Warning: fopen(/home/virtual/enm-kes/journal/upload/ip_log/ip_log_2024-03.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 88 Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 89 Indications for Fine Needle Aspiration in Thyroid Nodules
Skip Navigation
Skip to contents

Endocrinol Metab : Endocrinology and Metabolism

clarivate
OPEN ACCESS
SEARCH
Search

Articles

Page Path
HOME > Endocrinol Metab > Volume 28(2); 2013 > Article
Review Article
Indications for Fine Needle Aspiration in Thyroid Nodules
Jin Young Kwak
Endocrinology and Metabolism 2013;28(2):81-85.
DOI: https://doi.org/10.3803/EnM.2013.28.2.81
Published online: June 18, 2013

Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.

Corresponding author: Jin Young Kwak. Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea. Tel: +82-2-2228-7413, Fax: +82-2-393-3035, docjin@yuhs.ac

Copyright © 2013 Korean Endocrine Society

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 5,330 Views
  • 51 Download
  • 22 Web of Science
  • 21 Crossref
  • Thyroid nodules are a common clinical problem with the widespread use of ultrasonography. Fine needle aspiration (FNA) is the mainstay for diagnosing a thyroid malignancy. There have been several guidelines on when to perform FNA in thyroid nodules. This review is based on several published recommendations and helps physicians easily understand the factors favoring FNA.
With the increase in worldwide use of neck ultrasonography (US), the detection of thyroid nodules has rapidly increased to up to 67% of patients who undergo neck US [1]. Among them, only 4% to 7% of patients have palpable nodules on physical examination [2]. In South Korea, the yearly incidence has rapidly increased from 6.3 per 100,000 in 1999 to 47.5 per 100,000 in 2009 [3].
Fine needle aspiration (FNA) is the standard tool for detecting thyroid cancer and has led to a decrease in the number of thyroid surgeries and an increase in cancer detected during thyroid surgery [4-6]. The overall incidence of thyroid cancer is about 9.2% to 13% in patients with thyroid nodules who undergo FNA [7-9]. Also, the high detection rate of US makes FNA for all US-detected nodules impractical, if not impossible. Therefore, deciding which nodules should be biopsied is an important medical issue to ensure that no clinically significant thyroid cancers are missed. There are several guidelines for the indications of FNA in thyroid nodules [10-14]. This work demonstrates these guidelines and compares their merits.
Size
Thyroid nodule size itself is not a predictive factor of malignancy [7,9-11]. Nevertheless, most guidelines recommend FNA for nodules larger than 10 mm [11,13,15], unless patients have high risk factors [15] or suspicious US features [13]. High risk factors include a history of thyroid cancer in one or more first-degree relatives, a history of exposure to external beam radiation or ionizing radiation in childhood or adolescence, prior hemithyroidectomy with discovery of thyroid cancer, fluorodeoxyglucose (18F) avidity on positron emission tomography scanning, multiple endocrine neoplasia (MEN) 2/familial medullary thyroid cancer-associated RET proto-oncogene mutation, or calcitonin levels >100 pg/mL [15]. Based on the revised American Thyroid Association (ATA) guidelines, FNA is recommended in thyroid nodules larger than 5 mm with suspicious US features in high risk patients. This guideline does not recommend FNA in thyroid nodules smaller than 5 mm. The size criterion for FNA is slightly different between the ATA and the American Association of Clinical Endocrinologists/Associazione Medici Endocrinologi (AACE/AME) guidelines. The AACE/AME guidelines suggests that FNA be performed regardless of lesion size when patients have a history of neck irradiation, a family history of medullary thyroid cancer or MEN2, extracapsular growth, or metastatic cervical lymph nodes [13]. The Korean Society of Thyroid Radiology (KSThR) has an even more strict size criteria [14]. They recommend FNA in thyroid nodules larger than 5 mm with suspicious US features, even when a patient does not have high risk factors. They also recommend selective FNA in thyroid nodules smaller than 5 mm according to risk factors and according to the performing radiologist's experience.
This diversity in size criteria stems from the uncertainty regarding the clinical meaning of early diagnosis for tiny thyroid cancers in patients at low risk. The rationale behind the recommendations for FNA in larger nodules is based on a high rate of false positives and nondiagnostic cytology in thyroid nodules smaller than 5 mm [16,17].
Number of nodules
Traditionally, single nodules are considered to be at more risk for malignancy than multiple nodules. However, patients with multiple thyroid nodules do not have a decreased likelihood of thyroid cancer when compared to patients with solitary nodules [7,18]. The incidence of thyroid cancer in patients with multiple nodules is the same as that in patients with a solitary nodule, although the cancer rate per nodule decreases in patients with multiple nodules [19]. Thus, an FNA operator should focus on the US features of each individual nodule to decide whether or not to perform FNA.
Interval growth
Nodule growth is defined when a nodule shows more than a 50% increase in volume or a 20% increase in at least two nodule dimensions with a minimal increase of 2 mm in solid or in the solid portion of mixed nodules [15] in order to minimize interobserver bias of each measurement (Fig. 1) [20]. Although the growth itself is not a pathognomonic feature of malignancy [21] and the risk of malignancy is very low in a thyroid nodule with benign cytology [13], repeated FNA is usually indicated in nodules that increase in size [14,15].
US features

