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Introduction
In clinical research, it is common to record repeated measurements 

for subject responses across multiple occasions. There exist a variety 
of analysis methods, including repeated measures analysis of variance 
(RANOVA), multivariate ANOVA (MANOVA) and linear mixed 
modeling (LMM). Researchers often simplify repeated measures data 
by using summary data to quantify pre-and post-treatment outcomes, 
allowing for a more intuitive and easier interpretation of treatment 
comparisons [1]. When appropriately applied, simplifying repeated 
measure outcomes to only two time measurements in the design phase 
improves efficiency and cost effectiveness, particularly in circumstances 
when responses are expensive to measure. In many instances this is 
done because the response of patients at a certain final time point is 
more clinically relevant than trends over time. Rather than comparing 
trends over time within each treatment group, the pre-post treatment 
summary method also simplifies data analysis to standard t-test 
procedures.

Decades of literature exists exploring and comparing methods 
for pre-post analysis, in both theory and application. The goal of this 
paper is not in developing new methods of analysis, but to review and 
succinctly tie together existing literature into a cohesive comparison 
of common methods often discussed and employed. We revisit and 
review the basic methods of pre-post data analysis discussed in the 
literature, and then exemplify the results through simulation and real 
data examples to corroborate existing knowledge. The rest of the paper 

is structured as follows: we first provide a review of key literature in pre-
post analysis. We then outline the models to be compared and set up 
a simple simulation study to demonstrate the comparison of methods, 
and discuss simulated results in conjunction with the theoretical 
expectations of variance and related implicit measures. A real data 
example is used to exemplify the difference in methods in practice, and 
highlight the importance of a proper analysis method. We finish with 
a discussion of results and further present ideas for future avenues of 
research in the area of pre-post data analysis.

Review of Literature
Frison and Pocock [2] discuss three methods for analyzing data 

from pre-post designs: a) ANOVA with the post measurement as the 
response variable (ANOVA-POST), b) ANOVA with the change from 
pre-treatment to post-treatment as the response variable (ANOVA-
CHANGE), and c) ANCOVA with the post measurement as the 
response variable (ANCOVA-POST), adjusting for the pre-treatment 
measurement. Brogan and Kutner [3] compare the use of ANOVA-
CHANGE with RANOVA. However, Huck and McLean [4] criticize 
the latter method due to its frequent misinterpretation in practice. 
Furthermore, they note the F-test in an RANOVA interaction is 
equivalent to the F-test in change score analysis. RANOVA provides 
the same conclusion as ANOVA-CHANGE, but use of ANOVA-
CHANGE is simpler and more accurately interpreted compared to 
RANOVA. These conclusions are defended by Jennings [5], who 
asserts RANOVA is not recommended for pre-post analysis given the 
simpler alternatives presented.
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Abstract
Often repeated measures data are summarized into pre-post-treatment measurements. Various methods exist 

in the literature for estimating and testing treatment effect, including ANOVA, analysis of covariance (ANCOVA), and 
linear mixed modeling (LMM). Under the first two methods, outcomes can either be modeled as the post treatment 
measurement (ANOVA-POST or ANCOVA-POST), or a change score between pre and post measurements (ANOVA-
CHANGE, ANCOVA-CHANGE). In LMM, the outcome is modeled as a vector of responses with or without Kenward-
Rogers adjustment. We consider five methods common in the literature, and discuss them in terms of supporting 
simulations and theoretical derivations of variance. Consistent with existing literature, our results demonstrate that each 
method leads to unbiased treatment effect estimates, and based on precision of estimates, 95% coverage probability, 
and power, ANCOVA modeling of either change scores or post-treatment score as the outcome, prove to be the most 
effective. We further demonstrate each method in terms of a real data example to exemplify comparisons in real clinical 
context.
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Among the methods, ANCOVA-POST is generally regarded 
as the preferred approach, given that it typically leads to unbiased 
treatment effect estimate with the lowest variance relative to ANOVA-
POST or ANOVA-CHANGE [1-6]. However, ANCOVA has been 
criticized as being biased in the case of unequal pre-treatment mean 
measurements between groups [7,8]. This conundrum, known as 
“Lord’s Paradox,” was first documented in 1967 Lord [9], and has been 
discussed in the literature extensively. Among a detailed examination 
of various methods of repeated measures data analysis for pre-post 
outcomes, Liang and Zeger [10] note in the simple case with only two 
responses (i.e. pre- and post-treatment measurements), ANCOVA-
POST produces an unbiased estimate only in the case of equal pre-
treatment measurements, whereas ANOVA-CHANGE leads to 
unbiased estimates that are only slightly less efficient than ANCOVA-
POST. Senn [11] discusses these criticisms at length, providing various 
conditions for which these claims do not hold, ultimately concluding 
ANCOVA should be used with caution in the case of unequal pre-
treatment measurements, but ANOVA-CHANGE is not impervious 
to bias either.

