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Introduction 
Reactive oxygen species (ROS) are generated during reactions of 

cellular metabolism. Small amounts of ROS are able to be scavenged 
by the antioxidant system in mammalians. However, under certain 
conditions, the production of ROS is enhanced and exceeds the 
physiological defense afforded by the antioxidant system, resulting 
in the disturbance of redox homeostasis, the state of which is defined 
as oxidative stress. ROS, as well as other electrophilic agents are 
considered to be responsible for cellular dysfunction as they disrupt 
intact structures of biomacromolecules, leading to DNA damage, lipid 
peroxidation and inactivation of enzymes [1,2]. For mankind, ROS 
are closely associated with a variety of pathological changes such as 
inflammation, necrosis, fibrosis and carcinogenesis. 

While the cytotoxic and genotoxic effect of reactive intermediates 
derived from drugs and toxitants via biotransformation were mostly 
brought upon by phase Ⅰ enzymes, endogenous antioxidants and 
phase Ⅱ enzymes abolish chemical insults mediated by electrophilic 
species and thereby function as detoxication system. Growing evidence 
indicates that increased activities and expression level of phase Ⅱ 
enzymes effectively reduce various noxious stimuli and contribute to 
cytoprotection [3].

Heme oxygenase-1 (HO-1) is a typical phase Ⅱ enzyme that 
catalyzes the breakdown of heme into equal amount of carbon 
monoxide (CO), biliverdin and iron. Compared with another two 
isoforms of heme oxygenase-HO-2 and HO-3, HO-1 tends to be 
“stress-responsive” as it is highly inducible by multiple stimuli 
including ischemia reperfusion, heavy metal, ultraviolet radiation and 
external toxicants [4,5]. HO-1 deficiency or inhibition of HO-1 activity 
by applying porphyrin products could aggravate cellular damage, 
which suggests that the adaptive induction of HO-1 confers protection 
against oxidative stress [6,7].

The Glutathione s-transferases (GSTs) constitute an integral part 
of phase Ⅱ reactions, which catalyze the conjugation of reduced 
glutathione (GSH) to electrophilic centers on a broad range of 
endogenous and exogenous substrates. The total result of metabolism 
mediated by GSTs is the transformation of these substrates into more 

polar and hydrophilic derivatives that could be easily eliminated 
[8]. Such a mechanism is frequently involved in detoxification, drug 
metabolism and tumor resistance. In mammalian cells, the GSTs 
have been identified as a superfamily of multifunctional isoenzymes, 
which consists of eight classes: Alpha, Mu, Pi, Sigma, Kappa, Zeta, 
Theta and Omega [9]. The Alpha class GSTs have higher reactivity 
towards lipid peroxidation products such as 4-hydroxynonenal and 
malondialdehyde [10].

NF-E2-related factor 2 (Nrf2), a member of basic leucine zipper 
(bZIP) transcription factors, is normally tethered in the cytoplasm to 
Kelch ECH Associating Protein 1 (Keap1). Under certain conditions, 
the Nrf2/Keap1 complex is disrupted, enabling translocation of Nrf2 
into the nucleus [11-13]. Nrf2 heterodimerizes with small Maf protein 
and binds to the antioxidant response element (ARE) located in the 
promoter region of genes encoding various Phase Ⅱ enzymes such 
as γ-glutamyl cysteine synthetase (γ-GCS), Heme oxygenase-1 (HO-
1), NAD(P)H:quinone reductase (NQO1), glutathione s-transferase 
(GST) [14,15]. Nrf2 deficiency would significantly decrease the basal 
expression level of these enzymes, thereby enhance susceptibility to the 
toxicities of electrophiles and oxidants [16,17].

Dimethylnitrosamine (DMN), a N-nitroso compound commonly 
occurring in cured food, tobacco products, alcoholic beverages as 
well as in industrial sewage, has potent hepatotoxicity in mammals. 
After oxidization catalyzed by CYP450 2E1, DMN is transformed into 
reactive oxygen intermediates, formaldehyde and methylating species 
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with the toxic effect of lipid peroxidation and DNA alkylation in liver 
tissue. Lifetime exposure to DMN could cause liver fibrosis and cancer, 
while short term administration at high dose could induce acute liver 
injury with pathologic changes of dilatate sinusoid, infiltration of 
inflammatory cells and submassive hemorrhagic necrosis [18,19].

