Methods Inf Med 2017; 56(02): 112-116
DOI: 10.3414/ME16-02-0006
Paper
Schattauer GmbH

Eye Movement Analysis and Cognitive Assessment

The Use of Comparative Visual Search Tasks in a Non-immersive VR Application
Pedro J. Rosa
1   ECPV, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
5   GIINCO – Grupo Internacional de Investigación Neuro-Conductual, Barranquilla, Colombia
,
Pedro Gamito
1   ECPV, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
2   COPELABS – Cognition and People-centric Computing Laboratories, Lisbon, Portugal
,
Jorge Oliveira
1   ECPV, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
2   COPELABS – Cognition and People-centric Computing Laboratories, Lisbon, Portugal
,
Diogo Morais
1   ECPV, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
2   COPELABS – Cognition and People-centric Computing Laboratories, Lisbon, Portugal
,
Matthew Pavlovic
6   University of Michigan, Michigan, USA
,
Olivia Smyth
6   University of Michigan, Michigan, USA
,
Inês Maia
1   ECPV, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
,
Tiago Gomes
1   ECPV, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
› Author Affiliations
Further Information

Publication History

received: 06 March 2016

accepted: 26 October 2016

Publication Date:
25 January 2018 (online)

Summary

Background: An adequate behavioral response depends on attentional and mnesic processes. When these basic cognitive functions are impaired, the use of non-immersive Virtual Reality Applications (VRAs) can be a reliable technique for assessing the level of impairment. However, most non-immersive VRAs use indirect measures to make inferences about visual attention and mnesic processes (e.g., time to task completion, error rate).

Objectives: To examine whether the eye movement analysis through eye tracking (ET) can be a reliable method to probe more effectively where and how attention is deployed and how it is linked with visual working memory during comparative visual search tasks (CVSTs) in non-immersive VRAs.

Methods: The eye movements of 50 healthy participants were continuously recorded while CVSTs, selected from a set of cognitive tasks in the Systemic Lisbon Battery (SLB). Then a VRA designed to assess of cognitive impairments were randomly presented.

Results: The total fixation duration, the number of visits in the areas of interest and in the interstimulus space, along with the total execution time was significantly different as a function of the Mini Mental State Examination (MMSE) scores.

Conclusions: The present study demonstrates that CVSTs in SLB, when combined with ET, can be a reliable and unobtrusive method for assessing cognitive abilities in healthy individuals, opening it to potential use in clinical samples.

