted 

in panels C and D of figure 2: 

                                                  𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2

≡ 𝜇𝜇𝑘𝑘ℓ 𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘

+ (1 − 𝜇𝜇𝑘𝑘ℓ)𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,ℓ                                              (8) 

Both groups serve as controls for each other during periods when their treatment status does not 

change, and the group with higher treatment variance (that is, treated closer to the middle the panel) 

gets more weight. In the three group example 𝐷𝐷�𝑘𝑘(1 − 𝐷𝐷�𝑘𝑘) > 𝐷𝐷�ℓ(1 − 𝐷𝐷�ℓ) so 𝜇𝜇𝑘𝑘ℓ = .67. 

Multiplying this by 𝑠𝑠𝑘𝑘ℓ = 0.412, shows that 𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,ℓ

  gets less weight than  𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘

: 𝑠𝑠𝑘𝑘ℓ(1 − 𝜇𝜇𝑘𝑘ℓ) =

0.135 < 0.278 = 𝑠𝑠𝑘𝑘ℓ𝜇𝜇𝑘𝑘ℓ.13  

                                                      
12 Changing the number or spacing of time periods changes the weights. Imagine adding 𝑇𝑇 periods to the end of the 
three-group panel. This would reduce 𝑣𝑣𝑣𝑣𝑣𝑣� (𝐷𝐷𝑘𝑘𝑘𝑘) to 0.835(1 − 0.835) = 0.138, but it would increase 𝑣𝑣𝑣𝑣𝑣𝑣� (𝐷𝐷ℓ𝑡𝑡) to 
0.58(1 − 0.58) = 0.244. This puts less weight on terms where 𝑘𝑘 is the treatment group (𝑠𝑠𝑘𝑘𝑘𝑘 = 0.24 and 𝑠𝑠𝑘𝑘ℓ𝜇𝜇𝑘𝑘ℓ =
0.07) and more weight on terms where ℓ is the treatment group (𝑠𝑠ℓ𝑈𝑈 = 0.43 and 𝑠𝑠𝑘𝑘ℓ(1 − 𝜇𝜇𝑘𝑘ℓ) = 0.26). 
13 Two recent papers present clear analyses using two-group timing-only estimators. Malkova (2017) studies a 
maternity benefit policy in the Soviet Union and Goodman (2017) studies high school math mandates. Both papers 
show differences between early and late groups before the reform, 𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘), during the period when treatment status 
differs, 𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ), and in the period after both have implemented reforms, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ). 
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II. THEORY: WHAT PARAMETER DOES DD IDENTIFY AND UNDER WHAT ASSUMPTIONS? 
Theorem 1 relates the regression DD coefficient to sample averages, which makes it simple to 

analyze its statistical properties by writing 𝛽̂𝛽𝐷𝐷𝐷𝐷 in terms of potential outcomes (Holland 1986, 

Rubin 1974). The outcome is 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖1 +  (1 − 𝐷𝐷𝑖𝑖𝑖𝑖)𝑌𝑌𝑖𝑖𝑖𝑖0, where 𝑌𝑌𝑖𝑖𝑖𝑖1 is unit 𝑖𝑖’s treated outcome at 

time 𝑡𝑡, and 𝑌𝑌𝑖𝑖𝑖𝑖0 is the corresponding untreated outcome. Following Callaway and Sant'Anna (2018, 

p 7) define the ATT for timing group 𝑘𝑘 at time 𝜏𝜏 (the “group-time average treatment effect”): 

𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘(𝜏𝜏) ≡ 𝐸𝐸[𝑌𝑌𝑖𝑖𝑖𝑖1 − 𝑌𝑌𝑖𝑖𝑖𝑖0�𝑘𝑘, 𝑡𝑡 = 𝜏𝜏]. Because regression DD averages outcomes in pre- and post-

periods, I define the average of the 𝐴𝐴𝑇𝑇𝑇𝑇𝑘𝑘(𝜏𝜏) in a date range, 𝑊𝑊: 

                                               𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘(𝑊𝑊) ≡ 𝐸𝐸[𝑌𝑌𝑖𝑖𝑖𝑖1 − 𝑌𝑌𝑖𝑖𝑖𝑖0�𝑘𝑘, 𝑡𝑡 ∈ 𝑊𝑊]                                           (9) 

In practice, 𝑊𝑊 will represent post-treatment windows that appear in the 2x2 components. Finally, 

define the difference over time in average potential outcomes (treated or untreated) as: 

                                           Δ𝑌𝑌𝑘𝑘ℎ(𝑊𝑊1,𝑊𝑊0) ≡ 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖ℎ�𝑘𝑘,𝑊𝑊1� − 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖ℎ�𝑘𝑘,𝑊𝑊0�,       ℎ = 0,1            (10) 

Applying this notation to the 2x2 DD’s in equations (3)-(5), adding and subtracting post-period 

counterfactual outcomes for the treatment group yields the familiar result that (the probability limit 

of) each 2x2 DD equals an ATT plus bias from differential trends:  

𝛽𝛽𝑘𝑘𝑘𝑘2𝑥𝑥2     =   𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)) + Δ𝑌𝑌𝑘𝑘0(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘),𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)) − Δ𝑌𝑌𝑈𝑈0�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘),𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)�    (11𝑎𝑎)    

𝛽𝛽𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘   = 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘�𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ)� + Δ𝑌𝑌𝑘𝑘0(𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ),𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)) − Δ𝑌𝑌ℓ0�𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ),𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)� (11𝑏𝑏)   

𝛽𝛽𝑘𝑘ℓ
2𝑥𝑥2,ℓ   =   𝐴𝐴𝐴𝐴𝑇𝑇ℓ(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ)) + Δ𝑌𝑌ℓ0�𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(ℓ),𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ)� − Δ𝑌𝑌𝑘𝑘0�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ),𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ)�

− �𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ)� − 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘�𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ)��                                                        (11𝑐𝑐) 

Note that the definition of common trends in (11a) and (11b) involves only counterfactual 

outcomes, but in (11c) identification of 𝐴𝐴𝐴𝐴𝑇𝑇ℓ(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ)) involves counterfactual outcomes and 

changes in treatment effects in the already-treated “control group”.  
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 Substituting equations (11a)-(11c) into the DD decomposition theorem expresses the 

probability limit of the two-way fixed effects DD estimator (assuming that 𝑇𝑇 is fixed and 𝑁𝑁 grows) 

in terms of potential outcomes and separates the estimand from the identifying assumptions: 

                                          𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑁𝑁→∞

𝛽̂𝛽𝐷𝐷𝐷𝐷 = 𝛽𝛽𝐷𝐷𝐷𝐷 =  𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + Δ𝐴𝐴𝐴𝐴𝐴𝐴                                    (12) 

The first term in (12) is the two-way fixed effects DD estimand, which I call the “variance-

weighted average treatment effect on the treated” (VWATT): 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ≡ � 𝜎𝜎𝑘𝑘𝑘𝑘
𝑘𝑘≠𝑈𝑈

𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)�                                                                                        

+ ��𝜎𝜎𝑘𝑘ℓ
ℓ>𝑘𝑘𝑘𝑘≠𝑈𝑈

�𝜇𝜇𝑘𝑘ℓ𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘�𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ)� + (1 − 𝜇𝜇𝑘𝑘ℓ)𝐴𝐴𝐴𝐴𝑇𝑇ℓ�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ)��      (12𝑎𝑎) 

The 𝜎𝜎 terms correspond to the 𝑠𝑠 terms in equation (7), but replace sample shares (𝑛𝑛) with 

population shares (𝑛𝑛𝑘𝑘∗ ).14 VWATT is always a positively weighted average of ATTs for the units 

and periods that act as treatment groups across the 2x2 DD’s that make up 𝛽̂𝛽𝐷𝐷𝐷𝐷. The weights come 

from the decomposition theorem and reflect group size and treatment variance.  

 The second term, which I call “variance-weighted common trends” (VWCT) generalizes 

common trends to a setting with timing variation:  

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ≡ � 𝜎𝜎𝑘𝑘𝑘𝑘
𝑘𝑘≠𝑈𝑈

�Δ𝑌𝑌𝑘𝑘0�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘),𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)� − Δ𝑌𝑌𝑈𝑈0�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘),𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)��                

+ ��𝜎𝜎𝑘𝑘ℓ
ℓ>𝑘𝑘𝑘𝑘≠𝑈𝑈

�𝜇𝜇𝑘𝑘ℓ�Δ𝑌𝑌𝑘𝑘0�𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ),𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)� − Δ𝑌𝑌ℓ0�𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ),𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)��

+ (1 − 𝜇𝜇𝑘𝑘ℓ)�Δ𝑌𝑌ℓ0�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ),𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ)� − Δ𝑌𝑌𝑘𝑘0�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ),𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ)���     (12𝑏𝑏) 

                                                      
14 Note that a DD estimator is not consistent if 𝑇𝑇 gets large because the permanently turned on treatment dummy 
becomes collinear with the unit fixed effects (𝑋𝑋

′𝑋𝑋
𝑇𝑇

 does not converge to a positive definite matrix). Asymptotics with 
respect to 𝑇𝑇 require the time dimension to grow in both directions (see Perron 2006). 
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Like VWATT, VWCT is also an average of the difference in untreated potential outcome trends 

between pair of groups (and over different time periods) using the weights from the decomposition 

theorem. VWCT is new, it defines internal validity for the DD design with timing, and it is weaker 

than the more commonly assumed equal counterfactual trends across groups.  