Gallic acid (3,4,5-trihydroxybenzoicacid, GA) is a natural 
polyphenol abundant in various plant species, in which it exists as 
either free or bound form. Like other phenolic acids, GA possesses 
important pharmacological properties including anti-allergy, anti-
inflammation, anti-tumor and anti-radiation. Previous studies 
indicated that the molecular mechanisms of cytoprotection mediated 
by GA lie in elevation of antioxidant enzymes, inhibition of CYP450 
2E1, inhibition of nf-κb pathway [20,21]. However, to our knowledge, 
whether this cytoprotection is related to HO-1 and GSTα remains 
poorly understood. Here, we elucidate that GA attenuates DMN-
induced liver injury through Nrf2-mediated induction of HO-1 and 
GSTα.

Materials and Methods
Animals and reagents

Adult male Kunming mice (from the Animal Center of Dalian 
Medical University, Dalian, China), weighing 18-22 g were used in 
this experiment and they were housed under standard conditions 
(temperature of 22  ±  2℃, light/dark cycle of 12 h) with free access 
to food and water. All of the experimental protocols were performed 
in accordance with the local guidelines for the ethical treatment of 
experimental animals. GA and DMN were purchased from Sigma-
Aldrich (St.Louis, MO, USA). All other reagents were of analytical 
grade and obtained from commercial sources.

Treatment of animals 

Fifty Kun Ming male mice were randomly divided into five groups 
(n=10): control group; GA group at a dose of 100 mg/kg (H-GA group); 
DMN group; GA pretreatment group at a relatively low dose of 50 mg/
kg plus DMN injection (DMN+L-GA); GA pretreatment group at a 
relatively high dose of 100 mg/kg plus DMN injection (DMN+H-GA). 
GA was administered orally to mice twice daily for three consecutive 
days while the control group and DMN group received vehicle. Before 
each administration, GA was dissolved in 0.5% carboxymethylcellulose 
sodium. Acute liver injury was induced by a single intraperitoneal 
injection of DMN (30 mg/kg) twelve hours after the last oral 
administration. Twenty four hours later, blood sample was collected. 
Mice were then sacrificed and liver was quickly excised, rinsed in 
cold saline and stored correspondingly at appropriate conditions for 
different means of measurement.

Measurement of serum transaminase activities

The enzymatic activities of serum aspartate aminotransferase (AST), 
alanine aminotransferase (ALT) were measured using commercially 
available kits (Nanjing Jiancheng Corp., China) according to the 
manufacturer’s instructions and expressed in IU/L.

Superoxide dismutase (SOD), glutathione peroxidase (GSH-px) 
and total glutathione s-transferases (GSTs) activity.Liver tissues were 
homogenized in 9 volumes of ice-cold physiological saline, followed 
by centrifugation at 1200 rpm for 10 minutes at 4℃. Activities of 
SOD, GSH-px and GSTs in the supernatants were determined using 
commercial assay kits (Nanjing Jiancheng Corp,China) according to 
the manufacturer’s instructions and expressed as U/mgprot, U/gprot, 
U/mgprot, respectively.

Assessment of lipid peroxidation 

MDA in liver homogenate was assessed by the reaction with 
thiobarbituric acid(TBA) and used as an index of lipid peroxidation. 
The measurement was performed by using a MDA assay kit (Nanjing 
Jiancheng Corp, China). The result was expressed as nmol/mgprot.

Determination of reduced glutathion (GSH)

The hepatic GSH content was determined using an assay 
kit(Nanjing Jiancheng Corp., China).The result was given in mg/gprot.

Histopathological evaluation

Defined sections of liver tissues in all groups were fixed with 10% 
buffered formalin and embedded in paraffin blocks. Sections of 5-μm 
were cut, mounted on glass slides and stained with hematoxylin-eosin 
according to standard procedures. The slides were then examined 
under a light microscopy to assess the degree of liver damage.