A recent simulation study by Egbewale, Lewis, and Sim [12] over 
varying degrees of pre-treatment imbalance and pre-post treatment 
correlations, demonstrates that a comparison of the methods is not 
straightforward in the presence of unequal pre-treatment measures 
between groups. They recommend ANCOVA when pre-treatment 
measurements are equal in expectation across groups, as should be 
the case in properly designed randomized trials [12]. ANOVA-POST 
has a larger variance because it allows for possible random baseline 
imbalance for which it cannot adjust. ANCOVA allows adjustment 
for baseline differences and thus has a smaller variance than ANOVA. 
In further support for ANCOVA, Vickers and Altman [13] note that 
ANCOVA achieves the greatest power relative to ANOVA-CHANGE 
or ANOVA-POST, but the power of ANOVA-CHANGE approaches 
ANCOVA as correlation between pre-post measures approaches one.

Combining analysis of change scores with adjustments for 
pre-treatment measures, Laird [14] offers a slight modification to 
ANCOVA, in which the change score is incorporated as the outcome 
and pre-treatment measures as covariate. Compared with traditional 
ANCOVA, this ANCOVA-CHANGE leads to equal results in terms 
of variance of treatment effect, although Laird [14] asserts the latter 
method allows one to assess whether change occurred in individual 
treatment groups. Despite this possible advantage, this appears less 
frequently used or discussed in the literature.

In the rest of the paper, we will discuss and compare results 
between the five common methods ANOVA and ANCOVA modeling 
both the post-treatment response only and the change score, along 
with a linear mixed model (LMM) modeling the pre-post treatment 
response vector, Yij. We use simulations over a range of sample sizes 
and pre-post measurement correlations to corroborate the comparison 
of methods with the existing literature and theoretical expectations of 
variance.

Methods
To set up the modeling framework, let Yi be the continuous response 

variable from a randomized trial, for i=1,…,n, patient responses from 
samples n1 and n2 from each treatment group. Let the group assignment 
be designated by the indicator, Xi, such that for the ith patient, Xi=1 for 
the active treatment and Xi=0 in the control/placebo group. Responses 
for each treatment are each sampled from a Gaussian distribution with 
mean μx and variance σ2, where μx=β0+β1 Xi. To distinguish between 

post-treatment and change score measures as outcomes, let [ ]p
iY  

represent the post treatment response and [ ]c
iY  represent the change 

from pre-treatment to post-treatment measurements. In the case of 
ANCOVA, let Y0i be the pre-treatment measurement for which the 
model is adjusted for. Lastly, let εi represent the random error terms 
for each of the models. Maximum likelihood is used to estimate the 
parameters corresponding to each model except for the variance 
in LMM which are estimated using restricted maximum likelihood 
(REML). Derivations of variance for each of the estimators from the 
different methods are given in the Appendix.

Method 1: ANOVA-POST

Method 1 uses linear regression to compare treatment effects. 
Formally, the model is as follows:

[ ] [ ] [ ] [ ]
0 1 p p p p

i i iY Xβ β ε= + + .

It is assumed that εi are independently and identically normally 
distributed with mean 0 and variance σ2. [ ]

1
pβ is interpreted as the 

difference in the post-treatment mean between treatment groups. The 
variance of the estimated treatment effect is given by:

[ ] 2 2^

1
1 2

( )
p

var
n n
σ σβ = + .

Method 2: ANOVA-CHANGE

Similar to ANOVA-POST, ANOVA-CHANGE employs a simple 
ANOVA framework, but instead models the outcome, [ ]c

iY without 
adjustment for pre-treatment values. Formally, the model with εi 
assumed to be independently and identically normally distributed with 
mean 0 and variance σ2 is given as follows:

[ ] [ 1] [ 1] [ 1]
0 1  c c c c

i i iY Xβ β ε= + + .

Here [ 1]
1 cβ  is interpreted as the difference in the change score mean 

of the treatment groups. Under an unstructured covariance structure 

assumption, the variance of 
[ 1]^

1

c

β  is given by:
[ ]1^

2 2
1

1 2

1 1( )  ( 2 )( )
c

pre post pre postvar
n n

β σ σ ρσ σ= + − + .

Under a compound symmetry assumption, where pre- and post-
treatment variance is assumed to be equal, the variance is given by:

[ ]1^
2

1
1 2

1 1( )  2(1 )( ) 
c

var
n n

β ρ σ= − + .

Method 3: ANCOVA-CHANGE

Method 3 employs an ANCOVA model to analyze the change score 
as an outcome, adjusting for the pre-treatment values. Essentially, 
ANCOVA-CHANGE is equivalent to ANOVA-CHANGE, with an 
added adjustment for the pre-treatment measurement for every patient. 
Formally, the model is as follows:

[ ] [ 2] [ 2] [ 2] [ 2]
0 1 2 0  c c c c c

i i i iY X Yβ β β ε= + + + .

It is assumed that εi are independently and identically normally 
distributed with mean 0 and variance σ2. [ 2]

1
cβ  is interpreted as the 

difference in the change score mean of the treatment groups, given the 
pre-treatment measurement and the variance of its estimator is given by

( )
2

cov cov 2 21 2 0. 0.
. . 2

1 2 1 2 1 2

2 1 1 ( )var  (1 )
3 ( 2)

T P
T P post

pre

n n Y YY Y
n n n n n n

σ ρ
σ

 + − −
− = − + + 

+ − + −  

Which, as the sample size increases, simplifies to:
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[ ]
( )2 2

1 2

1 1( )  1 postvar
n n

β ρ σ
 

= − + 
 

.