The last term in (12) equals a weighted sum of the change in treatment effects within each 

unit’s post-period: 

                Δ𝐴𝐴𝐴𝐴𝐴𝐴 ≡ ��𝜎𝜎𝑘𝑘ℓ
ℓ>𝑘𝑘𝑘𝑘≠𝑈𝑈

(1 − 𝜇𝜇𝑘𝑘ℓ)�𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ)� − 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘�𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ)��                   (12𝑐𝑐) 

Because already-treated groups sometimes act as controls, the 2x2 estimators in equation (11c) 

subtract average changes in their untreated outcomes and their treatment effects. Equation (12c) 

defines the bias that comes from estimating a single-coefficient DD model when treatment effects 

vary over time. Note that this does not mean that the DD research design is invalid. In this case 

other specifications, such as an event-study model (Jacobson, LaLonde, and Sullivan 1993) or 

“stacked DD” (Abraham and Sun 2018, Deshpande and Li 2017, Fadlon and Nielsen 2015), or 

other estimators such as reweighting strategies (Callaway and Sant'Anna 2018, de Chaisemartin 

and D’HaultfŒuille 2018b) may be more appropriate.  

Recent DD research comes to related conclusions about DD models with timing, but does not 

describe the full estimator as in equation (12). Abraham and Sun (2018), Borusyak and Jaravel 

(2017), and de Chaisemartin and D’HaultfŒuille (2018b) begin by imposing pairwise common 

trends (VWCT=0), and then incorporating Δ𝐴𝐴𝐴𝐴𝐴𝐴 into the DD estimand.15 The structure of the 

decomposition theorem, however, suggests that we should think of Δ𝐴𝐴𝐴𝐴𝐴𝐴 as a source of bias 

                                                      
15 Abraham and Sun (2018, p 6) assume “parallel trends in baseline outcome”; Borusyak and Jaravel (2017, p 10) 
assume “no pre-trends”; and de Chaisemartin and D’HaultfŒuille (2018b, p 6) assume “common trends” in 
counterfactual outcomes. Two of these papers analyze common specifications that I do not consider. de Chaisemartin 
and D’HaultfŒuille (2018b) discuss designs where treatment evolves continuously within group-by-time cells and 
first-difference specifications. Abraham and Sun (2018) analyze the estimand for semi-parametric event-study models. 
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because it arises from the way equation (2) forms “the” control group. This distinction, made clear 

in equation (12), ensures an interpretable estimand (VWATT) and clearly defined identifying 

assumptions.16 This follows from at least two related precedents. de Chaisemartin and 

D’HaultfŒuille (2018a, p. 5) prove identification of dose-response DD models under the 

assumption that “the average effect of going from 0 to d units of treatment among units with 

D(0)=d is stable over time.” Treatment effect homogeneity ensures an estimand with no negative 

weights. Similarly, the monotonicity assumption in Imbens and Angrist (1994) ensures that the 

local average treatment effect does not have negative weights. In other words, negative weights 

are a failure of identification rather than a feature of the IV estimand. 

A. Interpreting the DD Estimand 

When the treatment effect is a constant, 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘(𝑊𝑊) = 𝐴𝐴𝐴𝐴𝐴𝐴, Δ𝐴𝐴𝐴𝐴𝐴𝐴 = 0, and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐴𝐴𝐴𝐴𝐴𝐴. The 

rest of this section assumes that VWCT=0 and discusses how to interpret VWATT under different 

forms of treatment effect heterogeneity.  

i. Effects that vary across units but not over time 

If treatment effects are constant over time but vary across units, then 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘(𝑊𝑊) = 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘 and we 

still have Δ𝐴𝐴𝐴𝐴𝐴𝐴 = 0. In this case DD identifies:  

                            𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = �𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘
𝑘𝑘≠𝑈𝑈

⎣
⎢
⎢
⎢
⎢
⎡

𝜎𝜎𝑘𝑘𝑘𝑘 + �𝜎𝜎𝑗𝑗𝑗𝑗

𝑘𝑘−1

𝑗𝑗=1

(1 − 𝜇𝜇𝑗𝑗𝑗𝑗) + � 𝜎𝜎𝑗𝑗𝑗𝑗

𝐾𝐾

𝑗𝑗=𝑘𝑘+1

𝜇𝜇𝑗𝑗𝑗𝑗

�������������������������
≡ 𝑤𝑤𝑘𝑘

𝑇𝑇

⎦
⎥
⎥
⎥
⎥
⎤

                               (13) 

                                                      
16 Equation (12) shows that the negative weighting pointed out elsewhere only occurs when treatment effects vary 
over time. The mapping between (12) and existing decompositions can be made explicit by rewriting all the 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘(𝑊𝑊) 
terms (see equation 9) in terms of group-time effects, which are the object of, for example, Theorem 1 in de 
Chaisemartin and D’HaultfŒuille (2018b). In general, each group-time effect receives a total amount of weight that 
comes partly from strictly positive terms (equation 12b) and some from potentially negative terms (equation 12c). 
When treatment effects are constant, though, the negative weights in (12c) on the group-time effects in 
𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘�𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ)� cancel with the positive weights on group-time effects in 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ)�. Then Δ𝐴𝐴𝐴𝐴𝐴𝐴 = 0 and 
DD estimates VWATT, which has strictly positive weights.  
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VWATT weights together the group-specific ATTs not by sample shares, but by a function of 

sample shares and treatment variance. The weights in (13) equal the sum of the decomposition 

weights for all the terms in which group 𝑘𝑘 acts as the treatment group, defined as 𝑤𝑤𝑘𝑘
𝑇𝑇.  

The parameter in (13) does not necessarily have a structural interpretation. In general, 

𝑤𝑤𝑘𝑘
𝑇𝑇 ≠ 𝑛𝑛𝑘𝑘∗ , so the parameter does not equal the sample ATT.17 Neither are the weights proportional 

to the share of time each unit spends under treatment, so VWATT also does not equal the effect in 

the average treated period. The weights, specifically the central role of treatment variance, comes 

from the use of least squares. OLS combines 2x2 DD’s efficiently by weighting them according 

to variances of the treatment dummy.18 VWATT lies along the bias/variance tradeoff: the weights 

deliver efficiency by potentially moving the point estimate away from, say, the sample ATT.  

This tradeoff may not be worthwhile, particularly when VWATT differs strongly from a 

given parameter of interest, which occurs when treatment effect heterogeneity is correlated with 

treatment timing. Therefore, the processes that determine treatment timing are central to the 

interpretation of VWATT (see Besley and Case 2002). For example, a Roy model of selection on 

gains (where the number of units treated in each period is constrained) implies that treatment rolls 

out first to units with the largest effects. Site selection in experimental evaluations of training 

programs (Joseph Hotz, Imbens, and Mortimer 2005) and energy conservation programs (Allcott 

2015) matches this pattern. In this case, regression DD underestimates the sample-weighted ATT 

if 𝑡𝑡1∗ is early enough (or there are a lot of “post” periods) so that 𝐷𝐷�1 is very small and 𝐷𝐷�𝐾𝐾 ≈ 0.5, 

and overestimates it if 𝑡𝑡1∗ is late enough (or there are a lot of “pre” periods) so that 𝐷𝐷�1 ≈ 0.5 and 

                                                      
17 Abraham and Sun (2018), Borusyak and Jaravel (2017), Chernozhukov et al. (2013), de Chaisemartin and 
D’HaultfŒuille (2018b), Gibbons, Serrato, and Urbancic (2018), Wooldridge (2005) all make a similar observation. 
The DD decomposition theorem, provides a new solution for the relevant weights.  
18 This is exactly analogous to the result that two-stage least squares is the estimator that “efficient combines alternative 
Wald estimates” (Angrist 1991). 
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𝐷𝐷�𝐾𝐾 is small. The opposite conclusions follow from “reverse Roy” selection where units with the 

smallest effects select into treatment first, which describes the take up of housing vouchers (Chyn 

forthcoming) and charter school applications (Walters forthcoming).  

An easy way to gauge whether VWATT and a sample-weighted ATT is to scatter the 

weights from (13) against each group’s sample share. These two may be close if there is little 

variation in treatment timing, if the untreated group is very large, or if some timing groups are very 

large. Conversely, weighting matters less if the 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘’s are similar, which one can evaluate by 

aggregating each group’s 2x2 DD estimates from the decomposition theorem.19 Finally, one could 

directly compare VWATT to point estimates of a particular parameter of interest. Several 

alternative estimators can deliver differently weighted averages of ATT’s (Abraham and Sun 2018, 

Callaway and Sant'Anna 2018, de Chaisemartin and D’HaultfŒuille 2018b). 

ii. Effects that vary over time but not across units 
Time-varying treatment effects (even if they are identical across units) generate cross-group 

heterogeneity in VWATT by averaging time-varying effects over different post-treatment 

windows, but more importantly they mean that Δ𝐴𝐴𝐴𝐴𝐴𝐴 ≠ 0. Equations (11b) and (11c) show that 

common trends in counterfactual outcomes leaves one set of timing terms biased (𝛽̂𝛽𝑘𝑘ℓ
2𝑥𝑥2,ℓ ), while 

common trends between counterfactual and treated outcomes leaves the other set biased (𝛽̂𝛽𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘).  