Internal content of nodules

Depending on the components of the internal part of the thyroid nodule, nodules can be classified into cystic, mixed (both solid and cystic components), and solid nodules [22-24]. In cases where microcysts are aggregated in mixed nodules, the nodule is further defined as spongiform [25].
An anechoic cyst is definitely benign and can contain hyperechoic spots with comet tail artifacts. The comet tail artifacts are related to microcrystals inside colloid cysts which should be differentiated from the microcalcifications of malignant nodules.
Solidity itself is not considered a suspicious US feature. However, several guidelines recommend FNA in solid nodules larger than 10 mm and mixed echoic nodules larger than 15 mm with some variation in the defining size depending on the guidelines used [11,15].

Echogenicity

Traditionally, hypoechogenicity is a well-known US feature related to malignancy, and most thyroid carcinomas are hypoechoic compared with surrounding thyroid parenchyma [10,26,27]. Hypoechogenicity is a very sensitive sign of malignancy but is less specific than other features. Marked hypoechogenicity is defined as decreased echogenicity less than that of the adjacent strap muscle [10] and is a specific sign of thyroid cancer.
The ATA and AACE/AME consider hypoechogenicity as a suspicious US feature [13,15]. In comparison, the KSThR considers marked hypoechogenicity as a suspicious US feature [14].

Calcification

Microcalcification is a very specific US finding that suggests thyroid malignancy [11,13,15,22,24]. It is defined as a prominent echogenic focus with or without posterior shadowing. Unlike other reports [11,13,15,22,24], the KSThR considers both microcalcification and macrocalcification as suspicious US features [14].

Margin

The analysis of nodule margins is very subjective, resulting in very low interobserver agreement [28-32]. Microlobulated, irregular, infiltrative, or speculated margins have been considered as suspicious US features.

Shape

A taller than wide shape was first described by Kim et al. [10], after which it has been considered a suspicious US feature [13-15]. Although the ATA guidelines suggests that a taller than wide shape on transverse view alone is a suspicious US feature, a recent study demonstrates that a taller than wide shape in either the transverse or longitudinal plane can be accurate and sensitive for predicting thyroid malignancy [33].

Vascularity

Intranodular and chaotic vascularity have been considered as suspicious US features [13,15]. Recently, Moon et al. [34] published a study with color Doppler US performed on 1,083 nodules and showed that there was actually more blood flow distribution in benign nodules than in malignant nodules, and that vascularity was not helpful in differentiating benign and malignant nodules. The KSThR does not consider vascular pattern as a suspicious US feature [14].