Immuno histo chemical

Immuno histo chemical analysis of hepatic HO-1 Sections of liver 
specimens were dewaxed in xylene and gradient concentrations of 
ethanol, cultured in 0.3% hydrogen peroxide for 25 min to eliminate 
endogenous peroxidase. After heat-induced antigen retrieval, slides 
were blocked with normal goat serum for 15 min, then incubated 
overnight at 4℃ with monoclonal rabbit anti-mouse HO-1 antibody 
(ABCAM, 1:400 dilution). Slides were further treated with biotinylated 
anti-rabbit immunoglobulin as a secondary antibody for 15 min at 
37℃. Afterwards, the horseradish peroxidase labeled streptomycin-
avidin complex was used to detect the secondary antibody. Finally, 
slides were stained with 3,3’-diaminobenzidine and counterstained 
with hematoxylin before being examined under a light microscope. 
The results were evaluated semi-quantitatively according to the 
percentage of positive cells in 5 high power fields at 400 multiple signal 
magnification: 0, less than 5%; 6% -25%; 26% -50%; 51% -75%; [22].

Western blot analysis of Nrf2, HO-1 and GSTA3

To prepare the nuclear and cytosolic extracts, the liver homogenate 
obtained was allowed to swell on ice for 5 min, from which the 
supernatant was collected. Samples were centrifuged at 500 g for 3 min, 
the cell pellet was allowed to swell on ice for 15 min after addition of 
200 μl of hypotonic buffer A. Samples were centrifuged at 16,000 g for 
5 min after addition of 11 μl of hypotonic buffer B, and the supernatant 
containing cytosolic protein was stored at - 80℃. The pellet was 
resuspended in hypotonic buffer C and incubated on ice for 40 min. 
Cellular debris was removed by centrifugation at 16,000 g for 10 min 
at 4℃, and the supernatant containing nuclear protein was stored at - 
80℃. These extracts containing certain amounts of nuclear or cytosolic 
protein as determined by the bicinchoninic acid (BCA) method were 
subjected to Western blot analysis. Equal amounts of protein samples 
(50 μg/well, cytoplasmic protein for HO-1 and GSTA3, nuclear 
protein for Nrf2) were separated on 15% SDS-polyacrylamide gels. 
After electrophoresis, the gels were electrotransferred onto PVDF 
membranes, which were then blocked with 5% skim milk in phosphate-
buffered saline (PBS) containing 0.1% Tween 20 (PBS-T). After 
washing with TBS-T, membranes were probed overnight at 4℃ with 
primary antibodies for HO-1, GSTA3 and Nrf2 (all at 1:1000 dilution). 
GAPDH and Histone H3.1 were also detected with appropriate 
primary antibodies to ensure equal loading of cytoplasmic and nuclear 
proteins, respectively. Horseradish peroxidase-conjugated secondary 
antibodies (all at 1:2000 dilution) were then applied to membranes and 
the blot was developed with a DAB assay kit. The expression level of 
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each protein was determined by analyzing the signal captured on the 
membrane using a gel imaging system.

Statistical analyses

All values are expressed as mean  ±  SEM. Statistical comparisons 
were made by means of a one-way ANOVA test, followed by Student-
Newman-Keuls (SNK) test. In each case, a difference was considered 
significant when P was less than 0.05. All the statistics were carried out 
in SPSS 17.0.

Result
Activities of serum ALT and AST

DMN administration caused 4-fold and 3-fold increment in 
serum ALT and AST activities, respectively (Table 1). However, GA 
pretreatment at doses of 50 and 100 mg/kg prior to DMN challenge was 
observed to dose-dependently reverse the elevation in the activities of 
these two serum transaminases. In addition, there were no significant 
differences between the group treated with 100 mg/kg GA alone and 
the control group.

Activities of hepatic SOD and GPx

The activities of hepatic SOD and GPX in each group are shown 
in Table 2. Compared with the control group, DMN administration 
caused significant reduction in both SOD and GPX activities, whereas 
this reduction was dose-dependently attenuated as a result of GA 
pretreatment. Significant differences could be observed between the 
DMN group and the group pretreated with 100 mg/kg of GA. On the 
other hand, administration of GA alone could significantly increase the 
activities of these antioxidant enzymes in normal mice when compared 
with those administered with vehicle alone.

MDA content in liver tissues

Figure 1 shows the degree of lipid peroxidation by measuring one 
of its end products, malondialdehyde (MDA). Acute DMN intoxication 
significantly increased the level of liver MDA. However, low-dose GA 
pretreatment inhibited the oxidative stress to a certain degree, although 
the difference was not statistically significant. High-dose GA apparently 
had the MDA level returned to normalcy.