To illustrate this point, figure 3 plots a case where counterfactual outcomes are identical, 

but the treatment effect is a linear trend-break, 𝑌𝑌𝑖𝑖𝑖𝑖1 = 𝑌𝑌𝑖𝑖𝑖𝑖0 +  𝜙𝜙 ⋅ (𝑡𝑡 − 𝑡𝑡𝑖𝑖∗ + 1) (see Meer and West 

2013). 𝛽̂𝛽𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘 uses group ℓ as a control group during its pre-period and identifies the ATT during 

                                                      
19 Relatedly, de Chaisemartin and D’HaultfŒuille (2018b) derive a statistic that gives the minimum variation in 
treatment effects that could lead to wrong-signed regression estimates when all treatment effects have the same sign. 
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the middle window in which treatment status varies: 𝜙𝜙 �𝑡𝑡ℓ
∗−𝑡𝑡𝑘𝑘

∗+1�
2

. 𝛽̂𝛽𝑘𝑘ℓ
2𝑥𝑥2,ℓ, however, is biased 

because the control group (𝑘𝑘) experiences a trend in outcomes due to the treatment effect:20  

                           𝛽𝛽𝑘𝑘ℓ
2𝑥𝑥2,ℓ = 𝐴𝐴𝐴𝐴𝑇𝑇ℓ(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ))�����������

𝜙𝜙
�𝑇𝑇−(𝑡𝑡ℓ

∗−1)�
2

− 𝜙𝜙
�𝑇𝑇 − (𝑡𝑡𝑘𝑘∗ − 1)�

2
= 𝜙𝜙

(𝑡𝑡𝑘𝑘∗ − 𝑡𝑡ℓ∗)
2

≤ 0                    (14) 

This bias feeds through to 𝛽𝛽𝑘𝑘ℓ2𝑥𝑥2 according to the size of (1 − 𝜇𝜇𝑘𝑘ℓ):  

                                                 𝛽𝛽𝑘𝑘ℓ2𝑥𝑥2 =  𝜙𝜙
[(2𝜇𝜇𝑘𝑘ℓ − 1)(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗) + 1]

2
                                                  (15) 

The entire two-group timing estimate can be wrong signed if 𝜇𝜇𝑘𝑘ℓ is small (putting more weight on 

the downward biased term). In figure 3, for example, both units are treated equally close to the 

ends of the panel, so 𝜇𝜇𝑘𝑘ℓ = 0.5 and the estimated DD effect equals 𝜙𝜙
2
, even though both units 

experience treatment effects as large as 𝜙𝜙 ⋅ [𝑇𝑇 − (𝑡𝑡𝑘𝑘∗ − 1)]. This type of bias affects the overall 

DD estimate according to the weights in equation (7). It is smaller when there are untreated units, 

more so when these units are large. 

Note that this bias is specific to the specification in equation (2). More flexible event-study 

specifications may not suffer from this problem (although see Proposition 2 in Abraham and Sun 

                                                      
20 The average of the effects for group 𝑘𝑘 during any set of positive event-times is just 𝜙𝜙 times the average event-time. 
The 𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ) period contains event-times 0 through 𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗ − 1 and the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ) period contains event-times 𝑡𝑡ℓ∗ −
(𝑡𝑡𝑘𝑘∗ − 1) through 𝑇𝑇 − (𝑡𝑡𝑘𝑘∗ − 1)), so we have: 

𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘�𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ)� = 𝜙𝜙
(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗)(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗ + 1)

2(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗) = 𝜙𝜙
𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗ + 1

2
 

                           𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ)�                                                    = 𝜙𝜙(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗) + 𝜙𝜙
𝑇𝑇 − 𝑡𝑡ℓ∗ + 2

2
 

And the difference, which appears in the identifying assumption in (11c) equals:  

𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ)� − 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘�𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ)� = 𝜙𝜙(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗) + 𝜙𝜙
𝑇𝑇 − 𝑡𝑡ℓ∗ + 2

2
− 𝜙𝜙

𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗ + 1
2

=
𝜙𝜙
2
�𝑇𝑇 − (𝑡𝑡𝑘𝑘∗ − 1)� 

Another way to see this, as noted in figure 3, is that average outcomes in the treatment group are always below average 
outcomes in the early group in the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ) period and the difference equals the maximum size of the treatment effect 
in group 𝑘𝑘 at the end of the 𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ) period: 𝜙𝜙 ⋅ (𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗ + 1). Average outcomes for the late group are also below 
average outcomes in the early group in the 𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ) period, but by the average amount of the treatment effect in 
group 𝑘𝑘 during the 𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ) period: 𝜙𝜙 (𝑡𝑡ℓ

∗−𝑡𝑡𝑘𝑘
∗+1)
2

. Outcomes in group ℓ actually fall on average relative to group 𝑘𝑘, 
which makes the DD estimate negative even when all treatment effects are positive. 
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2018). Fadlon and Nielsen (2015) and Deshpande and Li (2017) use a novel estimator that matches 

treated units with controls that receive treatment a given amount of time later. This specification 

does not use already treated units as controls, and yields an average of 𝛽𝛽�𝑘𝑘ℓ
2𝑥𝑥2,𝑘𝑘

 terms with a fixed 

post-period. Callaway and Sant'Anna (2018) discuss how to summarize heterogeneous treatment 

effects in this context and develop a reweighting estimator to do so. Summarizing time-varying 

effects using equation (2), however, yields estimates that are too small or even wrong-signed, and 

should not be used to judge the meaning or plausibility of effect sizes.21 

B. What is the identifying assumption and how should we test it? 
The preceding analysis maintained the assumption of equal counterfactual trends across groups, 

but (12) shows that (as long as treatment effects do not vary over time) identification of VWATT 

only requires VWCT to equal zero. The assumption itself is untestable because we cannot, for 

example, observe changes in 𝑌𝑌0 that occur after treatment or test for them using pre-treatment 

data.22 Assuming that differential counterfactual trends, 𝛥𝛥𝑌𝑌𝑘𝑘0, are linear throughout the panel leads 

to a convenient approximation to VWCT:23  

            �Δ𝑌𝑌𝑘𝑘0

𝑘𝑘≠𝑈𝑈

�𝜎𝜎𝑘𝑘𝑘𝑘 + �𝜎𝜎𝑗𝑗𝑗𝑗

𝑘𝑘−1

𝑗𝑗=1

(1 − 2𝜇𝜇𝑗𝑗𝑗𝑗) + � 𝜎𝜎𝑘𝑘𝑘𝑘

𝐾𝐾

𝑗𝑗=𝑘𝑘+1

(2𝜇𝜇𝑘𝑘𝑘𝑘 − 1)� − Δ𝑌𝑌𝑈𝑈0 � 𝜎𝜎𝑘𝑘𝑘𝑘
𝑘𝑘≠𝑈𝑈

= 0       (16) 

                                                      
21 Borusyak and Jaravel (2017) show that that common, linear trends, in the post- and pre- periods cannot be estimated 
in this design. The decomposition theorem shows why: timing groups act as controls for each other, so permanent 
common trends difference out. This is not a meaningful limitation for treatment effect estimation, though, because 
“effects” must occur after treatment. Job displacement provides a clear example (Jacobson, LaLonde, and Sullivan 
1993, Krolikowski 2017). Comparisons based on displacement timing cannot identify whether all displaced workers 
have a permanently different earnings trajectory than never displaced workers (the unidentified linear component), 
but they can identify changes in the time-path of earnings around the displacement event (the treatment effect). 
22 One can use time-varying confounders as outcomes (Freyaldenhoven, Hansen, and Shapiro 2018, Pei, Pischke, and 
Schwandt 2017), but this does not test for balance in levels, nor can it be used for sparsely measured confounders.  
23 The path of counterfactual outcomes can affect each 2x2 DD’s bias term in different ways. Linearly trending 
unobservables, for example, lead to larger bias in 2x2 DD’s that use more periods. I show in the appendix that in the 
linear case differences in the magnitude of the bias cancel out across each group’s “treatment” and “control” terms, 
and equation (16) holds. 
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Equation (16) generalizes the definition of common trends and collapses to the typical pairwise 

common trends assumption for any two-group estimator. It is immediately clear that identical 

trends across all groups satisfies (16), but this is not a necessary condition for it to hold since the 

bias induced by a given group’s trend depends on the weights in brackets.24 

 Fortunately, the weights have an intuitive interpretation. The weight on each group’s 

counterfactual trend equals the difference between the total weight it gets when it acts as a 

treatment group—𝑤𝑤𝑘𝑘
𝑇𝑇 from equation (13)—minus the total weight it gets when it acts as a control 

group—𝑤𝑤𝑘𝑘
𝐶𝐶. 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 can therefore be written as: 

                                                                 �Δ𝑌𝑌𝑘𝑘0

𝑘𝑘

[𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶] = 0                                                       (17) 

Figure 4 plots 𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 as a function of 𝐷𝐷� (assuming equal group sizes). Units treated in the 

middle of the panel have high treatment variance and get a lot of weight when they act as the 

treatment group, while units treated toward the ends of the panel get relatively more weight when 

they act as controls. As 𝑡𝑡∗ moves closer to 1 or T, 𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 becomes negative, which shows that 

some timing groups effectively act as controls. This helps define “the” control group in timing-

only designs (the dashed line in figure 6): all groups are controls in some terms, but the earliest 

and/or latest units necessarily get more weight as controls than treatments. The weights also map 

differential trends to bias.25 A positive trend in group 𝑘𝑘 induces positive bias when 𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 > 0, 

negative bias when 𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 < 0 (that is, if 𝑘𝑘 is an effective control group), and no bias when 

𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 = 0. The size of the bias from a given trend is larger for groups with more weight. 

