Nuklearmedizin 2012; 51(04): 140-153
DOI: 10.3413/Nukmed-0455-11-12
Review
Schattauer GmbH

Integration of FDG- PET/CT into external beam radiation therapy planning

Technical aspects and recommendations on methodologica l approachesIntegration der FDG-PET/CT-Bildgebung in die Planung der externen StrahlentherapieTechnische Aspekte und Empfehlungen zur methodischen Annäherung
D. Thorwarth
1   University Hospital for Radiation Oncology, Section for Biomedical Physics, Eberhard-Karls University Tübingen, Germany
,
T. Beyer
2   University Hospital for Radiology, Imaging Science Institute Tübingen, Germany
3   cmi-experts, Zürich, Switzerland
,
R. Boellaard
4   University Medical Centre, Department of Nuclear Medicine & PET Research, Amsterdam, The Netherlands
,
D. De Ruysscher
5   Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
,
A. Grgic
6   Department of Nuclear Medicine, Saarland University Medical Center, Homburg/Saar, Germany
,
J. A. Lee
7   Center of Molecular Imaging and Experimental Radiotherapy, Université Catholique de Louvain, Brussels, Belgium
,
U. Pietrzyk
8   Institute of Neurosciences and Medicine – Medical Imaging Physics (INM-4), Research Center Jülich, Germany
9   Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany
,
B. Sattler
10   Department of Nuclear Medicine, University Hospital Leipzig, Germany
,
A. Schaefer
6   Department of Nuclear Medicine, Saarland University Medical Center, Homburg/Saar, Germany
,
W. van Elmpt
5   Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
,
W. Vogel
1   University Hospital for Radiation Oncology, Section for Biomedical Physics, Eberhard-Karls University Tübingen, Germany
,
W. J. G. Oyen
12   Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, The Netherlands
,
U. Nestle
13   University Hospital for Radiation Oncology Freiburg, Germany
› Author Affiliations
Further Information

Publication History

received: 21 December 2012

accepted in revised form: 19 March 2012

Publication Date:
30 December 2017 (online)

Summary

This work addresses the clinical adoption of FDG-PET/CT for image-guided radiation therapy planning (RTP). As such, important technical and methodological aspects of PET/CTbased RTP are reviewed and practical recommendations are given for routine patient management and clinical studies. First, recent developments in PET/CT hardware that are relevant to RTP are reviewed in the context of quality control and system calibration procedures that are mandatory for a reproducible adoption of PET/CT in RTP. Second, recommendations are provided on image acquisition and reconstruction to support the standardization of imaging protocols. A major prerequisite for routine RTP is a complete and secure data transfer to the actual planning system. Third, state-of-the-art tools for image fusion and co-registration are discussed briefly in the context of PET/CT imaging preand post-RTP. This includes a brief review of state-of-the-art image contouring algorithms relevant to PET/CT-guided RTP. Finally, practical aspects of clinical workflow and patient management, such as patient setup and requirements for staff training are emphasized. PET/ CT-guided RTP mandates attention to logistical aspects, patient set-up and acquisition parameters as well as an in-depth appreciation of quality control and protocol standardization. Conclusion: Upon fulfilling the requirements to perform PET/CT for RTP, a new dimension of molecular imaging can be added to traditional morphological imaging. As a consequence, PET/CT imaging will support improved RTP and better patient care. This document serves as a guidance on practical and clinically validated instructions that are deemed useful to the staff involved in PET/CT-guided RTP.