Level of hepatic reduced GSH

The changes in hepatic reduced GSH content of each group are 
depicted in Figure 2. In comparison with the basal value of the control group, the oxidative stress caused by DMN dramatically depleted 

intracellular GSH; pretreatment with GA significantly altered the 
reduction of GSH in dose-dependent manner. GA also induced the 
elevation of GSH level in normal mice.

Activities of total GSTs in mice livers

The activities of total GST in liver tissues were studied in the 
present study. No significant difference in the enzyme activity was 
found between the control group and the DMN group (Table 3). Our 
data also shows that high-dose pretreatment of GA markedly enhanced 
the liver GST activity in DMN intoxicated mice. Similar effect was 
observed in mice administered with GA alone when compared with 
those in the control group.

Pathological alterations of liver tissues

Figure 3 depicts hematoxylin and eosin stained sections of the liver. 
Panel A represents the normal architecture of hepatic parenchyma in 
the control group. Panel C shows a DMN-challenged liver, characterized 
by evident dilatation of centrilobular sinusoids, significant infiltration 
of inflammatory cells as well as massive hemorrhage. Hepatic cords 

Figure 1: Level of hepatic malondialdehyde (MDA) in different groups (¯x ± s, 
n=10). *p<0.01 vs control group, #p<0.01 vs DMN group.

Figure 2: Hepatic reduced GSH content in different groups (¯x ± s, n=10). 
&p<0.01 vs control group, *p<0.01 vs control group, ##p<0.05 vs DMN group.

Group ALT (IU/L) AST (IU/L)
Control 63.25 ± 10.43 174.07 ± 41.71
GA only 57.38 ± 10.91 168.05 ± 45.26

DMN 327.38 ± 49.66* 522.53 ± 149.87*
L-GA+DMN 206.25 ± 39.79# 303.32 ± 58.28#

H-GA+DMN 93.38 ± 15.06# 247.10 ± 62.04#

*p<0.01 vs control group, #p<0.01 vs DMN group

Table 1: Activities of serum ALT and AST in different groups (¯x ± s, n=10).

Group SOD (U/mgprot) GSH-px(U/gprot)
Control 143.21 ± 15.13 293.18 ± 45.20
GA only 163.27 ± 16.63& 360.98 ± 69.63&

DMN 124.65 ± 17.78* 227.91 ± 24.68*
L-GA+DMN 136.80 ± 19.12## 284.57±42.22##

H-GA+DMN 146.61 ± 14.47## 338.78 ± 65.25##

&p<0.01 vs control group, *p<0.01 vs control group, ##p<0.05 vs DMN group

Table 2: Activities of hepatic SOD and GPx in different groups (¯x ±s, n=10).
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were commonly disrupted. Signs of karyorrhexis, nuclear pyknosis 
hypereosinophilic cytoplasm were obvious in the affected area. In 
contrast, pretreatment of GA (100 mg/kg) resulted in a significant 
amelioration of hepatic injury (Panel D). GA administration alone 
caused no appreciable changes in liver histology (Panel B).

Immunohistochemical analysis for hepatic HO-1

As shown in (Figures 4 and 5) samples from the DMN group as 
well as the GA alone treated group both showed strong brown staining 
in cytoplasm when compared with samples obtained from the control 
group. An even higher increase in the expression level of HO-1 could be 
observed in the group of GA pretreatment plus DMN challenge, which 
was possibly due to the synergistic upregulation of these two agents.

Western blot analysis for hepatic Nrf2, HO-1 and GSTA3

Because nuclear translocation of Nrf2 is responsible for the 
transcription of its target genes including HO-1 and GSTA3, Nrf2 
protein in the nuclear extracts was evaluated. Western blot analysis 
showed minimal Nrf2 signals in the control group. In contrast, an 
evident increase of Nrf2 expression was found in the DMN group, 
perhaps resulting from cellular response to DMN-induced oxidative 
stress, since oxidative stress may lead to activation of Nrf2-ARE 
signaling. GA also induced nuclear accumulation of Nrf2 in normal 
mice. Moreover, the signals were even more reinforced in the group of 
GA pretreatment plus DMN challenge when compared with the DMN 
group (Figure 6). We next examined the expression level of HO-1 and 
GSTA3 in liver tissues. Our results showed that the expression of these 
two phase 2 enzymes has a good correlation with the degree of Nrf2 

translocation, indicating that Nrf2 plays an essential role in mediating 
the expression of HO-1 and GSTA3 in this model (Figure 7).