Method 4: ANCOVA-POST

Method 4 employs an ANCOVA model to analyze the post-
treatment measurements as the outcome, adjusting for the pre-
treatment values. In the context of previous methods, ANCOVA-
POST is essentially ANOVA-POST (method 1) with pre-treatment 
measurement included as a covariate. Formally, the model is as follows:

[ ] [ ] [ ] [ ]
0 1 2 0 a a a a

i i i iY X Yβ β β ε= + + + .

It is assumed that εi are independently and identically normally 
distributed with mean 0 and variance σ2. [ ]

1
aβ  is interpreted as the 

difference in the post treatment score mean of the treatment groups, 
given the pre-treatment measurement. Since this method is equivalent 
to method 3 Laird [14], results including the variance of the estimated 

treatment effect [ ]
1

aβ  is the same.

Method 5: LMM

Method 5 consists of employing a linear mixed model (LMM) to 
analyze a vector of the pre-and post-measurements as the outcome. 
Yij denotes the jth measure of the ith subject. Formally, the model is as 
follows:

[ ] [ ] [ ] [ ] [ ]
0 1 2 3 b b b b b

ij i ij ij i ijY X t t Xβ β β β ε= + + + + ,

Where tij is an indicator for pre-treatment measurement (coded 0) 
or post-treatment measurement (coded 1). In LMM, it is assumed that 
εij are bivariate normally distributed with means 0 and heterogeneous 
compound symmetric (HCS) covariance matrix and correlation, ρ. 
The term [ ] [ ]

1 3  b bβ β+  is interpreted as the mean difference between 
treatment groups post-treatment, and [ ]

1
bβ  is the mean difference 

between treatment groups pre-treatment. LMM allows for pre-
treatment mean differences between the groups.

The variance of 1 3
ˆ ˆβ β+ under HCS covariance matrix for the error 

term is given by:
2 2

1 3 1
1 2 1 2

1 1 1 1ˆ ˆ ˆ ˆVar( ) Var( ) ( ) ( ) .postn n n n
β β β σ σ+ = = + = +

If assuming compound symmetry (CS) is assumed, the variance is:

2
1 3

1 2

1 1 1ˆ ˆVar( ) (1 )( )
2 n n

β β ρ σ+ = − +

The LMM was evaluated under REML estimation in PROC MIXED 
(SAS 9.3, SAS Institute Inc, Cary, NC). Acknowledging that many 
degree of freedom adjustments may be employed in mixed models, 
we choose to evaluate this approach with the conservative, and widely 
used Kenward and Rogers (KR) adjustment, as well as an unadjusted 
model. The KR adjustment Kenward and Roger [15]; Schaalje, McBride 
and Fellingham [16]; Senn [17] appropriately inflates the variance-
covariance matrix, along with an adjusted degree of freedom estimate 
(KR degree of freedom adjustment) when making inference on fixed 
effects which rely on asymptotic distributions that can lead to biased 
variance estimates when sample sizes are small. No adjustment, 
according to Senn [17], leads to negligible difference with the first 
scenario as sample size grows reasonably large (e.g. n>40).

Simulation Study
Data are simulated using SAS 9.3. Simulations are designed 

to represent a variety of situations which are plausible in pre-post 

studies. Using 1000 repetitions, we compare models under three 
sample sizes (n=50, 100, and 200), under three pre-post correlations 
(ρ=0.1, 0.5, and 0.8), and six β1 coefficients for treatment effect (β1=-
1.5, -0.1, -1.0, 0.1, 1.0, and 1.5). Covariates are generated assuming 
X~uniform (0,1), and Y0~N(0,1); the post treatment response Y1 
is generated using: Y1=10+1.5*{X ≥ 0.5} +1.5* Y0 +ε, such that {X ≥ 
0.5} represents treatment 1 (i.e. Xi=1) and {X<0.5} represents control/
placebo (i.e. Xi=0). To generate correlation between pre- (Y0) and post- 
(Y1) treatment measures, we use the relationship between correlation 

and slope:
0

1

y

y

σ
ρ β

σ
=  , where σy0 and σy1 are the standard deviations for 

pre- and post-treatment responses, respectively. β is fixed at 1.5 and 
σy1 is calculated for each combination of σy0 and ρ. Random errors are 
generated such that ε ~N(0, σ2). The corresponding residual variance 
is calculated using the relationship between σy1 and the variance of ε 
for different β1 coefficients: 2 2 2 2

011 0.25 2.25y yεσ σ β σ= − × − × . There 
are a total of 108 simulated scenarios among the combinations of n, ρ, 
and β1. Estimates for the parameter ( )1β , its variance, bias, power, and 
nominal 95% coverage probability are computed for each simulation 
scenario, and the results are compared across the five methods. Code 
used to implement this may be found in supplementary material 
available online.

Simulation Results
In this section, findings from the simulations are discussed and 

compared to expected theoretical results. Treatment effect parameter 
estimates and associated standard deviations are reported in Table 
1, while bias and power are presented in Tables 2 and 3 shows the 
95% coverage probability. The results, consistent with theoretical 
expectations, show that all methods produce equally unbiased estimates 
of the treatment effect across equivalent combinations of ρ, β1, and n, 
with accuracy of the estimates improving with sample size. In general, 
as the number of observations increases, the bias converges to zero 
for each of the methods across all of the simulated scenarios. When ρ 
increases, the bias decreases, regardless of sample size or true β1.