Combinations of several suspicious US features

All of the US features explained thus far cannot alone diagnose thyroid nodules. The risk of malignancy increases as the number of suspicious US features increases (Fig. 2) [13,24].
Current guidelines vary on how to differentiate thyroid nodules into benign or malignant nodules through US. Reported guidelines show substantial overlap in what defines benign and malignant nodules, and what might be considered benign by one recommendation might be considered malignant by another. Another issue is that US assessment is subjective and operator-dependent. Therefore, US performers should continuously compare their readings with confirmed diagnostic results to maintain and improve proficient diagnostic abilities.

No potential conflict of interest relevant to this article was reported.

  • 1. Tan GH, Gharib H. Thyroid incidentalomas: management approaches to nonpalpable nodules discovered incidentally on thyroid imaging. Ann Intern Med 1997;126:226–231. ArticlePubMed
  • 2. Hegedus L. Clinical practice. The thyroid nodule. N Engl J Med 2004;351:1764–1771. ArticlePubMed
  • 3. Jung KW, Park S, Kong HJ, Won YJ, Lee JY, Seo HG, Lee JS. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2009. Cancer Res Treat 2012;44:11–24. ArticlePubMedPMCPDF
  • 4. Gharib H, Goellner JR. Fine-needle aspiration biopsy of the thyroid: an appraisal. Ann Intern Med 1993;118:282–289. ArticlePubMed
  • 5. Hamberger B, Gharib H, Melton LJ 3rd, Goellner JR, Zinsmeister AR. Fine-needle aspiration biopsy of thyroid nodules. Impact on thyroid practice and cost of care. Am J Med 1982;73:381–384. ArticlePubMed
  • 6. Mittendorf EA, Tamarkin SW, McHenry CR. The results of ultrasound-guided fine-needle aspiration biopsy for evaluation of nodular thyroid disease. Surgery 2002;132:648–653. ArticlePubMed
  • 7. Papini E, Guglielmi R, Bianchini A, Crescenzi A, Taccogna S, Nardi F, Panunzi C, Rinaldi R, Toscano V, Pacella CM. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 2002;87:1941–1946. ArticlePubMed
  • 8. Hegedus L, Bonnema SJ, Bennedbaek FN. Management of simple nodular goiter: current status and future perspectives. Endocr Rev 2003;24:102–132. ArticlePubMedPDF
  • 9. Nam-Goong IS, Kim HY, Gong G, Lee HK, Hong SJ, Kim WB, Shong YK. Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: correlation with pathological findings. Clin Endocrinol (Oxf) 2004;60:21–28. ArticlePubMed
  • 10. Kim EK, Park CS, Chung WY, Oh KK, Kim DI, Lee JT, Yoo HS. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. AJR Am J Roentgenol 2002;178:687–691. ArticlePubMed
  • 11. Frates MC, Benson CB, Charboneau JW, Cibas ES, Clark OH, Coleman BG, Cronan JJ, Doubilet PM, Evans DB, Goellner JR, Hay ID, Hertzberg BS, Intenzo CM, Jeffrey RB, Langer JE, Larsen PR, Mandel SJ, Middleton WD, Reading CC, Sherman SI, Tessler FN. Society of Radiologists in Ultrasound. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Radiology 2005;237:794–800. ArticlePubMed