                                                      
24 Callaway and Sant'Anna (2018) provide alternative definitions of common trends and tests not based on linearity. 
25 Applications typically discuss bias in general terms, arguing that unobservables must be “uncorrelated” with timing, 
but have not been able to specify how counterfactual trends would bias a two-way fixed effects estimate. For example, 
Almond, Hoynes, and Schanzenbach (2011, p 389-190) argue: “Counties with strong support for the low-income 
population (such as northern, urban counties with large populations of poor) may adopt FSP earlier in the period. This 
systematic variation in food stamp adoption could lead to spurious estimates of the program impact if those same 
county characteristics are associated with differential trends in the outcome variables.” 
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Equation (17) also shows exactly how to weight together averages of 𝑥𝑥𝑖𝑖𝑖𝑖 and perform a 

single 𝑡𝑡-test that directly captures the identifying assumption. Generate a dummy for the effective 

treatment group, 𝐵𝐵𝑘𝑘 = 𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 > 0, then regress timing-group means, 𝑥𝑥𝑘𝑘, on 𝐵𝐵𝑘𝑘 weighting by 

�𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶�. The coefficient on 𝐵𝐵𝑘𝑘 equals covariate differences weighted by the actual identifying 

variation, and its t-statistic tests the null of reweighted balance in (17). One can also use this 

strategy to test for pre-treatment trends in confounders (or the outcome) by regressing 𝑥̅𝑥𝑘𝑘𝑘𝑘 on 𝐵𝐵𝑘𝑘, 

year dummies, and their interaction, or the interaction of 𝐵𝐵𝑘𝑘 with a linear trend using dates before 

any treatment starts.26 

The reweighted balance test has advantages over other strategies for testing balance in this 

setting. Regressing 𝑥𝑥𝑖𝑖𝑖𝑖 on a constant and dummies for timing groups allows a test of the null of 

joint balance across groups (𝐻𝐻0: 𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑈𝑈 = 0, ∀𝑘𝑘 ∈ 𝐾𝐾). With many timing groups, however, this 

F-test will have low power, it does not reflect the importance of each group (𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶), and does 

not show the sign or magnitude of any imbalance.27 The reweighted test, on the other hand, has 

higher power and describes the sign and magnitude of imbalance. It is also better than a test for 

linear relationships between 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑘𝑘∗  or tests for balance between “early” and “late” treated units 

(Almond, Hoynes, and Schanzenbach 2011, Bailey and Goodman-Bacon 2015). Because the 

effective control group can include both the earliest and latest treated units, failing to find a linear 

relationship between 𝑥𝑥𝑘𝑘 and 𝑡𝑡𝑘𝑘∗  can miss the relevant imbalance between the most important 

“middle” units and the end points. 

                                                      
26 Plotting confounders or pre-trends across groups, however, is important to ensure that a failure to reject does not 
reflect offsetting trends or covariate means across timing groups. 
27 Note that using an event-study specification to evaluate pre-trends does not test for joint equality of pre-trends 
either. It tests for common trends using the (heretofore unarticulated) estimator itself. 
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III. DD DECOMPOSITION IN PRACTICE: UNILATERAL DIVORCE AND FEMALE SUICIDE 
To illustrate how to use DD decomposition theorem in practice, I replicate Stevenson and Wolfers’ 

(2006) analysis of no-fault divorce reforms and female suicide. Unilateral (or no-fault) divorce 

allowed either spouse to end a marriage, redistributing property rights and bargaining power 

relative to fault-based divorce regimes. Stevenson and Wolfers exploit “the natural variation 

resulting from the different timing of the adoption of unilateral divorce laws” in 37 states from 

1969-1985 (see table 1) using the “remaining fourteen states as controls” to evaluate the effect of 

these reforms on female suicide rates. Figure 5 replicates their event-study result for female suicide 

using an unweighted model with no covariates.28 Our results match closely: suicide rates display 

no clear trend before the implementation of unilateral divorce laws, but begin falling soon after. 

They report a DD coefficient in logs of -9.7 (s.e. = 2.3). I find a DD coefficient in levels of -3.08 

(s.e. = 1.13), or a proportional reduction of 6 percent.29 

A. Describing the design 
Figure 6 uses the DD decomposition theorem to illustrate the sources of variation. I plot each 2x2 

DD against its weight and calculate the average effect and total weight for the three types of 2x2 

comparisons: treated/untreated, early/late, late/early.30 As theorem 1 states, the two-way fixed 

effects estimate, -3.08, is an average of the y-axis values weighted by their x-axis values. Summing 

the weights on timing terms (𝑠𝑠𝑘𝑘ℓ) shows exactly how much of 𝛽̂𝛽𝐷𝐷𝐷𝐷 comes from timing variation 

(37 percent). The large untreated group puts a lot of weight on 𝛽̂𝛽𝑘𝑘𝑘𝑘2𝑥𝑥2 terms, but more on those 

                                                      
28 Data on suicides by age, sex, state, and year come from the National Center for Health Statistics’ Multiple Cause of 
Death files from 1964-1996, and population denominators come from the 1960 Census (Haines and ICPSR 2010) and 
the Surveillance, Epidemiology, and End Results data (SEER 2013). The outcome is the age-adjusted (using the 
national female age distribution in 1964) suicide mortality rate per million women. The average suicide rate in my 
data is 52 deaths per million women versus 54 in Stevenson and Wolfers (2006). My replication analysis uses levels 
to match their figure, but the conclusions all follow from a log specification as well. 
29 The differences in the magnitudes likely come from three sources: age-adjustment (the original paper does not 
describe an age-adjusting procedure); data on population denominators; and my omission of Alaska and Hawaii. 
30 There are 156 distinct DD components: 12 comparisons between timing groups and pre-reform states, 12 
comparisons between timing groups and non-reform states, and (122 − 12)/2 = 66 comparisons between an earlier 
switcher and a later non-switcher, and 66 comparisons between a later switcher and an earlier non-switcher 
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involving pre-1964 reform states (38.4 percent) than non-reform states (24 percent). Figure 6 also 

highlights the role of a few influential 2x2 terms—comparisons between the 1973 states and non-

reform or pre-1964 reform states account for 18 percent of the estimate, and the ten highest-weight 

2x2 DD’s account for over half.  

The bias resulting from time-varying effects is also apparent in figure 6. The average of 

these post-treatment event-study estimates in figure 5 is -4.92, while the DD estimate is just 60 

percent as large. The difference stems from the comparisons of later- to earlier-treated groups. The 

average treated/untreated estimates are negative (-5.33 and -7.04) as are the comparisons of earlier- 

to later-treated states (although less so: -0.19). 31 The comparisons of later- to earlier-treated states, 

however, are positive on average (3.51) and account for the bias in the overall DD estimate. Using 

the decomposition theorem to take these terms out of the weighted average yields an effect of -

5.44—close to the average of the event-study coefficients. The DD decomposition theorem shows 

that one way to summarize effects in the presence of time-varying heterogeneity is simply to 

subtract the components of the DD estimate that are biased using the weights in equation (7). 

B. Testing the design 
Figures 7 and 8 test for covariate balance in the unilateral divorce analysis. Figure 6 plots the 

reweighted balance test weights, 𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 , from equation (17), the corresponding weights from a 

timing-only design, and each group’s sample share. Larger groups have larger weight, but because 

they have relatively low treatment variance, the earliest timing groups are downweighted relative 

to their sample shares.32 In fact, the 1969 states effectively act as controls because 𝑤𝑤𝑘𝑘
𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 < 0.  

                                                      
31 This point also applies to units that are already treated at the beginning of the panel, like the pre-1964 reform states 
in the unilateral divorce analysis. Since their 𝐷𝐷�𝑘𝑘 = 1 they can only act as an already-treated control group. If the 
effects for pre-1964 reform states were constant they would not cause bias. 
32 Adding 5 × 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 to the suicide rate for the 1970 states (𝑤𝑤𝑘𝑘𝑇𝑇 − 𝑤𝑤𝑘𝑘𝐶𝐶 = 0.0039) changes the DD estimate from -3.08 
to -2.75, but adding it to the 1973 group (𝑤𝑤𝑘𝑘𝑇𝑇 − 𝑤𝑤𝑘𝑘𝐶𝐶 = 0.18) yields a very biased DD estimate of 12.28. 
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Figure 8 implements both a joint balance test and the reweighted test using two potential 

determinants of marriage market equilibria in 1960: per-capita income and the male/female sex 

ratio. Panel A shows that average per-capita income in untreated states ($13,431) is lower than the 

average in every timing group except for those that implemented unilateral divorce in 1969 (which 

actually get more weight as controls) or 1985. The joint 𝐹𝐹-test, however, fails to reject the null 

hypothesis that these means are the same. It is not surprising that such a low power test (12 

restrictions on 48 states observations) fails to generate strong evidence against the null. The 

reweighed test, on the other hand, does detect a difference in per-capita income of $2,285 between 

effective treatment states—those that implemented unilateral divorce in 1970 or later—and 

effective control states—pre-1964 reform states, non-reform states, and the 1969 states. Panel B 

shows that the 1960 sex ratio is higher in almost all treatment states than in the control states. 