Since all methods result in unbiased estimates for the treatment 
effect, we use variance and other implicit measures of the estimates to 
compare the five methods (Table 1 and Figure 1). In general, when the 
correlation between pre-treatment and post-treatment values is high, 
the variance of the estimates are relatively small, regardless of method 
and the value of β1. However, for higher correlation values, differences 
in variability between methods become more apparent when the sample 
size and value of β1 are fixed. For example, in the scenario when β1=0.1 
and n=200, the difference between the largest and smallest standard 
deviations among the 5 methods with low correlation (ρ=0.1), is 0.006. 
However, under the same scenario with high correlation (ρ=0.8), the 
difference between the largest and smallest standard deviations is 
0.109. While the individual standard deviation estimates are greater in 
low correlation scenarios, the difference between estimates of differing 
methods are much more pronounced in scenarios with high correlation, 
i.e. the greatest variability in β1 occurrs when ρ is close to 0 (i.e. ρ= 0.1). 
Furthermore, as sample size increases, variability decreases as expected 
theoretically. To summarize in terms of correlation and sample size, 
variability of β1 estimates are greatest when n=50 and ρ=0.1, and they 
are lowest when n=200 and ρ=0.8.

Comparing the two ANOVA methods specifically, ANOVA-
CHANGE produces approximately equal or less variability compared 
to ANOVA-POST, the difference of which increases as ρ approaches 
one. Intuitively, it follows that ignoring pre-treatment observations in 
ANOVA-POST causes a loss of information which leads to an increase 
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in variance estimates when pre-treatment and post-treatment values 
are correlated. However, when correlation is low, results are dependent 
the on pre-post covariance structure. These discrepancies are addressed 

and explained in detail in following paragraphs. Table 1 displays the 
difference between variance estimates which grows with increasing 
correlation, holding sample size and true β1 parameters constant.

Simulated β1 Values
across methods

ρ=0.1 ρ=0.5 ρ=0.8
n=50 n=100 n=200 n=50 n=100 n=200 n=50 n=100 n=200

0.1

ANOVA-POST 0.095(4.240) 0.013(3.065) 0.206(2.121) 0.114(0.856) 0.117(0.601) 0.110(0.447) 0.110(0.532) 0.096(0.386) 0.102(0.268)
ANOVA-CHANGE 0.095(4.220) 0.018(3.055) 0.198(2.115) 0.107(0.768) 0.110(0.537) 0.105(0.396) 0.104(0.343) 0.096(0.246) 0.101(0.177)
ANCOVA-CHANGE 0.110(4.261) 0.022(3.075) 0.201(2.119) 0.106(0.767) 0.106(0.535) 0.102(0.387) 0.101(0.312) 0.095(0.222) 0.100(0.159)
ANCOVA-POST 0.110(4.261) 0.022(3.075) 0.201(2.119) 0.106(0.767) 0.106(0.535) 0.102(0.387) 0.101(0.312) 0.095(0.222) 0.100(0.159)
LMM 0.095(4.240) 0.013(3.065) 0.206(2.121) 0.114(0.856) 0.117(0.601) 0.110(0.447) 0.110(0.532) 0.096(0.386) 0.102(0.268)

1.0

ANOVA-POST 1.104(4.424) 0.997(3.197) 0.912(2.075) 1.038(0.833) 1.007(0.598) 1.006(0.424) 1.028(0.504) 0.992(0.351) 1.006(0.256)
ANOVA-CHANGE 1.105(4.411) 1.008(3.178) 0.917(2.066) 1.031(0.723) 1.000(0.525) 1.005(0.379) 1.010(0.311) 0.988(0.219) 1.002(0.159)
ANCOVA-CHANGE 1.098(4.448) 1.022(3.188) 0.913(2.059) 1.025(0.712) 0.997(0.519) 1.004(0.373) 0.999(0.278) 0.986(0.199) 0.999(0.143)
ANCOVA-POST 1.098(4.448) 1.022(3.188) 0.913(2.059) 1.025(0.712) 0.997(0.519) 1.004(0.373) 0.999(0.278) 0.986(0.199) 0.999(0.143)
LMM 1.104(4.424) 0.997(3.197) 0.912(2.075) 1.038(0.833) 1.007(0.598) 1.006(0.424) 1.028(0.504) 0.992(0.351) 1.006(0.256)

1.5

ANOVA-POST 1.557(4.295) 1.668(3.048) 1.577(2.094) 1.525(0.831) 1.520(0.578) 1.522(0.412) 1.503(0.504) 1.492(0.347) 1.487(0.242)
ANOVA-CHANGE 1.567(4.277) 1.650(3.039) 1.579(2.083) 1.526(0.724) 1.518(0.508) 1.526(0.361) 1.502(0.290) 1.494(0.199) 1.489(0.140)
ANCOVA-CHANGE 1.556(4.313) 1.638(3.057) 1.586(2.086) 1.528(0.718) 1.516(0.502) 1.530(0.354) 1.500(0.250) 1.496(0.170) 1.491(0.119)
ANCOVA-POST 1.556(4.313) 1.638(3.057) 1.586(2.086) 1.528(0.718) 1.516(0.502) 1.530(0.354) 1.500(0.250) 1.496(0.170) 1.491(0.119)
LMM 1.557(4.295) 1.668(3.048) 1.577(2.094) 1.525(0.831) 1.520(0.578) 1.522(0.412) 1.503(0.504) 1.492(0.347) 1.487(0.242)

Parameter estimates (standard deviations) are presented in Table 1 for the five methods for values of β1, n, and ρ. All estimates are unbiased, so comparing the standard 
deviations of the estimates allows for comparison of the methods. 