Zusammenfassung

Diese Arbeit geht auf die klinische Verwendung von FDG-PET/CT in der bildgestützten Radiotherapieplanung (RTP) ein. Wichtige technische und methodische Aspekte der FDG-PET/CT-basierten RTP werden erläutert, und praktische Empfehlungen für das Management von Patienten in der klinischen Routine sowie in klinischen Studien gegeben. Zunächst werden neueste Hardware-Entwicklungen der PET/CT-Bildgebung beschrieben, die für die RTP relevant sind. Die Einführung entsprechender Qualitätskontrollen und Protokolle zur Kalibrierung bildgebender Systeme ist unerlässlich für eine reproduzierbare Einbeziehung der PET/CT in die RTP. Anschließend werden Empfehlungen hinsichtlich Datenakquisition und Rekonstruktionsparametern gegeben mit dem Ziel der Standardisierung der Bildgebungsprotokolle. Eine Haupt - anforderung der RTP in der klinischen Routine ist der zuverlässige Datentransfer an das Planungssystem. In einem weiteren Abschnitt dieser Arbeit werden aktuelle Methoden der Bildfusion und -registrierung diskutiert. Abschließend wird auf praktische Aspekte bezüglich klinischer Arbeitsabläufe und Patientenmanagement (z. B. Patientenlagerung und Anforderungen an die Personalschulung) eingegangen. Besonders wichtig für eine zuverlässige PET/CT-basierte RTP sind logistische Aspekte, aber auch eine reproduzierbare Lagerung der Patienten und standardisierte Akquisitionsprotokolle sowie spezielle Qualitätskontrollen. Schlussfolgerung: Durch Umsetzung der genannten Anforderungen der RTP an die PET/CT, kann die Integration molekularer Bilddaten zusätzlich zur morphologischen Bildgebung erreicht werden. Die PET/CT unterstützt eine präzisere RTP und ein verbessertes Patientenmanagement. Diese Arbeit kann als praktische Empfehlung zur klinischen Verwendung von PET/CT-Bilddaten in der RTP genutzt werden.