While the joint test cannot reject the null of equal means, the reweighted test does reject reweighted 

balance (𝑝𝑝 = 0.06).33  

C. Evaluating alternative specifications 
Researchers almost always estimate models other than (2) and use differences across specifications 

to evaluate internal validity (Oster 2016) or choose projects in the first place. The DD 

decomposition theorem suggests a simple way to understand why estimates change. Stacking the 

2x2 DD’s and weights from (7) into vectors, we can write 𝛽̂𝛽𝐷𝐷𝐷𝐷 = 𝒔𝒔′𝜷𝜷�𝟐𝟐𝟐𝟐𝟐𝟐. Any alternative 

specification that equals a weighted average can be written similarly, and the difference between 

                                                      
33 One can run a joint test of balance across covariates using a seemingly unrelated regressions (SUR), as suggested 
by Lee and Lemieux (2010) in the regression discontinuity context. The results of these 𝜒𝜒2 tests are displayed at the 
top of figure 6. As with the separate balance tests, I fail to reject the null of equal means across groups and covariates. 
The joint reweighted balance test, however, does reject the null of equal weighted means between effective treatment 
and control groups. With 48 states and 12 timing groups, there are not sufficient degrees of freedom to implement a 
full joint test across many covariates. This is an additional rationale for the reweighted test. 
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the two estimates has the form of a Oaxaca-Blinder-Kitagawa decomposition (Blinder 1973, 

Oaxaca 1973, Kitagawa 1955): 

     𝛽̂𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷 − 𝛽̂𝛽𝐷𝐷𝐷𝐷 = 𝒔𝒔′�𝜷𝜷�𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐𝟐𝟐𝟐𝟐 − 𝜷𝜷�𝟐𝟐𝟐𝟐𝟐𝟐������������
𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡𝑡𝑡 2𝑥𝑥2 𝐷𝐷𝐷𝐷𝐷𝐷

+ (𝒔𝒔𝒂𝒂𝒂𝒂𝒂𝒂′ − 𝒔𝒔′)𝜷𝜷�𝟐𝟐𝟐𝟐𝟐𝟐�����������
𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡

+ (𝒔𝒔𝒂𝒂𝒂𝒂𝒂𝒂′ − 𝒔𝒔′)�𝜷𝜷�𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐𝟐𝟐𝟐𝟐 − 𝜷𝜷�𝟐𝟐𝟐𝟐𝟐𝟐������������������
𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

     (18)  

Dividing each term on the right side of (18) by  𝛽̂𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷 − 𝛽̂𝛽𝐷𝐷𝐷𝐷 shows the proportional contribution of 

changes in the 2x2 DD’s, changes in the weights, and the interaction of the two.34 Differences 

arising from the 2x2 DD’s show that control variables are correlated with treatment and the 

outcome, often pointing to a real sources of bias. Differences arising because of the weights, 

though, change the way the DD deals with heterogeneity and do not indicate that the 2x2 DD’s are 

confounded. It is also simple to learn which terms drive each kind of difference by plotting 𝜷𝜷�𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐𝟐𝟐𝟐𝟐 

against 𝜷𝜷�𝟐𝟐𝟐𝟐𝟐𝟐 and 𝒔𝒔 against 𝒔𝒔𝒂𝒂𝒂𝒂𝒂𝒂. One of the most valuable contributions of the DD decomposition 

theorem is to provide simple new tools for learning why estimates change across specifications. 

i. Dropping Untreated Units 
Papers commonly estimate models with and without untreated units, and the decomposition 

theorem shows that this is equivalent to setting all 𝑠𝑠𝑘𝑘𝑘𝑘 = 0 and rescaling the 𝑠𝑠𝑘𝑘ℓ to sum to one. 

Table 2 shows that this changes the unilateral divorce estimate so much that it becomes positive 

(2.42, s.e. = 1.81), but figure 6 suggests that this occurs not necessarily because of a problem with 

the design, but because half of the timing terms are biased by time-varying treatment effects.  

ii. Population Weighting 
Solon, Haider, and Wooldridge (2015) show that differences between population-weighted (WLS) 

and unweighted (OLS) estimates can arise in the presence of unmodeled heterogeneity, and 

suggest comparing the two estimators (Deaton 1997, Wooldridge 2001). WLS increases the 

                                                      
34 Grosz, Miller, and Shenhav (2018) propose a similar decomposition for family fixed effects estimates. 
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influence of large units by weighting the means of 𝑦𝑦 that make up each 2x2 DD, and it increases 

the influence of terms involving large groups by basing the decomposition weights on population 

rather than sample shares.  

Weighting in the unilateral divorce analysis changes the DD estimate from -3.08 to -0.35. Table 

2 indicates that just over half of the difference comes from changes in the 2x2 DD terms, 38 percent 

from changes in the weights, and 9 percent from the interaction of the two. Figure 9 scatters the 

weighted 2x2 DD’s versus the unweighted ones. Most components do not change and lie along the 

45-degree line, but large differences emerge for terms involving the 1970 states: Iowa and 

California.35 Weighting, which obviously gives more influence to California, makes the terms that 

use 1970 states as treatments more negative, while it makes terms that use them as controls more 

positive. This is consistent either with an ongoing downward trend in suicides in California or, as 

discussed above, strongly time-varying treatment effects.36 

iii. Triple-Difference Estimator 
When some units should not be (as) affected by a given treatment, they can be used as a 

falsification test. Assume that units belong to either an affected group (𝐺𝐺𝑖𝑖 = 1) or an unaffected 

group (𝐺𝐺𝑖𝑖 = 0). The simplest way to incorporate the “third difference”, 𝐺𝐺𝑖𝑖, would be to estimate 

separate DD coefficients in each sub-sample: 𝛽𝛽�0
𝐷𝐷𝐷𝐷

 and 𝛽𝛽�1
𝐷𝐷𝐷𝐷

. One could equivalently estimate the 

                                                      
35 Lee and Solon (2011) observe that California drives the divergence between OLS and WLS estimate in analyses of 
no-fault divorce on divorce rates (Wolfers 2006). 
36 Weighting by (a function of) the estimated propensity score (Abadie 2005) is often used to impose covariate balance 
between treated and untreated units (see Bailey and Goodman-Bacon 2015). The decomposition theorem points to 
two limitations of this approach. First, reweighting untreated observations has no effect on the timing terms. Second, 
reweighting untreated observations using the estimated probability of being in any treatment group does not impose 
covariate balance within each pair. By changing the relative weight on different untreated units but leaving their total 
weight the same, this strategy does not change 𝒔𝒔, so all differences stem from the way reweighting affects the 𝛽̂𝛽𝑘𝑘𝑘𝑘2𝑥𝑥2 
terms. Table 2 estimates reweighted models based on a propensity score equation that contains the 1960 sex ratio and 
per-capita income from figure 8, as well as the 1960 general fertility rate and infant mortality rate. This puts much 
more weight on Delaware and less weight on New York, and makes almost all 𝛽̂𝛽𝑘𝑘𝑘𝑘2𝑥𝑥2 much less negative, changing the 
overall DD estimate to 1.04. Callaway and Sant'Anna (2018) propose a generalized propensity score reweighted 
estimator for DD models with timing variation. 
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following triple-difference model (DDD) on the pooled sample including interactions of 𝐺𝐺𝑖𝑖 with 

all variables from equation (2):37 

                                  𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑡𝑡 + 𝛽𝛽0𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑡𝑡𝐺𝐺𝑖𝑖 + 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖                               (19) 

𝛽𝛽�0
𝐷𝐷𝐷𝐷

 is the two-way fixed effects DD estimate for the 𝐺𝐺𝑖𝑖 = 0 sample and 𝛽𝛽�
𝐷𝐷𝐷𝐷𝐷𝐷

 equals the 

difference between the sub-sample DD coefficients: 𝛽𝛽�1
𝐷𝐷𝐷𝐷

− 𝛽𝛽�0
𝐷𝐷𝐷𝐷

.  

One problem with this estimator is that 𝛽𝛽�1
𝐷𝐷𝐷𝐷

 equals an average weighted by the cross-

sectional distribution in the in the 𝐺𝐺𝑖𝑖 = 1 sample, but 𝛽𝛽�0
𝐷𝐷𝐷𝐷

 uses the cross-sectional distribution of 

the 𝐺𝐺𝑖𝑖 = 0 sample. If 𝐺𝐺𝑖𝑖 were an indicator for black respondents, then 2x2 DD’s that included 

Southern states would get more weight in the black than the white sample while the opposite would 

be true for Vermont and New Hampshire. Estimates of (19) difference out cross-state/cross-year 

changes in white outcomes weighted by white populations, and so may not capture relative trends 

by race within states. A null result for 𝛽𝛽�0
𝐷𝐷𝐷𝐷

, which is typically reassuring, could be driven by 

completely different 2x2 DD’s than the ones that matter most for 𝛽𝛽�1
𝐷𝐷𝐷𝐷

. 

