Nuklearmedizin 2014; 53(03): 117-122
DOI: 10.3413/Nukmed-0572-13-03
Original article
Schattauer GmbH

Early dynamic 18F-FDG PET/CT to diagnose chronic osteomyelitis following lower extremity fractures

A pilot studyFrühe dynamische PET/CT-Aufnahmen zur Diagnostik der chronischen Osteomyelitis nach Fraktur der unteren Extremität PilotstudiePilotstudie
F. F. Stecker
1   Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
,
J.-H. Schierz
1   Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
,
T. Opfermann
1   Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
,
D. Driesch
2   BioControl Jena GmbH, Jena, Germany
,
G. O. Hofmann
3   Department of Trauma and Reconstructive Surgery, Bergmannstrost Hospital Halle, Halle (Saale), Germany
4   Department of Trauma, Hand and Reconstructive Surgery, University Hospital Jena, Germany
,
T. Winkens
1   Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
,
M. Freesmeyer
1   Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
› Author Affiliations
Further Information

Publication History

received: 17 March 2013

accepted in revised form: 10 June 2013

Publication Date:
02 January 2018 (online)

Summary

Aim: The study investigates whether early dynamic PET/CT (edPET/CT) using 18F-fluoro- deoxyglucose (FDG) discriminates between affected versus non-affected sites in patients with complicated, protracted fracture healing and suspected COM in the lower extremities. Patients, methods: In nine consecutive patients (1 woman, 8 men; age 54 ± 13 years), before standard late FDG-PET/CT, altogether 10 edFDG-PET/CT examinations were performed in list mode over 5 min starting with radiopharmaceutical injection. Eight consecutive time intervals (frames), four 15-s, then four 60-s, were reconstructed. For every patient, several volumes-of-interest were selected. To measure early FDG influx and accumulation, maximum and mean ed standardized uptake values (respectively, ed SUVmax, edSUVmean) were calculated in each volume-of-interest during each frame. Results were compared between affected and non-affected (contralateral) bone. Results: Starting in the 31-45s frame, the affected bone area showed significantly higher ed- SUVmax and edSUVmean than did the healthy contralateral region. In conventional PET/CT, affected bone areas also significantly differed from non-affected contralateral regions. Conclusion: This pilot study suggests that edFDG- PET may offer a less time consuming add on to standard FDG-PET/CT while being equally accurate. The results should be validated pros- pectively in larger trials.

Zusammenfassung

Ziel: Untersucht wurde, ob mit frühen dynamischen PET/CT-Aufnahmen (edPET/CT) unter Verwendung von 18F-Fluordesoxyglukose (FDG) bei Patienten mit kompliziertem, verzögertem Heilungsverlauf nach Fraktur der unteren Extremität zwischen betroffener und nicht betroffener Seite unterschieden werden kann. Patienten, Methoden: Bei neun konsekutiven Patienten (1 Frau, 8 Männer; Alter 54 ± 13) wurden vor einer Standard-PET/CT- Untersuchung 10 edPET/CT-Studien über 5 Minuten mittels List-Mode durchgeführt. Es erfolgte die Rekonstruktion von acht konsekutiven Zeitintervallen, vier 15-s und anschließend vier 60-s Intervalle. Zur Quantifizierung der frühen Anflutung und Anreicherung wurden in jedem Zeitintervall der maximale und mittlere ed-standardized uptake value (edSUVmax, edSUVmean) mit Hilfe von VOI (volume of interest) ermitttelt. Der Vergleich der betroffenen erfolgte mit der nicht betroffenen kontralateralen Extremität. Ergebnisse: Das betroffene Knochenareal zeigte bereits ab dem Zeitintervall 31-45s signifikant höhere edSUVmax und edSUVmean als die gesunde kontralaterale Seite. Im Standard- PET/CT konnte ebenfalls ein signifikanter Unterschied zwischen betroffener und gesunder Seite festgestellt werden. Schlussfolgerung: Die Ergebnisse dieser Pilotstudie lassen vermuten, dass edPET mit FDG eine schnellere aber ebenso präzise Zusatzuntersuchung zum Standard FDG-PET/CT darstellt. Das Potenzial sollte in einer prospektiven Studie mit größeren Fallzahlen validiert werden.