  • 12. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Sherman SI, Tuttle RM. American Thyroid Association Guidelines Taskforce. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2006;16:109–142. ArticlePubMed
  • 13. Gharib H, Papini E, Valcavi R, Baskin HJ, Crescenzi A, Dottorini ME, Duick DS, Guglielmi R, Hamilton CR Jr, Zeiger MA, Zini M. AACE/AME Task Force on Thyroid Nodules. American Association of Clinical Endocrinologists and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocr Pract 2006;12:63–102. ArticlePDF
  • 14. Moon WJ, Baek JH, Jung SL, Kim DW, Kim EK, Kim JY, Kwak JY, Lee JH, Lee YH, Na DG, Park JS, Park SW. Korean Society of Thyroid Radiology (KSThR). Korean Society of Radiology. Ultrasonography and the ultrasound-based management of thyroid nodules: consensus statement and recommendations. Korean J Radiol 2011;12:1–14. ArticlePubMedPMC
  • 15. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI, Steward DL, Tuttle RM. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:1167–1214. ArticlePubMed
  • 16. Mazzaferri EL, Sipos J. Should all patients with subcentimeter thyroid nodules undergo fine-needle aspiration biopsy and preoperative neck ultrasonography to define the extent of tumor invasion? Thyroid 2008;18:597–602. ArticlePubMed
  • 17. Moon HJ, Son E, Kim EK, Yoon JH, Kwak JY. The diagnostic values of ultrasound and ultrasound-guided fine needle aspiration in subcentimeter-sized thyroid nodules. Ann Surg Oncol 2012;19:52–59. ArticlePubMedPDF
  • 18. Marqusee E, Benson CB, Frates MC, Doubilet PM, Larsen PR, Cibas ES, Mandel SJ. Usefulness of ultrasonography in the management of nodular thyroid disease. Ann Intern Med 2000;133:696–700. ArticlePubMed
  • 19. Frates MC, Benson CB, Doubilet PM, Kunreuther E, Contreras M, Cibas ES, Orcutt J, Moore FD Jr, Larsen PR, Marqusee E, Alexander EK. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab 2006;91:3411–3417. ArticlePubMedPDF
  • 20. Brauer VF, Eder P, Miehle K, Wiesner TD, Hasenclever H, Paschke R. Interobserver variation for ultrasound determination of thyroid nodule volumes. Thyroid 2005;15:1169–1175. ArticlePubMed
  • 21. Asanuma K, Kobayashi S, Shingu K, Hama Y, Yokoyama S, Fujimori M, Amano J. The rate of tumour growth does not distinguish between malignant and benign thyroid nodules. Eur J Surg 2001;167:102–105. ArticlePubMed
  • 22. Kwak JY, Jung I, Baek JH, Baek SM, Choi N, Choi YJ, Jung SL, Kim EK, Kim JA, Kim JH, Kim KS, Lee JH, Moon HJ, Moon WJ, Park JS, Ryu JH, Shin JH, Son EJ, Sung JY, Na DG. Korean Society of Thyroid Radiology (KSThR). Korean Society of Radiology. Image reporting and characterization system for ultrasound features of thyroid nodules: multicentric Korean retrospective study. Korean J Radiol 2013;14:110–117. ArticlePubMed
  • 23. Lee MJ, Hong SW, Chung WY, Kwak JY, Kim MJ, Kim EK. Cytological results of ultrasound-guided fine-needle aspiration cytology for thyroid nodules: emphasis on correlation with sonographic findings. Yonsei Med J 2011;52:838–844. ArticlePubMedPMC
  • 24. Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, Jung HK, Choi JS, Kim BM, Kim EK. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 2011;260:892–899. ArticlePubMed