DDD specifications that include a more saturated set of fixed effects overcome this 

problem. If treatment rolled out by state (𝑠𝑠), for example, a DDD model can include state-by-time 

fixed effects (𝛼𝛼𝑠𝑠𝛼𝛼𝑡𝑡): 

                               𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝐺𝐺𝑖𝑖𝛼𝛼𝑠𝑠 + 𝐺𝐺𝑖𝑖𝛼𝛼𝑡𝑡 + 𝛼𝛼𝑠𝑠𝛼𝛼𝑡𝑡 + 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖                                    (20) 

The DDD estimate from (20) does equal a weighted average of 2x2 DD’s. 𝛽𝛽�
𝐷𝐷𝐷𝐷𝐷𝐷

 is equivalent to 

first collapsing the data to mean differences between 𝐺𝐺-groups within (𝑠𝑠, 𝑡𝑡) cells, 𝑦𝑦�𝑠𝑠𝑠𝑠𝐺𝐺=1 − 𝑦𝑦�𝑠𝑠𝑠𝑠𝐺𝐺=0, 

then estimating a DD model weighted by cell sizes times the 𝑣𝑣𝑣𝑣𝑣𝑣� (𝐺𝐺𝑖𝑖|𝑠𝑠, 𝑡𝑡) = 𝑔𝑔𝑠𝑠𝑠𝑠(1 − 𝑔𝑔𝑠𝑠𝑠𝑠), where 

                                                      
37 In this set up the third difference partitions units, so 𝛼𝛼𝑖𝑖𝐺𝐺𝑖𝑖 is collinear with 𝛼𝛼𝑖𝑖. 
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𝑔𝑔𝑠𝑠𝑠𝑠 is the mean of 𝐺𝐺𝑖𝑖 by 𝑠𝑠 and 𝑡𝑡. Unlike (19), estimates from (20) do net out changes across 𝐺𝐺𝑖𝑖 

within state/year cells. This changes the weights, though, because the introduction of variation 

across the third difference within a cell leads to the typical OLS result that cells with more variation 

get more weight. In this case, “more variation” in sample membership within a cell means 

approximately equal numbers of units with 𝐺𝐺𝑖𝑖 = 1 and 𝐺𝐺𝑖𝑖 = 0.38 

Recasting this version of a DDD model as a DD on differences by 𝐺𝐺𝑖𝑖 implies that the DD 

decomposition theorem holds, albeit with a slight change to the calculation of the weights. All the 

results and diagnostic tools derived above apply to specifications like (20) by defining the outcome 

as 𝑦𝑦�𝑠𝑠𝑠𝑠𝐺𝐺=1 − 𝑦𝑦�𝑠𝑠𝑠𝑠𝐺𝐺=0 and using the proper weights. 

iv. Unit-specific linear time trends 
Researchers control for unit-specific linear time trends to allow “treatment and control states to 

follow different trends” (Angrist and Pischke 2009, p 238), and view it as “an important check on 

the causal interpretation of any set of regression DD estimates” (Angrist and Pischke 2015, p. 199). 

Appendix B derives a closed-form solution for the detrended estimator and shows that a version 

of the DD decomposition theorem applies to it. The specific way that unit-specific trends change 

each 2x2 component fit with previous intuition. They essentially subtract the cross-group 

difference in averages of 𝑦𝑦 before and after the middle of the panel, 𝑡𝑡̅, but these differences are 

weighted by absolute distance to 𝑡𝑡̅:  |𝑡𝑡 − 𝑡𝑡̅|. This is, as Lee and Solon (2011) point out, akin to a 

regression discontinuity design in that the estimator relies less on variation at the beginning or end 

of the panel because this variation is absorbed by the trends. Unfortunately, trends tend to absorb 

time-varying treatment effects that are necessarily larger at the end of the panel, and in these cases 

                                                      
38 Collapsing the data to the within-cell mean differences 𝑦𝑦�𝑠𝑠𝑠𝑠𝐺𝐺=1 − 𝑦𝑦�𝑠𝑠𝑠𝑠𝐺𝐺=0 and running OLS on the aggregated data (or 
WLS using cell populations) would eliminate the 𝑔𝑔𝑠𝑠𝑠𝑠(1 − 𝑔𝑔𝑠𝑠𝑠𝑠) from the decomposition weights. 
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they over control. Unit-specific trends also increase the weight on units treated at the extremes of 

the panel, changing estimates for this reason as well. 

The unilateral divorce analysis provides a striking illustration of how unit-specific trends 

can fail because figure 5 shows no pre-trends but strongly time-varying treatment effects. Trends 

shrink the estimate so much that its sign changes (0.59, s.e.=1.35). Table 2 shows that changes in 

2x2 DD’s account for 90 percent of the difference between estimates with and without trends, and 

panel A of figure 10 shows that most of the treated/untreated components are much less negative 

with trends, with especially large differences for the terms involving the 1970 states. Panel B of 

figure 10 shows that trends reduce the weight on 𝛽̂𝛽𝑘𝑘𝑘𝑘2𝑥𝑥2 terms, and increase the importance of 

timing-only comparisons. Since equation (11c) shows that the timing-only terms are already biased 

by the time-varying treatment effects, the change in weighting induced by unit-specific trends 

exacerbates this bias, accounting for 47 percent of the coefficient difference. Because unit-specific 

trends change the treated/untreated terms and give them less weight, the interaction of those two 

factors accounts for -36 percent of the overall change in the estimates.  

v. Group-specific linear pre-trends 

A simple strategy to address counterfactual trends is to estimate pre-treatment trends in 𝑌𝑌𝑘𝑘0 directly 

and partial them out of the full panel (cf. Bhuller et al. 2013, Goodman-Bacon 2018). This is what 

we hope that unit-specific trends do, it does not depend on the treatment effect pattern, and it does 

not change the weighting of the 2x2 DD’s. Specifically, using data from before 𝑡𝑡1∗, one can estimate 

a pre-trend in 𝑦𝑦𝑖𝑖𝑖𝑖 for each timing group.39 The slope will equal the linear component of 

                                                      
39 One could estimate pre-trends for each unit, but this yields identical point estimates to the group-specific pre-trends. 
Moreover, group-specific trends reduce the variability of the estimator because trend deviations that would bias unit 
specific pre-trends cancel out to some extent when averaged by timing group. This matters because this strategy 
extrapolates potentially many periods into the future, magnifiying specification error in the pre-trends. This point 
applies to unit-specific linear trend specifications as well. Point estimates are identical when this specification includes 
linear trends for each group rather than each unit. 
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unobservables plus a linear approximation to trend deviations before before 𝑡𝑡1∗. Removing this 

trend from the full panel yields an outcome variable that is robust to linear trends, unaffected by 

time-varying treatment effects, and weights each 2x2 DD component in the same way as the 

unadjusted estimator. Like the unit-specific time trend control strategy, group-specific pre-trends 

are sensitive to non-linear unobservables in the pre-period. Appendix C analyzes this estimator in 

detail. Partialling out pre-trends yields a unilateral divorce effect of -6.52 (s.e. = 1.7); close to the 

average post-treatment effect of -4.92. While inference is outside the scope of this paper (see Athey 

and Imbens 2018), note that this two-step strategy necessarily involves a partly estimated outcome 

variable so second-stage standard errors are incorrect.  

vi. Disaggregated time effects 

If counterfactual outcomes evolve differently by a category, 𝑅𝑅, to which units belong, one can 

model these changes flexibly by including separate time fixed effects for each category: 

                                                    𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑡𝑡
𝑅𝑅(𝑖𝑖) + 𝛽𝛽𝑅𝑅×𝑡𝑡

𝐷𝐷𝐷𝐷 𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖                                                      (21) 

The coefficient 𝛽𝛽 �𝑅𝑅×𝑡𝑡
𝐷𝐷𝐷𝐷

 equals an average of two-way fixed effects estimates by values of 𝑅𝑅 weighted 

by the share of units in each 𝑅𝑅 (𝑛𝑛𝑅𝑅) and the within-𝑅𝑅 variance of 𝐷𝐷�𝑖𝑖𝑖𝑖. For simplicity, I refer to 𝑅𝑅 

as “region”, but the analysis is not specific to region-by-time fixed effects. When treatments vary 

by county or city, for example, studies include state-by-time fixed effects (e.g. Almond, Hoynes, 

and Schanzenbach 2011, Bailey and Goodman-Bacon 2015); when treatments vary by firm studies 

include industry-by-year fixed effects (e.g. Kovak, Oldenski, and Sly 2018).  