Table 1: Mean Parameter and standard deviation estimates across 1000 simulations for positive β1 values.

Simulated β1 Values
across methods   

ρ=0.1 ρ =0.5 ρ =0.8
n=50 n=100 n=200 n=50 n=100 n=200 n=50 n=100 n=200

0.1 ANOVA-POST -0.005 -0.087 0.106 0.014 0.017 0.010 0.010 -0.004 0.002
0.056 0.062 0.049 0.053 0.060 0.070 0.056 0.060 0.069

ANOVA-CHANGE -0.005 -0.082 0.098 0.007 0.010 0.005 0.004 -0.004 0.001
0.056 0.061 0.049 0.051 0.061 0.066 0.058 0.064 0.091

ANCOVA-CHANGE 0.010 -0.078 0.101 0.006 0.006 0.002 0.001 -0.005 0.000
0.057 0.062 0.045 0.054 0.060 0.060 0.071 0.068 0.107

ANCOVA-POST 0.010 -0.078 0.101 0.006 0.006 0.002 0.001 -0.005 0.000
0.057 0.062 0.045 0.054 0.060 0.060 0.071 0.068 0.107

LMM -0.005 -0.087 0.106 0.014 0.017 0.010 0.010 -0.004 0.002
0.056 0.062 0.049 0.053 0.060 0.070 0.056 0.060 0.069

1.0 ANOVA-POST 0.104 -0.003 -0.088 0.038 0.007 0.006 0.028 -0.008 0.006
0.058 0.067 0.088 0.211 0.382 0.644 0.490 0.794 0.976

ANOVA-CHANGE 0.105 0.008 -0.083 0.031 0.000 0.005 0.010 -0.012 0.002
0.059 0.066 0.086 0.267 0.470 0.756 0.856 0.988 1.000

ANCOVA-CHANGE 0.098 0.022 -0.087 0.025 -0.003 0.004 -0.001 -0.014 -0.001
0.060 0.065 0.085 0.275 0.479 0.772 0.920 0.999 1.000

ANCOVA-POST 0.098 0.022 -0.087 0.025 -0.003 0.004 -0.001 -0.014 -0.001
0.060 0.065 0.085 0.275 0.479 0.772 0.920 0.999 1.000

LMM 0.104 -0.003 -0.088 0.038 0.007 0.006 0.028 -0.008 0.006
0.058 0.067 0.088 0.211 0.382 0.644 0.490 0.794 0.976

1.5 ANOVA-POST 0.057 0.168 0.077 0.025 0.020 0.022 0.003 -0.008 -0.013
0.058 0.094 0.102 0.412 0.713 0.949 0.848 0.987 1.000

ANOVA-CHANGE 0.067 0.150 0.079 0.026 0.018 0.026 0.002 -0.006 -0.011
0.058 0.094 0.105 0.522 0.825 0.985 1.000 1.000 1.000

ANCOVA-CHANGE 0.056 0.138 0.086 0.028 0.016 0.030 0.000 -0.004 -0.009
0.057 0.088 0.107 0.527 0.836 0.987 1.000 1.000 1.000

ANCOVA-POST 0.056 0.138 0.086 0.028 0.016 0.030 0.000 -0.004 -0.009
0.057 0.088 0.107 0.527 0.836 0.987 1.000 1.000 1.000

LMM 0.057 0.168 0.077 0.025 0.020 0.022 0.003 -0.008 -0.013
0.058 0.094 0.102 0.412 0.713 0.949 0.848 0.987 1.000

Bias (top number) and power (bottom number) are presented in Table 2 for the five methods for values of β1, n, and ρ. Generally, all methods produced estimates which 
were unbiased for the parameter of interest. Power was typically marginally higher for ANCOVA models compared to ANOVA and LMM, and increased for higher values 
of n and ρ.

Table 2: Power and bias estimates from 1000 simulations for true values of β1.
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The two scenarios of ANCOVA (ANCOVA-POST and ANCOVA-
CHANGE) give identical measures of variability, regardless of differing 
combinations of ρ, β1 and n. These results can be seen numerically in 
Table 1 and visually assessed in Figure 1, and are further supported 
by theoretical derivation of variance. Lastly, the LMM analysis results 
are equivalent to the ANOVA-POST in terms of estimates and 
their standard deviations, regardless of the assumed within-subject 
covariance structure, Ri. The LMM approach is evaluated with and 
without a KR adjustment, ultimately showing no difference. These 
results are consistent with the literature, given the smallest simulated 
sample size was n=50.