  • 25. Moon WJ, Jung SL, Lee JH, Na DG, Baek JH, Lee YH, Kim J, Kim HS, Byun JS, Lee DH. Thyroid Study Group, Korean Society of Neuro- and Head and Neck Radiology. Benign and malignant thyroid nodules: US differentiation: multicenter retrospective study. Radiology 2008;247:762–770. ArticlePubMed
  • 26. Kim KE, Kim EK, Yoon JH, Han KH, Moon HJ, Kwak JY. Preoperative prediction of central lymph node metastasis in thyroid papillary microcarcinoma using clinicopathologic and sonographic features. World J Surg 2013;37:385–391. ArticlePubMedPDF
  • 27. Kwak JY, Kim EK, Chung WY, Moon HJ, Kim MJ, Choi JR. Association of BRAFV600E mutation with poor clinical prognostic factors and US features in Korean patients with papillary thyroid microcarcinoma. Radiology 2009;253:854–860. ArticlePubMed
  • 28. Park SJ, Park SH, Choi YJ, Kim DW, Son EJ, Lee HS, Yoon JH, Kim EK, Moon HJ, Kwak JY. Interobserver variability and diagnostic performance in US assessment of thyroid nodule according to size. Ultraschall Med 2012;33:E186–E190. ArticlePubMedPDF
  • 29. Kim HG, Kwak JY, Kim EK, Choi SH, Moon HJ. Man to man training: can it help improve the diagnostic performances and interobserver variabilities of thyroid ultrasonography in residents? Eur J Radiol 2012;81:e352–e356. ArticlePubMed
  • 30. Park SH, Kim SJ, Kim EK, Kim MJ, Son EJ, Kwak JY. Interobserver agreement in assessing the sonographic and elastographic features of malignant thyroid nodules. AJR Am J Roentgenol 2009;193:W416–W423. ArticlePubMed
  • 31. Choi SH, Kim EK, Kwak JY, Kim MJ, Son EJ. Interobserver and intraobserver variations in ultrasound assessment of thyroid nodules. Thyroid 2010;20:167–172. ArticlePubMed
  • 32. Park CS, Kim SH, Jung SL, Kang BJ, Kim JY, Choi JJ, Sung MS, Yim HW, Jeong SH. Observer variability in the sonographic evaluation of thyroid nodules. J Clin Ultrasound 2010;38:287–293. ArticlePubMed
  • 33. Moon HJ, Kwak JY, Kim EK, Kim MJ. A taller-than-wide shape in thyroid nodules in transverse and longitudinal ultrasonographic planes and the prediction of malignancy. Thyroid 2011;21:1249–1253. ArticlePubMed
  • 34. Moon HJ, Kwak JY, Kim MJ, Son EJ, Kim EK. Can vascularity at power Doppler US help predict thyroid malignancy? Radiology 2010;255:260–269. ArticlePubMed
Fig. 1
Ultrasonography (US) of growing benign mass in a 40-year-old woman who underwent fine needle aspiration twice. (A) Transverse and (B) longitudinal US images demonstrate a 0.7-cm-sized isoechoic nodule with the cystic portion of the posterior portion of the nodule in the right thyroid gland. (C, D) After 4 years, the nodule was enlarged. The cytology was benign, twice.
enm-28-81-g001.jpg
Fig. 2
Ultrasonography (US) of papillary thyroid cancer in a 60-year-old woman who underwent surgery. (A) Transverse and (B) longitudinal US images demonstrate a 1-cm-sized hypoechoic taller than wide nodule with an irregular margin and internal microcalcifications in the right thyroid gland.
enm-28-81-g002.jpg