 Since the decomposition theorem holds for each within-region DD estimate, it also holds 

for 𝛽𝛽 �𝑅𝑅×𝑡𝑡
𝐷𝐷𝐷𝐷

. Each 2x2 DD averages the region-specific 2x2 DD’s (𝛽𝛽�𝑘𝑘𝑘𝑘,𝑅𝑅
2𝑥𝑥2

 and 𝛽𝛽�𝑘𝑘ℓ,𝑅𝑅
2𝑥𝑥2

) but the weights 

reflect region size and the within-region distribution of timing groups: 
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                                     𝛽𝛽�𝑘𝑘𝑘𝑘,𝑅𝑅×𝑡𝑡
2𝑥𝑥2

= �
𝑛𝑛𝑅𝑅𝑛𝑛𝑘𝑘𝑅𝑅𝑛𝑛𝑈𝑈𝑅𝑅

∑ 𝑛𝑛𝑅𝑅𝑛𝑛𝑘𝑘𝑅𝑅𝑛𝑛𝑈𝑈𝑅𝑅𝑅𝑅
𝛽𝛽�𝑘𝑘𝑘𝑘,𝑅𝑅
2𝑥𝑥2

𝑅𝑅

                                                                   (22) 

                                   𝛽𝛽�𝑘𝑘ℓ,𝑅𝑅×𝑡𝑡
2𝑥𝑥2

= �
𝑛𝑛𝑅𝑅𝑛𝑛𝑘𝑘𝑅𝑅𝑛𝑛ℓ 

𝑅𝑅

∑ 𝑛𝑛𝑅𝑅𝑛𝑛𝑘𝑘𝑅𝑅𝑛𝑛ℓ𝑅𝑅𝑅𝑅
�𝜇𝜇𝑘𝑘ℓ 𝛽𝛽�𝑘𝑘ℓ,𝑅𝑅×𝑡𝑡

2𝑥𝑥2,𝑘𝑘
+ (1 − 𝜇𝜇𝑘𝑘ℓ)𝛽𝛽�𝑘𝑘ℓ,𝑅𝑅×𝑡𝑡

2𝑥𝑥2,ℓ
�

𝑅𝑅

                 (23) 

2x2 DD’s from large regions get more weight (via the 𝑛𝑛𝑅𝑅), but the distribution of timing groups 

within region (the 𝑛𝑛𝑎𝑎𝑅𝑅𝑛𝑛𝑏𝑏𝑅𝑅 terms) also determine the importance of each region. Regions with no 

units in group 𝑘𝑘 contribute nothing to 2x2 DD’s involving that group, in contrast to the simpler 

estimator where that region would contribute controls for group 𝑘𝑘. If no region contains units from 

a given pair of groups that pair drops out of the disaggregated time effects specification. These 

within-region 2x2 DD’s in (22) and (23) are weighted together using the cross-region average of 

the sample share products, ∑ 𝑛𝑛𝑅𝑅𝑛𝑛𝑘𝑘𝑅𝑅𝑛𝑛ℓ𝑅𝑅𝑅𝑅  as well as treatment variances.  

Adding region-by-year effects to the unilateral divorce analysis cuts the estimated effect by a 

factor of three (-1.16). Figure 11 plots the 2x2 DD’s and the weights from this specification against 

those from the baseline model. 43 of the 156 2x2 terms in the baseline model drop out of the 

within-region specification, and table 2 shows that about three quarters of the difference in the 

estimates comes from the way these fixed effects change the weights. 

IV. CONCLUSION 
Difference-in-differences is perhaps the most widely applicable quasi-experimental research 

design. Its transparency makes it simple to describe, test, interpret, and teach. This paper extends 

all of these advantages from canonical two-by-two DD models to general and much more common 

DD models with variation in the timing of treatment.  

 My central result, the DD decomposition theorem, shows that a two-way fixed effects DD 

coefficient equals a weighted average of all possible simple 2x2 DD’s that compare one group that 

changes treatment status to another group that does not. Many ways in which the theoretical 
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interpretation of regression DD differs from the canonical model stem from the fact that these 

simple components are weighted together based both on sample sizes and the variance of their 

treatment dummy. This defines the DD estimand, the variance-weighted average treatment effect 

on the treated (VWATT), and generalizes the identifying assumption on counterfactual outcomes 

to variance-weighted common trends (VWCT). Moreover, I show that because already-treated 

units act as controls in some 2x2 DD’s, the two-way fixed effects model requires an additional 

identifying assumption of time-invariant treatment effects.  

The DD decomposition theorem also leads to several new tools for practitioners. Graphing 

the 2x2 DD’s against their weight displays all the identifying variation in any DD application, and 

summing weights across types of comparisons quantifies “how much” of a given estimate comes 

from different sources of variation. I use the DD decomposition theorem to propose a reweighted 

balance test that reflects this identifying variation, is easy to implement, has higher power than 

tests of joint balance across groups, and shows how large and in what direction any imbalance 

occurs. I suggest several simple methods to learn why estimates differ across alternative 

specifications. The weighted average representation leads to a Oaxaca-Blinder-Kitagawa-style 

decomposition that quantifies how much of the difference in estimates comes from changes in the 

2x2 DD’s, the weights, or both. Plots of the components or the weights across specifications show 

clearly where differences come from and can help researchers understand why their estimates 

changes and whether or not it is a problem.  
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Figure 1. Difference-in-Differences with Variation in Treatment Timing: Three Groups 

 
Notes: The figure plots outcomes in three groups: a control group, 𝑈𝑈, which is never treated; an early treatment group, 
𝐸𝐸, which receives a binary treatment at 𝑡𝑡𝑘𝑘

∗ =
34

100
𝑇𝑇; and a late treatment group, ℓ, which receives the binary treatment 

at 𝑡𝑡ℓ
∗ =

85

100
𝑇𝑇. The x-axis notes the three sub-periods: the pre-period for group 𝑘𝑘, [1, 𝑡𝑡𝑘𝑘∗ − 1], denoted by 𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘); the 

middle period when group 𝑘𝑘 is treated and group ℓ is not, [𝑡𝑡𝑘𝑘∗ , 𝑡𝑡ℓ∗ − 1], denoted by 𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ); and the post-period for 
group ℓ, [𝑡𝑡ℓ∗,𝑇𝑇], denoted by 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ). I set the treatment effect to 10 in group 𝑘𝑘 and 15 in group ℓ.  
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Figure 2. The Four Simple (2x2) Difference-in-Differences Estimates from the Three Group 
Case 

 
Notes: The figure plots the groups and time periods that generate the four simple 2x2 difference-in-difference 
estimates in the case with an early treatment group, a late treatment group, and an untreated group from Figure 1. Each 
panel plots the data structure for one 2x2 DD. Panel A compares early treated units to untreated units (𝛽𝛽�𝑘𝑘𝑘𝑘

𝐷𝐷𝐷𝐷
); panel B 

compares late treated units to untreated units (𝛽𝛽�ℓ𝑈𝑈
𝐷𝐷𝐷𝐷

); panel C compares early treated units to late treated units during 

the late group’s pre-period (𝛽𝛽�𝑘𝑘ℓ
𝐷𝐷𝐷𝐷,𝑘𝑘

); panel D compares late treated units to early treated units during the early group’s 

post-period (𝛽𝛽�𝑘𝑘ℓ
𝐷𝐷𝐷𝐷,ℓ

). The treatment times mean that 𝐷𝐷�𝑘𝑘 = 0.67 and 𝐷𝐷�ℓ = 0.16, so with equal group sizes, the 
decomposition weights on the 2x2 estimate from each panel are 0.365 for panel A, 0.222 for panel B, 0.278 for panel 
C, and 0.135 for panel D.  
 
 
  

t*k

yk
it

yU
it

PRE(k) POST(k)

0
10

20
30

40
U

ni
ts 

of
 y

Time

A. Early Group vs. Untreated Group

t*l

yl
it

yU
it

PRE(l) POST(l)

0
10

20
30

40
U

ni
ts 

of
 y

Time

B. Late Group vs. Untreated Group

t*lt*k

yk
it

yl
it

MID(k,l)PRE(k)

0
10

20
30

40
U

ni
ts 

of
 y

Time

C. Early Group vs. Late Group, before t*l

t*lt*k

yk
it

yl
it

MID(k,l) POST(l)

0
10

20
30

40
U

ni
ts 

of
 y

Time

D. Late Group vs. Early Group, after t*k



33 
 

Figure 3. Difference-in-Differences Estimates with Variation in Timing Are Biased When 
Treatment Effects Vary Over Time 

 
Notes: The figure plots a stylized example of a timing-only DD set up with a treatment effect that is a trend-break 
rather than a level shift (see Meer and West 2013). Following section II.A.ii, the trend-break effect equals 𝜙𝜙 ⋅ (𝑡𝑡 −
𝑡𝑡∗ + 1). The top of the figure notes which event-times lie in the 𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘), 𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ), and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ) periods for each 
unit. The figure also notes the average difference between groups in each of these periods. In the 𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘, ℓ) period, 
outcomes differ by 