 
  • References

  • 1 Bernstine H, Braun M, Yefremov N. et al. FDG PET/CT early dynamic blood flow and late standardized uptake value determination in hepatocellular carcinoma. Radiology 2011; 260: 503-510.
  • 2 Büll U, Schicha H, Biersack H-J. et al. Nuklearmedizin.. Stuttgart: Thieme; 2001
  • 3 El-Maghraby TA, Moustafa HM, Pauwels EK. Nuclear medicine methods for evaluation of skeletal infection among other diagnostic modalities. Q J Nucl Med Mol Imaging 2006; 50: 167-192.
  • 4 Freesmeyer M, Lopatta E, Schierz JH. et al. Early dynamic PET imaging shows hypervascularization as exact as contrast-enhanced MR. Nuklearmedizin 2012; 51: N10-N11.
  • 5 Goebel M, Rosa F, Tatsch K. et al. Diagnostik der chronischen Osteitis des Extremitätenskeletts: Stellenwert der 18F-FDG-PET. Unfallchirurg 2007; 10: 859-866.
  • 6 Gross T, Kaim AH, Regazzoni P, Widmer AF. Current concepts in posttraumatic osteomyelitis: a diagnostic challenge with new imaging options. J Trauma 2002; 52: 1210-1219.
  • 7 Guhlmann A, Brecht-Krauss D, Suger G. et al. Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology 1998; 206: 749-754.
  • 8 Hartmann A, Eid K, Dora C. et al. Diagnostic value of 18F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. Eur J Nucl Med Mol Imaging 2007; 34: 704-714.
  • 9 Hofmann GO. Infektionen der Knochen und Gelenke.. Urban & Fischer; 2004
  • 10 Kaim A, Ledermann HP, Bongartz G. et al. Chronic post-traumatic osteomyelitis of the lower extremity: comparison of magnetic resonance imaging and combined bone scintigraphy/immunoscintigraphy with radiolabelled monoclonal antigranulocyte antibodies. Skeletal Radiol 2000; 29: 378-386.
  • 11 Lew DP, Waldvogel FA. Osteomyelitis. N Engl J Med 1997; 336: 999-1007.
  • 12 Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ. Radionuclide bone imaging: an illustrative review. Radiographics 2003; 23: 341-358.
  • 13 Mader JT, Ortiz M, Calhoun JH. Update on the diagnosis and management of osteomyelitis. Clin Podiatr Med Surg 1996; 13: 701-724.
  • 14 Mullani NA, Herbst RS, O’Neil RG. et al. Tumor blood flow measured by PET dynamic imaging of first-pass 18F-FDG uptake: a comparison with 15O-labeled water-measured blood flow. J Nucl Med 2008; 49: 517-523.
  • 15 Pineda C, Vargas A, Rodriguez AV. Imaging of osteomyelitis: current concepts. Infect Dis Clin North Am 2006; 20: 789-825.
  • 16 R DCT. R: A language and environment for statistical computing.. Vienna, Austria: R Foundation for Statistical Computing; 2011
  • 17 Schauwecker DS. The scintigraphic diagnosis of osteomyelitis. AJR Am J Roentgenol 1992; 158: 9-18.
  • 18 Schierz JH, Opfermann T, Steenbeck J. et al. Early Dynamic 18F-FDG PET to Detect Hyperperfusion in Hepatocellular Carcinoma Liver Lesions. J Nucl Med 2013; 54: 848-854.
  • 19 Schiesser M, Stumpe KD, Trentz O. et al. Detection of metallic implant-associated infections with FDG PET in patients with trauma: correlation with microbiologic results. Radiology 2003; 226: 391-398.
  • 20 Schmidt HG, Tiemann AH, Braunschweig R. et al. Zur Definition der Diagnose Osteomyelitis – Osteomyelitis-Diagnose-Score (ODS). Z Orthop Unfall 2011; 149: 449-460.
  • 21 Termaat MF, Raijmakers PG, Scholten HJ. et al. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am 2005; 87: 2464-2471.
  • 22 Wheat J. Diagnostic strategies in osteomyelitis. Am J Med 1985; 78: 218-224.
  • 23 Zhuang H, Duarte PS, Pourdehand M. et al. Exclusion of chronic osteomyelitis with 18F fluorodeoxyglucose positron emission tomographic imaging. Clin Nucl Med 2000; 25: 281-284.