 
  • References

  • 1 Neguţ A. Cognitive assessment and rehabilitation in virtual reality: Theoretical review and practical implications. Romanian Journal of Applied Psychology. 2014; 16 (01) 1-7.
  • 2 Parsey CM, Schmitter-Edgecombe M. Applications of technology in neuropsychological assessment. Clin Neuropsychol. 2013; 27 (08) 1328-1361.
  • 3 Alankus G, Lazar A, May M, Kelleher C. Towards Customizable Games for Stroke Rehabilitation. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems [Internet].. New York, NY, USA: ACM; 2010: 2113-2122.
  • 4 Gamito P, Oliveira J, Caires C, Morais D, Brito R, Lopes P. et al. Virtual Kitchen Test. Assessing frontal lobe functions in patients with alcohol dependence syndrome. Methods Inf Med. 2015; 54 (02) 122-126.
  • 5 Rosa PJ, Gamito P, Oliveira J, Pavlovic M, Smyth O. Show me your eyes! The combined use of eye tracking and virtual reality applications for cognitive assessment. Proceedings of the 3rd 2015 Workshop on ICTs for Improving Patients Rehabilitation Research Techniques, 2015, October 1. Lisbon. New York: ACM; 2015: 135-138.
  • 6 Lam YS, Man DWK, Tam SF, Weiss PL. Virtual reality training for stroke rehabilitation. NeuroRehabilitation. 2006; 21 (03) 245-253.
  • 7 Rego P, Moreira PM, Reis LP. Serious Games for Rehabilitation A Survey and a Classification Towards a Taxonomy. 5th Iber Conf Inf Syst Technol. 2010 Nov. 1-6.
  • 8 Ortiz-Catalan M, Nijenhuis S, Ambrosch K, Bovend’Eerdt T, Koenig S, Lange B. Virtual Reality. Pons L, Torricelli D. Emerging Therapies in Neurorehabilitation, Biosystems & Biorobotics.. Berlin, Heidelberg: Springer-Verlag; 2014: 249-265.
  • 9 Kober SE, Kurzmann J, Neuper C. Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: an EEG study. International Journal of Psychophysiology. 2012; 83 (03) 365-374.
  • 10 Moro BS, Bisconti S, Muthalib M, Spezialetti M, Cutini S, Ferrari M. et al. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: A functional near-infrared spectroscopy study. Neuroimage; 2014; 85: 451-460.
  • 11 Slobounov SM, Ray W, Johnson B, Slobounov E, Newell KM. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study. International Journal of Psychophysiology. 2015; 95 (03) 254-260.
  • 12 Carrieri M, Petracca A, Lancia S, Moro BS, Brigadoi S, Spezialetti M. et al. Prefrontal Cortex Activation Upon a Demanding Virtual Hand-Controlled Task: A New Frontier for Neuroergonomics. Frontiers in Human Neuroscience. 2016; 10: 53.
  • 13 Moro BS, Carrieri M, Avola D, Brigadoi S, Lancia S, Petracca A. et al. A novel semi-immersive virtual reality visuo-motor task activates ventrolateral prefrontal cortex: a functional near-infrared spectroscopy study. Journal of Neural Engineering. 2016; 13 (03) 036002.
  • 14 Ren S, Babiloni F, Thakor NV, Bezerianos A. Real-Time Workload Assessment Using EEG Signals in Virtual Reality Environment. XIV Mediterranean Conference on Medical and Biological Engineering and Computing. 2016
  • 15 Rosa PJ, Gamito P, Oliveira J, Morais D. Attentional orienting to biologically fear-relevant stimuli: data from eye tracking using the continual alternation flicker paradigm. Journal of Eye Tracking, Emotion and Cognition. 2011; 1: 22-29.
  • 16 Gamito P, Oliveira J, Baptista A, Morais D, Lopes P, Rosa P. et al. Eliciting nicotine craving with virtual smoking cues. Cyberpsychol Behav Soc Netw. 2014; 17 (08) 556-561.
  • 17 Cipresso P, Serino S, Gaggioli A, Albani G, Riva G. Contactless bio-behavioral technologies for virtual reality. Stud Health Technol Inform. 2013; 191: 149-153.
  • 18 Rosa PJ, Esteves F, Arriaga P. Effects of fear-relevant stimuli on attention: integrating gaze data with subliminal exposure. Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on.. Lisboa: 2014: 1-6.
  • 19 Tatler BW, Kirtley C, Macdonald RG, Mitchell KMA, Savage SW. The Active Eye: Perspectives on Eye Movement Research. Horsley M, Eliot M, Knight BA, Reilly R. Current Trends in Eye Tracking Research.. Springer; 2014: 3-16.
  • 20 Rosa PJ, Esteves F, Arriaga P. Beyond Traditional Clinical Measurements for Screening Fears and Phobias. Instrumentation and Measurement, IEEE Transactions on. 2015; 64 (12) 3396-3404.
  • 21 Mele ML, Federici S. A psychotechnological review on eye-tracking systems: towards user experience. Disabil Rehabil Assist Technol. 2012; 7 (04) 261-281.
  • 22 Vidal M, Turner J, Bulling A, Gellersen H. Wearable eye tracking for mental health monitoring. Comput Commun. 2012; 35 (11) 1306-1311.
  • 23 Frutos-Pascual M, Garcia-Zapirain B. Assessing Visual Attention Using Eye Tracking Sensors in Intelligent Cognitive Therapies Based on Serious Games. Sensors. 2015; 15 (05) 11092.
  • 24 Galpin AJ, Underwood G. Eye movements during search and detection in comparative visual search. Percept Psychophys. 2005; 67 (08) 1313-1331.
  • 25 Irwin DE, Zelinsky GJ. Eye movements and scene perception: memory for things observed. Percept Psychophys. 2002; 64 (06) 882-895.
  • 26 Pomplun M, Sichelschmidt L, Wagner K, Clermont T, Rickheit G, Ritter H. Comparitive visual search: A difference that makes a difference. Cognitive Science. 2001; 25: 3-36.
  • 27 Sharples S, Cobb S, Moody A, Wilson JR. Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays. 2008; 29 (02) 58-69.
  • 28 Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975; 12 (03) 189-198.
  • 29 American Psychological Association. Ethical principles of psychologists and code of conduct [cited 2016 Jan 11]. Available from: http://apa.org/ethics/code/index.aspx.
  • 30 Gottlob LR. Aging and comparative search for feature differences. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2006; 13 3-4 435-457.
  • 31 Rosa PJ, Caires C, Costa L, Rodelo L, Pinto L. Affective And Psychophysiological Responses To Erotic Stimuli: Does Color Matter?. Gamito P, Rosa PJ. I see me, you see me: inferring cognitive and emotional processes from gazing behavior.. Newcastle upon Tyne: Cambridge Scholars Publishing; 2014: 171-190.
  • 32 Rosa PJ. What do your eyes say? Bridging eye movements to consumer behavior. International Journal of Psychological Research. 2015; 8 (02) 91-104.
  • 33 Stern JA, Boyer D, Schroeder D. Blink rate: a possible measure of fatigue. Hum Factors. 1994; 36 (02) 285-297.
  • 34 Sole Puig M, Perez Zapata L, Aznar-Casanova JA, Super H. A role of eye vergence in covert attention. PLoS One. 2013; 8 (01) e52955.