Across all methods, ANCOVA models consistently performed 
best compared to the other methods, regardless of ρ, β1 and n, as has 
been demonstrated in existing literature [18]. The ANCOVA methods 
(ANCOVA-CHANGE and ANCOVA-POST) are compared with 
ANOVA-POST, ANOVA-CHANGE and LMM in terms of variance 
of the estimate of β1 (Figure 1). Except at the lowest combination 
of ρ and n values where discrepancies between differing method 
variances is negligible, ANCOVA had the lowest variability. Similarly, 
the 95% coverage intervals are smallest under ANCOVA, and widest 
in ANOVA-POST (Table 4). Compared to ANOVA-CHANGE, 
ANCOVA models have less variation. These results are also similar 
when ANCOVA is compared with LMM, except when the correlation 
is close to zero.

It is of interest to compare the simulations to theoretical 

expectations for the variance of the treatment effect estimates. As the 
correlation between pretreatment and post-treatment observations 
approaches zero, the variance for ANOVA-POST, ANCOVA-POST, 
ANCOVA-CHANGE, and LMM should be approximately equivalent, 
but the variance for ANOVA-CHANGE is two times that of the others. 

Simulated β1 Values 
Across Methods

ρ=0.1 ρ=0.5 ρ=0.8
n=50 n=100 n=200 n=50 n=100 n=200 n=50 n=100 n=200

0.1 ANOVA-POST 0.939 0.949 0.952 0.957 0.960 0.939 0.959 0.943 0.953
ANOVA-CHANGE 0.936 0.950 0.950 0.949 0.947 0.946 0.940 0.936 0.956
ANCOVA-CHANGE 0.935 0.950 0.949 0.947 0.950 0.952 0.944 0.942 0.948
ANCOVA-POST 0.935 0.950 0.949 0.947 0.950 0.952 0.944 0.942 0.948
LMM 0.939 0.949 0.952 0.957 0.960 0.939 0.959 0.943 0.953

1.0 ANOVA-POST 0.937 0.951 0.945 0.944 0.951 0.955 0.954 0.941 0.960
ANOVA-CHANGE 0.941 0.952 0.947 0.950 0.954 0.951 0.962 0.952 0.959
ANCOVA-CHANGE 0.945 0.952 0.947 0.943 0.950 0.951 0.955 0.947 0.956
ANCOVA-POST 0.945 0.952 0.947 0.943 0.950 0.951 0.955 0.947 0.956
LMM 0.937 0.951 0.945 0.944 0.951 0.955 0.954 0.941 0.96

1.5 ANOVA-POST 0.954 0.947 0.951 0.957 0.957 0.951 0.964 0.951 0.948
ANOVA-CHANGE 0.953 0.948 0.952 0.954 0.953 0.954 0.961 0.952 0.950
ANCOVA-CHANGE 0.950 0.942 0.953 0.953 0.947 0.949 0.960 0.954 0.952
ANCOVA-POST 0.950 0.942 0.953 0.953 0.947 0.949 0.960 0.954 0.952
LMM 0.954 0.947 0.951 0.957 0.957 0.951 0.964 0.951 0.948

-0.1 ANOVA-POST 0.948 0.954 0.959 0.952 0.961 0.952 0.964 0.949 0.944
ANOVA-CHANGE 0.947 0.953 0.962 0.951 0.961 0.950 0.965 0.952 0.945
ANCOVA-CHANGE 0.950 0.952 0.959 0.953 0.954 0.950 0.959 0.955 0.944
ANCOVA-POST 0.950 0.952 0.959 0.953 0.954 0.950 0.959 0.955 0.944
LMM 0.948 0.954 0.959 0.952 0.961 0.952 0.964 0.949 0.944

-1.0 ANOVA-POST 0.953 0.954 0.957 0.955 0.959 0.953 0.957 0.959 0.955
ANOVA-CHANGE 0.953 0.953 0.956 0.955 0.959 0.948 0.957 0.948 0.955
ANCOVA-CHANGE 0.954 0.951 0.956 0.952 0.948 0.95 0.962 0.950 0.949
ANCOVA-POST 0.954 0.951 0.956 0.952 0.948 0.95 0.962 0.950 0.949
LMM 0.953 0.954 0.957 0.955 0.959 0.953 0.957 0.959 0.955

-1.5 ANOVA-POST 0.958 0.948 0.946 0.956 0.950 0.950 0.954 0.954 0.948
ANOVA-CHANGE 0.958 0.947 0.944 0.957 0.949 0.952 0.957 0.953 0.950
ANCOVA-CHANGE 0.958 0.951 0.942 0.96 0.949 0.947 0.955 0.950 0.951
ANCOVA-POST 0.958 0.951 0.942 0.96 0.949 0.947 0.955 0.950 0.951
LMM 0.958 0.948 0.946 0.956 0.950 0.950 0.954 0.954 0.948

Confidence interval coverage probabilities are presented in Table 3 for the five methods for values of β1, n, and ρ
Table 3: 95% confidence interval coverage probabilities from 1000 simulations.

