Skip to main content
Log in

Time-based forgetting in visual working memory reflects temporal distinctiveness, not decay

  • Brief Report
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

Is forgetting from working memory (WM) better explained by decay or interference? The answer to this question is the topic of an ongoing debate. Recently, a number of studies showed that performance in tests of visual WM declines with an increasing unfilled retention interval. This finding was interpreted as revealing decay. Alternatively, it can be explained by interference theories as an effect of temporal distinctiveness. According to decay theories, forgetting depends on the absolute time elapsed since the event to be retrieved. In contrast, temporal distinctiveness theories predict that memory depends on relative time, that is, the time since the to-be-retrieved event relative to the time since other, potentially interfering events. In the present study, we contrasted the effects of absolute time and relative time on forgetting from visual WM, using a continuous color recall task. To this end, we varied the retention interval and the inter-trial interval. The error in reporting the target color was a function of the ratio of the retention interval to the inter-trial interval, as predicted by temporal distinctiveness theories. Mixture modeling revealed that lower temporal distinctiveness produced a lower probability of reporting the target, but no changes in its precision in memory. These data challenge the role of decay in accounting for performance in tests of visual WM, and show that the relative spacing of events in time determines the degree of interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. To estimate the necessary response time (RT) that would roughly equate the distinctiveness of the short and long RIs, we used RT estimations based on our previous experience with tasks in which similar retention intervals were used.

  2. We used the BayesFactor package (v.0.9.5; R. D. Morey & Rouder, 2013) implemented in R. The anovaBF function was used with its default settings (“medium” prior scale for fixed effects, and “nuisance” prior scale for the random effect).

References

Download references

Author Notes

This research was supported by grants from the Forschungskredit from the University of Zurich (project FK-13-083) to Alessandra S. Souza, and from the Swiss National Science Foundation (project 100014_149193) to Klaus Oberauer. We thank Stefanie Colaço for collecting the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra S. Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, A.S., Oberauer, K. Time-based forgetting in visual working memory reflects temporal distinctiveness, not decay. Psychon Bull Rev 22, 156–162 (2015). https://doi.org/10.3758/s13423-014-0652-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13423-014-0652-z

Keywords

Navigation