 
  • References

  • 1 Balter JM, Cao Y. Advanced technologies in image-guided radiation therapy. Semin Radiat Oncol 2007; 17: 293-297.
  • 2 Balter JM, Kessler ML. Imaging and alignment for image-guided radiation therapy. J Clin Oncol 2007; 25: 931-937.
  • 3 Bayne M, Hicks RJ, Everitt S. et al. Reproducibility of „intelligent“ contouring of gross tumour volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Int J Radiat Oncol Biol Phys 2010; 77: 1151-1157.
  • 4 Beddar AS, Briere TM, Balter P. et al. 4D-CT imaging with synchronized intravenous contrast injection to improve delineation of liver tumours for treatment planning. Radiother Oncol 2008; 87: 445-448.
  • 5 Bendriem B, Townsend DW. The Theory and Practice of 3D PET. Developments in Nuclear Medicine (Vol 32).. Kluwer Academic Publishers; 1998
  • 6 Bettinardi V, Picchio M, Di Muzio N. et al. Detection and compensation of organ/lesion motion using 4D-PET/CT respiratory gated acquisition techniques. Radiother Oncol 2010; 96: 311-316.
  • 7 Beyer T, Antoch G, Müller S. et al. Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 2004; 45 (Suppl. 01) 25S-35S.
  • 8 Beyer T, Bockisch A, Kuhl H. et al. Whole-body 18F-FDG PET/CT in the presence of truncation artifacts. J Nucl Med 2006; 47: 91-99.
  • 9 Beyer T, Tellmann L, Nickel I. et al. On the use of positioning aids to reduce misregistration in the head and neck in whole-body PET/CT studies. J Nucl Med 2005; 46: 596-602.
  • 10 Bockisch A, Beyer T, Antoch G. et al. Positron emission tomography/computed tomography--imaging protocols, artifacts, and pitfalls. Mol Imaging Biol 2004; 6: 188-199.
  • 11 Boellaard R, Krak NC, Hoekstra OS. et al. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 2004; 45: 1519-1527.
  • 12 Boellaard R, O'Doherty MJ, Weber WA. et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010; 37: 181-200.
  • 13 Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009; 50 (Suppl. 01) 11S-20S.
  • 14 Brechtel K, Heners H, Mueller M. et al. Fixation devices for whole-body 18F-FDG PET/CT: patient perspectives and technical aspects. Nucl Med Commun 2007; 28: 141-147.
  • 15 Busemann Sokole E, Plachcínska A, Britten A. Acceptance testing for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging 2010; 37: 672-681.
  • 16 Busemann Sokole E, Placinska A, Britten A. et al. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging 2010; 37: 662-671.
  • 17 Caldwell CB, Mah D, Ung YC. et al. Observer variation in contouring gross tumour volume in patients with poorly defined non-small-cell lung tumours on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 2001; 51: 923-931.
  • 18 Chiti A, Kirienko M, Grégoire V. Clinical use of PET-CT data for radiotherapy planning: what are we looking for?. Radiother Oncol 2010; 96: 277-279.
  • 19 Coffey M, Vaandering A. Patient setup for PET/CT acquisition in radiotherapy planning. Radiother Oncol 2010; 96: 298-301.
  • 20 Covens P, Berus D, Vanhavere F. et al. The introduction of automated dispensing and injection during PET procedures: a step in the optimisation of extremity doses and whole-body doses of nuclear medicine staff. Radiat Prot Dosimetry 2010; 140: 250-258.
  • 21 Czernin J, Allen-Auerbach M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 2007; 48 (Suppl. 01) 78S-88S.
  • 22 Daisne JF, Sibomana M, Bol A. et al. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003; 69: 247-250.
  • 23 Evans PM. Anatomical imaging for radiotherapy. Phys Med Biol 2008; 53: R151-R191.
  • 24 Frings V, de Langen AJ, Smit EF. et al. Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med 2010; 51: 1870-1877.
  • 25 Geets X, Lee JA, Bol A. et al. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 2007; 34: 1427-1438.
  • 26 Geworski L, Knoop BO, de Witt M. et al. Multicenter comparison of calibration and cross calibration of PET scanners. J Nucl Med 2001; 43: 635-639.
  • 27 Geworski L, Reiners C. Qualitätsprüfung nuklearmedizinischer Messsysteme: Konstanzprüfung. Empfehlungen zur Qualitätskontrolle in der Nuklearmedizin-Klinik und Messtechnik.. Geworski L, Lottes G, Reiners Chr, Schober O. Stuttgart: Schattauer: 2003: 217-289.
  • 28 Gregoire V, Chiti A. PET in radiotherapy planning: Particularly exquisite test or pending and experimental tool?. Radiother Oncol 2010; 96: 275-276.
  • 29 Grgic A, Ballek E, Fleckenstein J. et al. Impact of rigid and nonrigid registration on the determination of 18F-FDG PET-based tumour volume and standardized uptake value in patients with lung cancer. Eur J Nucl Med Mol Imaging 2011; 38: 856-864.
  • 30 Grgic A, Nestle U, Schaefer-Schuler A. et al. FDG-PE T-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning--an intraindividual comparison. Int J Radiat Oncol Biol Phys 2009; 73: 103-111.