Figure & Data

References

    Citations

    Citations to this article as recorded by  
    • Retrospective comparison of individual risk factors hemithyroidectomy and thyroidectomy in patients with papillary carcinoma of the thyroid gland in combination with autoimmune thyroiditis
      E. V. Ryabchenko
      Head and Neck Tumors (HNT).2023; 12(4): 71.     CrossRef
    • Individual risk factors for recurrence after hemithyroidectomy and thyroidectomy in patients with papillary thyroid microcarcinoma in the presence of autoimmune thyroiditis
      E.V. Ryabchenko
      Onkologiya. Zhurnal imeni P.A.Gertsena.2023; 12(3): 20.     CrossRef
    • Diagnostic Accuracy of Five Different Classification Systems for Thyroid Nodules: A Prospective, Comparative Study
      Umut Percem Orhan Soylemez, Nesrin Gunduz
      Journal of Ultrasound in Medicine.2022; 41(5): 1125.     CrossRef
    • Occult Thyroid Carcinoma: A Report of a Rare Case
      一丹 张
      Advances in Clinical Medicine.2022; 12(03): 2249.     CrossRef
    • Assessing Detection Accuracy of Computerized Sonographic Features and Computer-Assisted Reading Performance in Differentiating Thyroid Cancers
      Hao-Chih Tai, Kuen-Yuan Chen, Ming-Hsun Wu, King-Jen Chang, Chiung-Nien Chen, Argon Chen
      Biomedicines.2022; 10(7): 1513.     CrossRef
    • Hydrodissection: A Novel Approach for Safe Core Needle Biopsy of Small High-Risk Subcapsular Thyroid Nodules
      Hojat Ebrahiminik, Hossein Chegeni, Javad Jalili, Rambod Salouti, Hadi Rokni, Afshin Mohammadi, Ali Mosaddegh Khah, Seyed Mohammad Tavangar, Zahra Ebrahiminik
      CardioVascular and Interventional Radiology.2021; 44(10): 1651.     CrossRef
    • TI-RADS Diagnostic Performance: Which Algorithm Is Superior and How Elastography and 4D Vascularity Improve the Malignancy Risk Assessment
      Andreea Borlea, Florin Borcan, Ioan Sporea, Cristina Dehelean, Romeo Negrea, Laura Cotoi, Dana Stoian
      Diagnostics.2020; 10(4): 180.     CrossRef
    • Thyroid Dysfunction and Cytological Patterns among Patients Requested for Thyroid Function Test in an Endemic Goiter Area of Gondar, North West Ethiopia
      Daniel Asmelash, Kumlgn Tesfa, Belete Biadgo
      International Journal of Endocrinology.2019; 2019: 1.     CrossRef
    • Thyroid cancer detection rate and associated risk factors in patients with thyroid nodules classified as Bethesda category III
      Magdalena Mileva, Bojana Stoilovska, Anamarija Jovanovska, Ana Ugrinska, Gordana Petrushevska, Slavica Kostadinova-Kunovska, Daniela Miladinova, Venjamin Majstorov
      Radiology and Oncology.2018; 52(4): 370.     CrossRef
    • Preoperative clinicopathological characteristics of patients with solitary encapsulated follicular variants of papillary thyroid carcinomas
      Hyemi Kwon, Min Ji Jeon, Jong Ho Yoon, Suck Joon Hong, Jeong Hyun Lee, Tae Yong Kim, Young Kee Shong, Won Bae Kim, Won Gu Kim, Dong Eun Song
      Journal of Surgical Oncology.2017; 116(6): 746.     CrossRef
    • A comparison of lobectomy and total thyroidectomy in patients with papillary thyroid microcarcinoma: a retrospective individual risk factor-matched cohort study
      Hyemi Kwon, Min Ji Jeon, Won Gu Kim, Suyeon Park, Mijin Kim, Dong Eun Song, Tae-Yon Sung, Jong Ho Yoon, Suck Joon Hong, Tae Yong Kim, Young Kee Shong, Won Bae Kim
      European Journal of Endocrinology.2017; 176(4): 371.     CrossRef