Method β̂ 95% Confidence 
Interval

ˆSE( ) β P-value

1st Session
ANOVA-POST 0.16 -0.09 0.41 0.123 0.192
ANOVA-CHANGE 0.14 0.05 0.24 0.047 0.005
ANCOVA-CHANGE 0.14 0.05 0.24 0.046 0.004
ANCOVA-POST 0.14 0.05 0.24 0.046 0.004
LMM 0.16 -0.09 0.41 0.123 0.191
4th Session
ANOVA-POST -0.08 -0.28 0.12 0.099 0.409
ANOVA-CHANGE 0.09 -0.02 0.21 0.056 0.107
ANCOVA-CHANGE 0.07 -0.05 0.19 0.059 0.243
ANCOVA-POST 0.07 -0.05 0.19 0.059 0.243
LMM -0.08 -0.28 0.12 0.099 0.409

Table 4 presents parameter estimates, their standard errors, 95% confidence 
intervals and p-values for the dental data example. Results are consistent with 
simulation data conclusions since all methods produced unbiased estimates for 
the treatment effect, and ANCOVA models had smaller standard errors compared 
to ANOVA and LMM models. 
Table 4: Estimates of toothbrush effect on bacterial plaque index in 1st and 4th 
sessions.
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When ρ=0.1 and assuming equal variance, the variance of ANOVA-
CHANGE should theoretically approach 2(1-ρ=0.1), or 1.8 times that 
of ANOVA-POST, and ANCOVA methods should approach (1-ρ2), or 
0.99 of ANOVA-POST. Similarly, for ρ = 0.1, the ratio of ANOVA-
POST to ANOVA-CHANGE should be 1 and ANOVA-POST to 
ANCOVA should be 0.75. Finally, at ρ=0.8, ANOVA-CHANGE and 
both ANCOVA models should be at 0.4 and 0.36 times ANOVA-POST 
respectively. However, permitting pre and post measurements to have 
different variances leads to differing results, particularly apparent 
when correlation is low, such that the variance of ANOVA-CHANGE 
approaches the variance of ANOVA-POST as ρ approaches zero and 
the variance of post-measures becomes increasingly greater than pre- 
measures. Presented simulations are for data simulated assuming this 
unstructured covariance matrix. For example, the variance of ANOVA-
CHANGE and ANOVA-POST are approximately equal when ρ=0.1; 
had we assumed equalvariance, ANOVA-CHANGE would be almost 
twice that of ANOVA-POST. These are made apparent given the 
following ratio of variances:

As a result, the variance of ANOVA-CHANGE approaches the 
variance of ANOVA-POST as ρ approaches zero and β1>0.5 Under the 
given method of simulating pre and post treatment variances where

11, 1.5preσ β= = , and 1 /post preσ β σ ρ= , the ratio of the variances is 
given by:

( )2 2

1 2

2

1 2

1 12
0.99,   for 0.1

1 1

pre post pre post
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n n

n n

σ σ ρσ σ
ρ

σ
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Since the HCS structure is more conservative in its assumptions 
(permitting the pre- and post-treatment effects to have different 
variances), it is used to report the main simulation results of the study. 
As correlation increases beyond 0.5, results become less sensitive to the 
pre-post measure covariance structure.

Power for testing β1 = 0 was assessed for the methods under the 
simulated conditions (Table 2). Under the primary simulation method 
assuming Y0~N(0,1), power across methods did not vary by a large 

Boxplots for parameter estimates for the 1000 simulations for the combinations of β1, n, and ρ are displayed in Figure 1 Consistent with the data tables, all 
parameter estimates are unbiased, and the boxplots highlight differences in variability for the models. In general, variance was much larger for small values of ρ 
and small n. ANCOVA models have smaller variances compared to ANOVA and LMM, though differences are quite small. 

Figure 1: Distribution of treatment effects estimates varied by correlation, sample size and true positive β1 values under Y0~N(0,1).
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degree. Observing power across simulated scenarios at the lowest 
sample size (n=50), there is marginally higher power in ANCOVA 
and ANOVA-CHANGE methods over ANOVA-POST and LMM. 
Overall, ANCOVA methods achieve the greatest power, intuitively so 
given ANCOVA leads to the lowest variability. As correlation between 
pre-and post-measurements increase, the difference in power between 
ANCOVA and ANOVA-CHANGE compared to ANOVA-POST and 
LMM, grows appreciably, while ANOVA-CHANGE nears that of 
ANCOVA as correlation approaches one. Finally, increases in sample 
size leads to increased power for detecting a significant treatment effect 
similarly across methods, meaning that an increase in sample size does 
not appear to affect any single methods statistical power more than 
other methods. Additional results from simulations with an increased 
variance (assuming Y0 ~N(0,9)), are reported.

Data Example
To illustrate the application of the five methods, we consider 

data from a dental hygiene study characterized by small sample size 
[19]. There were a total of 32 subjects, randomized to two treatment 
groups based on type of toothbrush, and effectiveness was measured 
by reduction in bacterial plaque index over time. Of the original four 
independent sessions, we analyzed data from the first and last sessions, 
comparing pre and post treatment outcomes. The results for the first 
and last session are summarized in Table 4. In the first session, the pre-
treatment mean (standard error) for treatment group 1 and treatment 
group 2 are 1.31 (0.35) and 1.33 (0.38), respectively, and similarly 
for the last session, 1.54 (0.26) and 1.36 (0.27), respectively. The pre-
treatment measures between groups show no significant difference for 
either of the sessions. The correlations in the pre and post treatment 
measures are 0.91 and 0.82 for the first and last sessions, respectively. 
In line with simulations and theoretical expectations, it follows that 
under the first session, ANCOVA-CHANGE and ANCOVA-POST 
performed equally well among methods, presenting the lowest standard 
error for treatment effect. However, in the last session, ANOVA-
CHANGE actually presented a slightly lower standard error compared 
to ANCOVA methods (0.0564 compared to 0.0592). Given the high 
correlation between pre and post measurements in this data set, it 
follows theoretical expectations that ANOVA-CHANGE is extremely 
close to that of ANCOVA models. In the case where ρ=0.91, ANOVA-
CHANGE should theoretically produce variance that is 1.05 times 
ANCOVA. In both sessions, ANOVA and LMM exhibit larger variance 
than ANCOVA methods. The variance estimates from ANOVA and 
LMM are 2.7 times greater in the first session and 1.7 times greater in 
the second session than ANCOVA.

