Skip to main content

Open Access Alterations of Axis Inhibition Protein 1 (AXIN1) in Hepatitis B Virus-Related Hepatocellular Carcinoma and Overexpression of AXIN1 Induces Apoptosis in Hepatocellular Cancer Cells

Axis inhibition protein 1 (AXIN1) is a negative regulator of Wnt/β-catenin signaling via regulating the level of β-catenin. However, the role of AXIN1 in the tumorigenesis and progression of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is less clear. PCR sequence analysis, immunohistochemistry, and Western blot were performed on 22 HBV-related HCC samples and corresponding nontumor liver tissues to detect variants in AXIN1 gene and the expression level of AXIN1. Human hepatoma cell lines SNU475 and SNU423 were transfected with pCDNA3.1-AXIN1-myc or AXIN1 G425S-myc mutant. The growth curve and apoptosis rate of cell lines, phosphorylation of β-catenin, and cell cycle regulatory proteins depending on β-catenin transcriptional activity were detected. We identified four mutations of AXIN1 in 22 primary HBV-related HCCs and demonstrated a lower expression of AXIN1 in HBV-related HCC tissues than that in paired adjacent nontumor tissues. Overexpression of AXIN1 wild-type but not AXIN1 mutant inhibited the growth of HCC cell lines, accelerated their apoptosis, and negatively regulated β-catenin-dependent transcriptional activity. Our study revealed that alterations of AXIN1 were involved in HBV-related HCC. Overexpression of AXIN1 but not AXIN1 mutant negatively regulated β-catenin-dependent transcriptional activity and downregulated the level of cell cycle regulatory proteins, suggesting that AXIN1 may be a potential target for gene therapy of primary HCC.

Keywords: Axis inhibition protein 1 (AXIN1); Gene therapy; Hepatocellular carcinoma (HCC); Mutation

Document Type: Research Article

Affiliations: Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China

Publication date: 03 June 2013

More about this publication?
  • Formerly: Oncology Research Incorporating Anti-Cancer Drug Design
    Oncology Research Featuring Preclinical and Clincal Cancer Therapeutics publishes research of the highest quality that contributes to an understanding of cancer in areas of molecular biology, cell biology, biochemistry, biophysics, genetics, biology, endocrinology, and immunology, as well as studies on the mechanism of action of carcinogens and therapeutic agents, reports dealing with cancer prevention and epidemiology, and clinical trials delineating effective new therapeutic regimens.

    From Volume 23, Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics is Open Access under the terms of the Creative Commons CC BY-NC-ND license.

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content