𝜙𝜙

2
(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘

∗ + 1) on average. In the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(ℓ) period, however, outcomes had already been growing 

in the early group for 𝑡𝑡ℓ
∗ − 𝑡𝑡𝑘𝑘

∗  periods, and so they differ by 𝜙𝜙(𝑡𝑡ℓ∗ − 𝑡𝑡𝑘𝑘∗ + 1) on average. The 2x2 DD that compares 
the later group to the earlier group is biased and, in the linear trend-break case, weakly negative despite a positive and 
growing treatment effect.  
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Figure 4. Weighted Common Trends: The Treatment/Control Weights as a Function of the 
Share of Time Spent Under Treatment 

 
Notes: The figure plots the weights that determine each timing group’s importance in the weighted common trends 
expression in equations (16) and (17). 
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Figure 5. Event-Study and Difference-in-Differences Estimates of the Effect of No-Fault 
Divorce on Female Suicide: Replication of Stevenson and Wolfers (2006) 

 
Notes: The figure plots event-study estimates from the two-way fixed effects model on page 276 and plotted in figure 
1 of Stevenson and Wolfers (2006), along with the DD coefficient. The specification does not include other controls 
and does not weight by population. Standard errors are robust to heteroskedasticity.  
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Figure 6. Difference-in-Differences Decomposition for Unilateral Divorce and Female 
Suicide 

 
Notes: Notes: The figure plots each 2x2 DD components from the decomposition theorem against their weight for the 
unilateral divorce analysis. The open circles are terms in which one timing group acts as the treatment group and the 
pre-1964 reform states act as the control group. The closed triangles are terms in which one timing group acts as the 
treatment group and the non-reform states act as the control group. The x’s are the timing-only terms. The figure notes 
the average DD estimate and total weight on each type of comparison. The two-way fixed effects estimate, -3.08, 
equals the average of the y-axis values weighted by their x-axis value. 
 
 
 

 
 

  

DD Estimate = -3.08

Later Group Treatment vs. Earlier Group Control
Weight = 0.26; DD = 3.51

Earlier Group Treatment vs. Later Group Control
Weight = 0.11; DD = -0.19

Treatment vs. Non-Reform States
Weight = 0.24; DD = -5.33

Treatment vs. Pre-1964 Reform States
Weight = 0.38; DD = -7.04

-3
0

-2
0

-1
0

0
10

20
30

2x
2 

D
D

 E
st

im
at

e

0 .02 .04 .06 .08 .1
Weight



37 
 

Figure 7. Weighted Common Trends in the Unilateral Divorce Analysis: The 
Treatment/Control Weights on Each Timing Group 

 
Notes: The figure plots the weights that determine each timing group’s role in the weighted common trends expression. 
These are show in solid triangles and equal the difference between the total weight each treatment timing group 
receives in terms where it is the treatment group (𝑤𝑤𝑘𝑘

𝑇𝑇 ) and terms where it is the control group (𝑤𝑤𝑘𝑘
𝐶𝐶 ): 𝑤𝑤𝑘𝑘𝑇𝑇 − 𝑤𝑤𝑘𝑘

𝐶𝐶 . The 
solid circles show the same weights but for versions of each estimator that exclude the untreated (or already-treated) 
units and, therefore, are identified only by treatment timing. The open squares plot each group’s sample share. 
  

 
 

 
 

 
 

  

  

Sample Share

Treatment-Control Weight

Treatment-Control  Weight, Timing-Only

-.1
0

.1
.2

.3
W

ei
gh

t f
or

 E
ac

h 
Tr

ea
tm

en
t G

ro
up

1970 1975 1980 1985
Treatment Time

   f  ( )



38 
 

Figure 8. Testing for Balance in a Difference-in-Differences Model with Timing: 
Reweighted Test versus Joint Test 

 
Notes: The figure plots average per-capita income and male/female sex ratio in 1960 for each timing group in the 
unilateral divorce analysis (combining the non-reform and pre-1964 reform states into the group labeled “Pre-64 + 
NRS”). The horizontal lines equal the average of these variables using the weights from figure 6 (𝑤𝑤𝑘𝑘

𝑇𝑇 − 𝑤𝑤𝑘𝑘
𝐶𝐶). Note 

that the 1969 states get more weight as a control group, so they are part of the reweighted control mean. Each panel 
reports the F-statistic and p-value from a joint test of equality across the means, and the reweighted difference, 
standard error, and p-value from the re-weighted balance test. The top of the figure reports χ2(𝑑𝑑𝑑𝑑) test-statistics for 
both covariates estimated using seemingly unrelated regressions.  
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Figure 9. Comparison of 2x2 DD Components and Decomposition Weights with and 
without Population Weights 

 
Notes: Panel A plots the 2x2 DD components from two-way fixed effects estimates that use population weights (y-
axis) and do not (x-axis). The size of each point is proportional to its weight in an OLS version of equation (7). WLS 
estimates are much smaller than OLS estimates, and this figure shows that the source of this discrepancy is the 1970 
no-fault divorce states, which include only Iowa and California. Weighting puts much more emphasis on California 
and, therefore, every 2x2 DD component involving the 1970 states. Dropping California changes yields an OLS 
estimate of -3.32 and a WLS estimate of -1.43.  
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Figure 10. Comparison of 2x2 DD Components and Decomposition Weights with and 
without Unit-Specific Linear Time Trends 

 
Notes: Panel A plots the two-group DD’s from a model with unit-specific time trends (y-axis) against those from a 
model without trends (x-axis). The size of each point is proportional to its weight in a model without trends. The trend-
adjusted estimate is small and positive compared to a negative DD estimate without them. Much of the change comes 
from the effect of trends on each 2x2 estimate, especially for treated/untreated comparisons (closed triangles). Panel 
B is the same except that it plots the weights. Treated/untreated terms that received the most weight in the unadjusted 
model get relatively less in a trend-adjusted model. Timing terms that received more weight get relatively more in a 
trend-adjusted model.  
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Figure 11. Comparison of 2x2 DD Components and Decomposition Weights with and 
without Region-by-Year Fixed Effects 

 
Notes: Panel A plots the two-group DD’s from a model with region-by-year fixed effects (y-axis) against those from 
a model without them (x-axis). The size of each point is proportional to its weight in the sparser model with only year 
fixed effects. 2x2 DD’s that drop out of the region-by-year FE model are shown in triangles and appear at “0” on the 
y-axis, although they do not enter the decomposition as zeros. Panel B plots the decomposition weights from the two 
models. Some 2x2 comparisons drop out in the model with region-by-year effects (when no region has states from 
both timing groups) and the figures plot these components using triangles.  
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Table 1. The No-Fault Divorce Rollout: Treatment Times, Group Sizes, and Treatment 
Shares 

 
No-Fault Divorce  
Year (𝑡𝑡𝑘𝑘∗)  

Number of 
States 

Share of  
States  (𝑛𝑛𝑘𝑘) 

Treatment Share 
(𝐷𝐷�𝑘𝑘) 

Non-Reform States 5 0.10 . 
Pre-1964 Reform States 8 0.16 . 
1969 2 0.04 0.85 
1970 2 0.04 0.82 
1971 7 0.14 0.79 
1972 3 0.06 0.76 
1973 10 0.20 0.73 
1974 3 0.06 0.70 
1975 2 0.04 0.67 
1976 1 0.02 0.64 
1977 3 0.06 0.61 
1980 1 0.02 0.52 
1984 1 0.02 0.39 
1985 1 0.02 0.36 

 
Notes: The table lists the dates of no-fault divorce reforms from Stevenson and Wolfers (2006), the number and share 
of states that adopt in each year, and the share of periods each treatment timing group spends treated in the estimation 
sample from 1964-1996.  
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Table 2. DD Estimates of the Effect of Unilateral Divorce Analysis on Female Suicide using 
Alternative Specifications 

  (1) (2) (3) (4) (5) (6) (7) 

 

Baseline 
No 

Untreated 
States 

WLS 
Propensity 

Score 
Weighting 

Unit-
Specific 
Trends 

Group-
Specific 

Pre-
Trends 

Region-
by-Year 
Fixed 

Effects 
Unilateral Divorce -3.08 2.42 -0.35 1.04 0.59 -6.52 -1.16 

 [1.27] [1.81] [1.97] [1.78] [1.35] [2.98] [1.37] 
Difference from 
baseline 
specification 

 5.50 2.73 4.12 3.67 -3.44 1.92 

Share due to:        
2x2 DDs  0 0.52 1 0.90 1 0.37 
Weights  1 0.39 0 0.47 0 0.76 

Interaction   0 0.09 0 -0.36 0 -0.13 
Notes: The table presents DD estimates from the alternative specifications discussed in section III. Column (1) is the 
two-way fixed effects estimate from equation (2). Column (2) drops the pre-1964 reform and non-reform states. 
Column (3) weights by state adult populations in 1964. Column (4) weights by the inverse propensity score estimated 
from a probit model that contains the sex ratio, per-capita income, the general fertility rate, and the infant mortality 
rate all measured in 1960. Column (5) includes state-specific linear time trends. Column (6) comes from a two-step 
procedure that first estimates group-specific trends from 1964-1968, subtracts them from the suicide rate, and 
estimates equation (2) on the transformed outcome variable. Column (7) includes region-by-year fixed effects. Below 
the standard errors I show the difference between each estimate and the baseline result, an the last three rows show 
the share of this difference that comes from changes in the 2x2 DD’s, the weights, or their interaction as shown in 
equation (18).  
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