  • 31 Hamacher K, Coenen HH, Stöcklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 1986; 27: 235-238.
  • 32 Hatt M, Cheze le Rest C, Turzo A. et al. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 2009; 28: 881-893.
  • 33 Hill DL, Batchelor PG, Holden M. et al. Medical image registration. Phys Med Biol 2001; 46: R1-R45.
  • 34 Hoetjes NJ, van Velden FH, Hoekstra OS. et al. Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging 2010; 37: 1679-1687.
  • 35 Hofheinz F, Pötzsch C, Oehme L. et al. Automatic volume delineation in oncological PET. Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets. Nuklearmedizin 2012; 51: 9-16.
  • 36 Hurkmans CW, van Lieshout M, Schuring D. et al. Quality assurance of 4D-CT scan techniques in multicenter phase III trial of surgery versus stereotactic radiotherapy (Radiosurgery Or Surgery for operable Early stage (Stage 1A) non-small-cell Lung cancer [ROSEL] Study). Int J Radiat Oncol Biol Phys 2010; 80: 918-927.
  • 37 IEC 61223–2-6: Evaluation and routine testing in medical imaging departments, Part 2-6: Constancy tests – Imaging performance of computed tomography X-ray equipment, 2006
  • 38 IEC 61223–3-5: Evaluation and routine testing in medical imaging departments, Part 3-5: Acceptance tests – Imaging performance of computed tomography X-ray equipment, 2004.
  • 39 Kearns WT, Urbanic JJ, Hampton CJ. et al. Radiation safety issues with positron-emission/computed tomography simulation for stereotactic body radiation therapy. J Appl Clin Med Phys 2008; 9: 2763.
  • 40 Kessler RM, Ellis Jr JR, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 1984; 8: 514-522.
  • 41 Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 2003; 33: 166-179.
  • 42 King MA, Long DT, Brill AB. SPECT volume quantitation: influence of spatial resolution, source size and shape, and voxel size. Med Phys 1991; 18: 1016-1024.
  • 43 Kotzerke J, Oehme L, Lindner O. et al. Positron emission tomography 2008 in Germany – results of the query and current status. Nuklearmedizin 2010; 49: 58-64.
  • 44 Krause BJ, Beyer T, Bockisch A. et al. FDG-PET/CT in oncology. German Guideline. Nuklearmedizin 2007; 46: 291-301.
  • 45 Lee JA. Segmentation of positron emission tomography images: some recommendations for target delineation in radiation oncology. Radiother Oncol 2010; 96: 302-307.
  • 46 Ling CC, Humm J, Larson Amols H. et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiol Oncol Biol Phys 2000; 47: 551-560.
  • 47 Lockhart CM, MacDonald LR, Alessio AM. et al. Quantifying and reducing the effect of calibration error on variability of PET/CT standardized uptake value measurements. J Nucl Med 2011; 52: 218-224.
  • 48 Lonsdale MN, Beyer T. Dual-Modality PET/CT instrumentation - Today and tomorrow. Eur J Radiol 2010; 73: 452-460.
  • 49 MacManus M, Nestle U, Rosenzweig KE. et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 2009; 91: 85-94.
  • 50 Mantlik F, Hofmann M, Werner MK. et al. The effect of patient positioning aids on PET quantification in PET/MR imaging. Eur J Nucl Med Mol Imaging 2011; 38: 920-929.
  • 51 Mutic S, Palta JR, Butker EK. et al. Quality assurance for computed-tomography simulators and the computed tomography-simulation process: Report of the AAPM Radiation Therapy Committee Task Group No. 66. Med Phys 2003; 30: 2762-2792.
  • 52 Nehmeh SA, El-Zeftawy H, Greco C. et al. An iterative technique to segment PET lesions using a Monte Carlo based mathematical model. Med Phys 2009; 36: 4803-4809.
  • 53 Nehmeh SA, Erdi YE, Meirelles GS. et al. Deep-inspiration breath-hold PET/CT of the thorax. J Nucl Med 2007; 48: 22-26.
  • 54 NEMA. DICOM Supplement 12, Addendum to part 3, positron emission tomography image objects, Final Text, 9 June 1996. http://dicom.nema.org/
  • 55 NEMA. DICOM, Part 10, Media Storage and File Format for Media Interchange, 2008. http://dicom.nema.org
  • 56 NEMA. DICOM, Part 3, Information Object Definitions, 2008. http://dicom.nema.org
  • 57 NEMA. DICOM, Supplement 11, Addendum to part 3, Radiotherapy Objects, Final Text, 29 April 1997. http://dicom.nema.org/
  • 58 Nestle U, Kremp S, Grosu AL. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 2006; 81: 209-225.
  • 59 Nestle U, Kremp S, Schaefer-Schuler A. et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 2005; 46: 1342-1348.
  • 60 Nestle U, Schaefer-Schuler A, Kremp S. et al. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007; 34: 453-462.
  • 61 Nestle U, Weber W, Hentschel M. et al. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2009; 54: R1-R25.