Discussion
Chronic Liver disease is one of the leading causes of death 

worldwide. Acute liver failure, although rarely occurred, remains 
a rapidly progressive and frequently fatal condition. While 
dimethylnitrosamine is prevalently applied for the induction of liver 
cirrhosis and hepatocellular carcinoma, administration in high dose 
by single intraperitoneal injection could induce acute liver injury 
which is characterized by massive hemorrhagic necrosis that resembles 
human fulminant hepatitis [23]. This model is also considered to 
be appropriate for investigation of early events in the development 
of fibrosis [19,24,25]. Our preliminary experiments showed that a 
single intraperitoneal dose of DMN at 30 mg/kg could effectively 
induce acute liver injury and ensure the survival of all mice 24h after 
DMN exposure. Histological examination revealed that DMN caused 

Group GST (U/mgprot)
Control 22.72 ± 3.75
GA only 124.65 ± 17.78*

DMN 19.87 ± 3.27
L-GA+DMN 23.72 ± 3.89
H-GA+DMN 28.66 ± 2.23#

Table 3: Activities of hepatic GSTs in different groups (x¯ ± s, n=10). &p<0.01 vs 
control group, ##p<0.05 vs DMN group

 

Figure 3: Changes in histology of liver in different groups. (a) Control group, 
without any sign of liver injury. (b) Treatment of GA alone (100 mg/kg), without 
any sign of liver injury. (c) DMN group, dilatated centrilobular sinusoids, 
hemorrhage, necrosis and infiltration with inflammatory cells. (d) Pretreatment 
of GA (100 mg/kg) plus DMN challenge. Significant amelioration of liver injury 
induced by DMN.

 

Figure 4: Immunohistochemical staining of hepatic HO-1 in different groups. 
(a) Control group (b) Treatment of GA alone (100 mg/kg) (c) DMN group (d) 
Pretreatment of GA (100 mg/kg) plus DMN.

Figure 5: Immunohistochemical results (semi-quantitative analysis) of hepatic 
HO-1 in different groups. &p<0.01 vs control group, *p<0.01 vs control group, 
#p<0.01 vs DMN group.
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widespread damage of liver morphology as evidenced by disrupted 
hepatic cords, karyorrhexis and nuclear pyknosis. Enhanced lipid 
peroxidation expressed in terms of MDA contents was also observed. 
Loss of the functional integrity of cell membranes further led to the 
leakage of transaminases into blood circulation. In addition, DMN 
intoxication significantly decreased cellular antioxidant defense, both 
enzymatic and non-enzymatic.

Gallic acid has been identified as active component in numerous 
herbal extracts which are traditionally used for medicinal purposes. 
In the present investigation, pretreatment of gallic acid exhibited a 
remarkable hepatoprotective effect against DMN-induced hepatic 
damage. Specifically, elevated transaminase activities and MDA level 
were decreased in GA-pretreated group. Activities of antioxidant 
enzymes such as SOD and GSH-px which are critical in scravenging 
O2•

- were significantly enhanced. These changes were consistent with 
a relatively well preserved histological structure of liver specimen, 
namely, reduced hemorrhage and necrosis as well as less occurrence 
of karyorrhexis and nuclear pyknosis. Similar results were reported 
in previous studies in which GA exerted hepatoprotective effect 
against acetaminophen or CCl4-induced liver injury [20,26]. While 
mechanistic investigations on GA-mediated hepatoprotection put 
much emphasis on the inhibitory effect of CYP2E1, whether this 
therapeutic mechanism involves the induction of phaseⅡ enzymes 
remains to be elucidated. HO-1 is the rate limiting enzyme which 
catalyzes the breakdown of heme into carbon monoxide CO),free 
iron and biliverdin, the latter being subsequently converted into 
bilirubin by biliverdin reductase (BVR). It is well documented that 
upregulation of HO-1 expression level plays pivotal role in cellular 
defense against various noxious stimuli and this cytoprotection can be 
attributed to its metabolic products mentioned above [3,4]. Bilirubin, 