    • Impact of Reclassification on Thyroid Nodules with Architectural Atypia: From Non-Invasive Encapsulated Follicular Variant Papillary Thyroid Carcinomas to Non-Invasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features
      Min Ji Jeon, Dong Eun Song, Chan Kwon Jung, Won Gu Kim, Hyemi Kwon, Yu-Mi Lee, Tae-Yon Sung, Jong Ho Yoon, Ki-Wook Chung, Suck Joon Hong, Jung Hwan Baek, Jeong Hyun Lee, Tae Yong Kim, Young Kee Shong, Won Bae Kim, Rafael Rosell
      PLOS ONE.2016; 11(12): e0167756.     CrossRef
    • Usefulness of NRAS codon 61 mutation analysis and core needle biopsy for the diagnosis of thyroid nodules previously diagnosed as atypia of undetermined significance
      Eun Kyung Jang, Won Gu Kim, Eui Young Kim, Hyemi Kwon, Yun Mi Choi, Min Ji Jeon, Jung Hwan Baek, Jeong Hyun Lee, Tae Yong Kim, Young Kee Shong, Jene Choi, Dong Eun Song, Won Bae Kim
      Endocrine.2016; 52(2): 305.     CrossRef
    • Features Predictive of Distant Metastasis in Papillary Thyroid Microcarcinomas
      Min Ji Jeon, Won Gu Kim, Yun Mi Choi, Hyemi Kwon, Yu-Mi Lee, Tae-Yon Sung, Jong Ho Yoon, Ki-Wook Chung, Suck Joon Hong, Tae Yong Kim, Young Kee Shong, Dong Eun Song, Won Bae Kim
      Thyroid.2016; 26(1): 161.     CrossRef
    • Correlation of Thyroid Imaging Reporting and Data System [TI-RADS] and fine needle aspiration: experience in 1,000 nodules
      Antonio Rahal Junior, Priscila Mina Falsarella, Rafael Dahmer Rocha, João Paulo Bacellar Costa Lima, Matheus Jorge Iani, Fábio Augusto Cardillo Vieira, Marcos Roberto Gomes de Queiroz, Jairo Tabacow Hidal, Miguel José Francisco Neto, Rodrigo Gobbo Garcia,
      Einstein (São Paulo).2016; 14(2): 119.     CrossRef
    • Thyroid nodule ultrasound: technical advances and future horizons
      Andrew S. McQueen, Kunwar S. S. Bhatia
      Insights into Imaging.2015; 6(2): 173.     CrossRef
    • Lowered cutoff of lymph node fine-needle aspiration thyroglobulin in thyroid cancer patients with serum anti-thyroglobulin antibody
      Kwanhoon Jo, Min-Hee Kim, Yejee Lim, So-Lyung Jung, Ja-Seong Bae, Chan-Kwon Jung, Moo-Il Kang, Bong-Yun Cha, Dong-Jun Lim
      European Journal of Endocrinology.2015; 173(4): 489.     CrossRef
    • Association between neck ultrasonographic findings and clinico‐pathological features in the follicular variant of papillary thyroid carcinoma
      Eun Kyung Jang, Won Gu Kim, Yun Mi Choi, Min Ji Jeon, Hyemi Kwon, Jung Hwan Baek, Jeong Hyun Lee, Tae Yong Kim, Young Kee Shong, Dong Eun Song, Won Bae Kim
      Clinical Endocrinology.2015; 83(6): 968.     CrossRef
    • Solitary Skin Metastasis of Papillary Thyroid Carcinoma
      Hyemi Kwon, Hyojung Kim, Sojung Park, Dong Eun Song, Won Gu Kim, Tae Yong Kim, Young Kee Shong, Won Bae Kim
      Endocrinology and Metabolism.2014; 29(4): 579.     CrossRef
    • Brief Review of Articles in 'Endocrinology and Metabolism' in 2013
      Won-Young Lee
      Endocrinology and Metabolism.2014; 29(3): 251.     CrossRef
    • NRAS Codon 61 Mutation Is Associated with Distant Metastasis in Patients with Follicular Thyroid Carcinoma
      Eun Kyung Jang, Dong Eun Song, So Young Sim, Hyemi Kwon, Yun Mi Choi, Min Ji Jeon, Ji Min Han, Won Gu Kim, Tae Yong Kim, Young Kee Shong, Won Bae Kim
      Thyroid.2014; 24(8): 1275.     CrossRef

    • PubReader PubReader
    • Cite
      CITE
      export Copy
      Close
    • XML DownloadXML Download
    Figure
    Related articles

    Endocrinol Metab : Endocrinology and Metabolism