  • 62 Nevinny-Stickel M, Sweeney RA, Bale RJ. et al. Reproducibility of patient positioning for fractionated extracranial stereotactic radiotherapy using a double-vacuum technique. Strahlenther Onkol 2004; 180: 117-122.
  • 63 Otani Y, Fukuda I, Tsukamoto N. et al. A comparison of the respiratory signals acquired by different respiratory monitoring systems used in respiratory gated radiotherapy. Med Phys 2010; 37: 6178-6186.
  • 64 Pakbiers MTW, Kemerink GJ. Radiation exposure as a result of PET/CT. Radiation Dosimetry in Medicine: State of the Art in 2007.. Vynckier S, Bos JJ, Lammertsma AA, Heijmen BJM, Zweers D. Proceedings Fifth NCS Lustrum. Delft, The Netherlands: NCS; 2007: 51-60.
  • 65 Pan T, Sun X, Luo D. Improvement of the cine-CT based 4D-CT imaging. Med Phys 2007; 34: 4499-4503.
  • 66 Paulino AC, Johnstone PA. FDG-PET in radiotherapy treatment planning: Pandora's box?. Int J Radiat Oncol Biol Phys 2004; 59: 4-5.
  • 67 Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Ann Rev Biomed Eng 2000; 2: 315-337.
  • 68 Pietrzyk U. Does PET/CT render software registration obsolete?. Nuklearmedizin 2005; 44 (Suppl. 01) S13-S17.
  • 69 Rapisarda E, Bettinardi V, Thielemans K. et al. Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET. Phys Med Biol 2010; 55: 4131-4151.
  • 70 Sattler B, Lee JA, Lonsdale M. et al. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning. Radiother Oncol 2010; 96: 288-297.
  • 71 Schaefer A, Kremp S, Hellwig D. et al. A contrast-oriented algorithm for FDG-PE T-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008; 35: 1989-1999.
  • 72 Seierstad T, Stranden E, Bjering K. et al. Doses to nuclear technicians in a dedicated PET/CT centre utilising 18F fluorodeoxyglucose (FDG). Radiat Prot Dosimetry 2007; 123: 246-249.
  • 73 Skerl D, Likar B, Fitzpatrick JM. et al. Comparative evaluation of similarity measures for the rigid registration of multi-modal head images. Phys Med Biol 2007; 52: 5587-5601.
  • 74 Slomka PJ. Software approach to merging molecular with anatomic information. J Nucl Med 2004; 45 (Suppl. 01) 36S-45S.
  • 75 Söhn M, Weinmann M, Alber M. Intensity-modulated radiotherapy optimization in a quasi-periodically deforming patient model. Int J Radiat Oncol Biol Phys 2009; 75: 906-914.
  • 76 Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumour imaging. J Nucl Med 2007; 48: 932-945.
  • 77 Souvatzoglou M, Bengel F, Busch R. et al. Attenuation correction in cardiac PET/CT with three different CT protocols: a comparison with conventional PET. Eur J Nucl Med Mol Imaging 2007; 34: 1991-2000.
  • 78 Stergar H, Krause BJ, Eschmann SM. et al. Lesion concordance, image quality and artefacts in PET/CT: results of a multicenter study. Nuklearmedizin 2010; 49: 129-137.
  • 79 Thorwarth D, Geets X, Paiusco M. Physical radiotherapy treatment planning based on functional PET/CT data. Radiother Oncol 2010; 96: 317-324.
  • 80 Thorwarth D, Schaefer A. Functional target volume delineation for radiation therapy on the basis of positron emission tomography and the correlation with histopathology. Q J Nucl Med Mol Imaging 2010; 54: 490-499.
  • 81 Townsend DW, Carney JPJ, Yap JT. et al. PET/CT today and tomorrow. J Nucl Med 2004; 45 (Suppl. 01) 4S-14S.
  • 82 Townsend DW. Multimodality imaging of structure and function. Phys Med Biol 2008; 53: R1-R39.
  • 83 Van Baardwijk A, Bosmans G, Boersma L. et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumour and involved nodal volumes. Int J Radiat Oncol Biol Phys 2007; 68: 771-778.
  • 84 Van Dalen JA, Hoffmann AL, Dicken V. et al. A novel iterative method for lesion delineation and volumetric quantification with FDG PET. Nucl Med Commun 2007; 28: 485-493.
  • 85 Vanderhoek M, Perlman SB, Jeraj R. Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med 2012; 53: 4-11.
  • 86 Van Lin EN, van der Vight L, Huizenga H. et al. Set-up improvement in head and neck radiotherapy using a 3D off-line EPID-based correction protocol and a customised head and neck support. Radiother Oncol 2003; 68: 137-148.
  • 87 Vogel WV, Oyen WJ, Barentsz JO. et al. PET/CT: panacea, redundancy, or something in between?. J Nucl Med 2004; 45 (Suppl. 01) 15S-24S.
  • 88 Vogel WV, Schinagl DA, Van Dalen JA. et al. Validated image fusion of dedicated PET and CT for external beam radiation and therapy in the head and neck area. Q J Nucl Med Mol Imaging 2008; 52: 74-83.
  • 89 Wanet M, Lee JA, Weynand B. et al. Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: A comparison with threshold-based approaches, CT and surgical specimens. Radiother Oncol 2011; 98: 117-125.
  • 90 Weigert M, Pietrzyk U, Muller S. et al. Whole-body PET/CT imaging: combining software- and hardware-based co-registration. Z Med Phys 2008; 18: 59-66.