although previously regarded as useless or toxic products, has now 
been recognized as an important endogenous antioxidant. Thomas and 
coworkers demonstrated that bilirubin depletion by silencing BVR or 
HO-1 gene caused increased oxidative stress and damage in endothelial 
cell challenged by LPS [27]. CO plays a protective role in the complex 
web of inflammation. Briefly, CO enables the inhibition of nf-κb 
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pathway which regulates the expression of many inflammatory genes 
encoding iNOS, COX-2, TNF, etc [28]. Judging from our histological 
sections, inflammatory response in GA-pretreated liver injury group 
is eminently decreased, which might imply that higher level of CO 
is generated due to enhanced expression of HO-1 induced by GA. 
Ferritin, the Fe2+ sequestering protein, however, does not necessarily 
contribute to cytoprotection [29]. In our study, both western blotting 
and immunohistochemistry analysis showed that murine liver has the 
potentiality to defend against DMN intoxication by slightly increasing 
HO-1 level and pharmacological induction by GA further enhanced 
this hepatoprotection.

The GSTs are a family of broad-specificity enzymes that achieve 
detoxification through several distinct mechanisms, including catalytic 
inactivation of electrophilic agents through conjugation with GSH; 
glutathione peroxidase activity toward lipid peroxidation products; 
non-catalytic ligand binding for facilitating the intracellular transport 
of certain lipophilic compounds [8]. Among the GST gene families, the 
alpha class of GSTs has been reported to contribute to a major portion 
of the selenium-independent glutathione peroxidase activity towards 
hydroperoxides of phosphatidylcholine and fatty acid [30]. GSTα also 
exhibits conjugation activity towards substrates like 4-HNE, a stable 
lipid peroxidation product leading to secondary oxidation and adduct 
formation in biomacromolecules [10]. Investigations of tissue-specific 
expression of GST isoenzymes showed that compared with another 
two members of GSTα enzymes, GSTα3 is most highly expressed in 
mice liver [31]. Therefore, we carried out GSTα3 protein analysis and 
demonstrated that the inhibition of lipid peroxidation in GA-preteated 
liver injury group has a good correlation with increased expression of 
GSTα3. However, GSTα does not utilize H2O2 as a substrate. Selenium-
dependent GSH-px is responsible for the reduction of H2O2 and 
several lipid hydroperoxides, generating free water and corresponding 
alcohols, respectively. In our study, GA enhanced selenium-dependent 
GSH-px activity in liver homogenate. Taken together, with more 
abundant GSH to utilize, elevation of total GST and GSH-px activity 
as well as increased expression of GSTα3 significantly inhibit DMN-
induced oxidative damage in GA-pretreated liver injury group.

Nrf2-ARE pathway, which plays an essential role in mediating the 
global expression of phase 2 and antioxidative enzyme, has recently 
received overwhelming research attention. Loss of nrf2 would result 
in severely impaired detoxifying machinery and completely abrogate 
the protective efficacy of chemopreventive agents [3,16,17,32]. In our 
study, DMN group had a higher level of nuclear nrf2, which suggested 
that to a certain extent, cellular defense is able to act in concert to resist 
harmful reactive intermediates formed from DMN. Conflicting results 
were obtained by Kyung and coworkers who measured nuclear nrf2 
level on the 15th day after DMN acute intoxication [24]. However, 
Yang et al. investigated the dynamic expression of nuclear nrf2 in bile 
duct ligated mice over a 28-day period and found that nuclear nrf2 
expression exhibited a transient increase over the first 7 days, followed 
by a fall for the rest of the period [33]. Because the ARE binding and 
transactivation is also regulated by other bZIP members, some of 
which (e.g., Bach1, c-maf) suppress ARE-mediated gene expression, 
the functional outcome depends on the balance of these proteins. Our 
results also showed that GA increased nuclear accumulation of Nrf2, 
providing extra cytoprotection for cellular defense against oxidative 
stress. Mechanism involved in GA-mediated induction of nuclear nrf2, 
confirmed by Yeh et al. in a vitro study, is associated with its influence 
on the p38 MAPK pathway [34].

In conclusion, we demonstrated that pretreatment with GA 
attenuated DMN-induced acute liver injury, which might be attributed 
to its capability of inducing nrf2 translocation and subsequent 

expression of HO-1 and GSTα3. Post-treatment could reveal the 
therapeutic value, however, the interest is commonly discouraged 
possibly because the acute toxicity brought upon by DMN is almost 
fatal. In fact, to our knowledge, pretreatment is more often employed 
in experimental injury models, especially in acute cases. Also, 
pretreatment might effectively reveal the negative correlation between 
dietary intake of phytochemicals and the incidence of chronic diseases 
like cancer [35-49].
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