Discussion
This paper compares four traditional approaches (ANOVA-POST, 

ANOVA-CHANGE, ANCOVA-POST, and ANCOVA-CHANGE) 
and a more modern approach (LMM) used in the analysis of pre-post 
data. These five methods are compared via simulated data from a typical 
clinical trials setting, where pre-treatment groups are assumed equally 
allocated through proper randomization, and the primary interest 
is to examine estimates of treatment effect. Comparisons of these 
methods have been investigated in theoretical framework (Brogan and 
Kutner [3]; Dimitrov and Rumrill [4]; Frison and Pocock [2]; Huck 
and McLean [4]; Laird [14]), and in a similar manner as Egbewale et 
al. [12] we review these methods and discuss them in terms of several 
simulated circumstances, as well as a real data application.

Overall, all of the five methods in the simulated scenarios yield 
equally unbiased treatment effect estimate. However, their performance 

(in terms of variance, type-I error and 95% CI coverage) varies with pre-
treatment group differences as indicated in previous literature [7,11,12]. 
For example, LMM is found to be more conservative compared to the 
ANCOVA methods. Consistent with previous literature, ANCOVA 
models have the smallest variance, highest power, and nominal 95% 
confidence interval coverage compared to ANOVA-POST, ANOVA-
CHANGE, and LMM. Similar to conclusions reached by Vickers and 
Altman [13], in our simulation study as correlation between pre-and 
post-treatment measures increase, ANOVA-CHANGE approaches 
ANCOVA in both variance and power. However, in all but the most 
extreme cases (i.e. when ρ ≈ 0 or 1), ANCOVA methods are the most 
optimal, achieving the greatest power and lowest variability. Thus, in 
the case of balanced pre-treatment data, our results are consistent with 
most existing literature, in that ANCOVA is a preferred method. This 
may not hold in situations with some degree of imbalance between 
treatment groups at baseline and different levels of pre-post correlation 
[12].

We also examine the robustness of these methods when the 
pre-post measures are simulated under CS versus HCS covariance 
structures. The data simulated under HCS produces the greatest effect 
on the ANOVA-CHANGE results, where treatment effect variances 
are particularly influenced at lower correlations. When pre and post 
treatment measures have equal variance and low correlation, ANOVA-
POST outperforms ANOVA-CHANGE, but as the imbalance between 
pre-post variance grows, the two methods perform similarly. In 
practical applications, when one does not have control over pre- 
and post- treatment variances, results demonstrate that one could 
reasonably expect ANOVA-CHANGE to consistently perform better 
than ANOVA-POST when ρ ≤ 0.5 regardless of equality of variances. 
When ρ ≤ 0.5, the best performing method will depend on the degree of 
equality of the variances in pre-and post-measurements. Nevertheless, 
both methods are still consistently outperformed by ANCOVA.

In our simulation study, the LMM approach performs only as well 
as ANOVA-POST. However, these simulations assume no missing 
data. In clinical trials evaluating patients over time, on the other hand, 
missing data are common (i.e. some patients are lost to follow-up and 
post-treatment measurements are never recorded). In such cases, the 
mechanism of missing data as defined by Little and Rubin [20], along 
with method of analysis are important in reaching unbiased results. 
When data are missing completely at random (MCAR), the method 
of analysis makes little difference, i.e. the generalized least squares 
(GLS) based methods and LMM should provide equivalent results [21]. 
However, in the case when data are missing at random (MAR), GLS 
can lead to biased inference on effects, whereas the LMM approach 
which relies on likelihood provides unbiased results when the within-
subject covariance matrix, Ri, is specified correctly [21]. When data are 
missing not at random (MNAR), all five methods may lead to biased 
results. Thus, conclusions made in this study with regards to the LMM 
approach compared to the other approaches hold only when data are 
MCAR or not missing. In the case of MAR data, LMM may be more 
optimal.

Conclusion
Despite decades of long scrutiny of this topic and our extensive 

simulation study under a wide range of scenarios, there still remain 
several avenues of future work. For example, in the clinical trials setting, 
there are often many more important covariates which are included 
to deal with baseline covariate imbalance. Additionally, this study 
assumed that the treatment assignment was random, which is usually 
the case in clinical trials, resulting in equal pre-treatment values among 
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treatment groups. As it was discussed in the introduction, results may 
differ when pre-treatment measures are unequal, particularly affecting 
the bias of ANCOVA-POST. Future work is needed to assess how 
ANCOVA-CHANGE as presented by Laird [14], performs under 
varying degrees of pre-treatment imbalance as in the simulation study 
performed by Egbewale [11]. Finally, these methods could be explored 
under the generalized linear mixed model framework with non-
Gaussian pre-post data.
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