Increased Cortical Thickness in Male-to-Female Transsexualism

Abstract

Background: The degree to which one identifies as male or female has a profound impact on one’s life. Yet, there is a limited understanding of what contributes to this important characteristic termed gender identity. In order to reveal factors influencing gender identity, studies have focused on people who report strong feelings of being the opposite sex, such as male-to-female (MTF) transsexuals. Method: To investigate potential neuroanatomical variations associated with transsexualism, we compared the regional thickness of the cerebral cortex between 24 MTF transsexuals who had not yet been treated with cross-sex hormones and 24 age-matched control males. Results: Results revealed thicker cortices in MTF transsexuals, both within regions of the left hemisphere (i.e., frontal and orbito-frontal cortex, central sulcus, perisylvian regions, paracentral gyrus) and right hemisphere (i.e., pre-/post-central gyrus, parietal cortex, temporal cortex, precuneus, fusiform, lingual, and orbito-frontal gyrus). Conclusion: These findings provide further evidence that brain anatomy is associated with gender identity, where measures in MTF transsexuals appear to be shifted away from gender-congruent men.

Share and Cite:

E. Luders, F. Sánchez, D. Tosun, D. Shattuck, C. Gaser, E. Vilain and A. Toga, "Increased Cortical Thickness in Male-to-Female Transsexualism," Journal of Behavioral and Brain Science, Vol. 2 No. 3, 2012, pp. 357-362. doi: 10.4236/jbbs.2012.23040.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Garcia-Falgueras and D. F. Swaab, “A Sex Difference in the Hypothalamic Uncinate Nucleus: Relationship to Gender Identity,” Brain, Vol. 131, No. 12, 2008, pp. 3132-3146. doi:10.1093/brain/awn276
[2] L. E. Emory, D. H. Williams, C. M. Cole, E. G. Amparo and W. J. Meyer, “Anatomic Variation of the Corpus Callosum in Persons with Gender Dysphoria,” Archives of Sexual Behavior, Vol. 20, No. 4, 1991, pp. 409-417. doi:10.1007/BF01542620
[3] J. N. Zhou, M. A. Hofman, L. J. Gooren and D. F. Swaab, “A Sex Difference in the Human Brain and Its Relation to Transsexuality,” Nature, Vol. 378, No. 6552, 1995, pp. 68-70. doi:10.1038/378068a0
[4] F. P. Kruijver, J. N. Zhou, C. W. Pool, M. A. Hofman, L. J. Gooren and D. F. Swaab, “Male-to-Female Transsexuals have Female Neuron Numbers in a Limbic Nucleus,” Journal of Clinical Endocrinology & Metabolism, Vol. 85, No. 5, 2000, pp. 2034-2041. doi:10.1210/jc.85.5.2034
[5] G. Rametti, B. Carrillo, E. Gómez-Gil, C. Junque, S. Segovia, A. Gomez, et al., “White Matter Microstructure in Female to Male Transsexuals before Cross-Sex Hormonal Treatment. A Diffusion Tensor Imaging Study,” Journal of Psychiatric Research, Vol. 45, No. 3, 2011, pp. 199-204. doi:10.1016/j.jpsychires.2010.05.006
[6] E. Luders, F. J. Sánchez, C. Gaser, A. W. Toga, K. L. Narr, L. S. Hamilton, et al., “Regional Gray Matter Variation in Male-to-Female Transsexualism,” NeuroImage, Vol. 46, No. 4, 2009, pp. 904-907. doi:10.1016/j.neuroimage.2009.03.048
[7] J. Herbert, “Who Do We Think We Are? The Brain and Gender Identity,” Brain, Vol. 131, No. 12, 2008, 3115-3117. doi:10.1093/brain/awn257
[8] H. E. Hulshoff Pol, P. T. Cohen-Kettenis, N. E. M. Van Haren, J. S. Peper, R. G. H. Brans, W. Cahn, et al., “Changing Your Sex Changes Your Brain: Influences of Testosterone and Estrogen on Adult Human Brain Structure,” European Journal of Endocrinology, Vol. 155, No. S1, 2006, pp. S107-S114. doi:10.1530/eje.1.02248
[9] L. N. Robins, J. Wing, H. U. Wittchen, J. E. Helzer, T. F. Babor, J. Burke, et al., “The Composite International Diagnostic Interview: An Epidemiologic Instrument Suitable for Use in Conjunction with Different Diagnostic Systems and in Different Cultures,” Archives of General Psychiatry, Vol. 45, No. 12, 1988, pp. 1069-1077.
[10] B. K. Jordan, M. Jain, S. Natarajan, S. D. Frasier and E. Vilain, “Familial Mutation in the Testis-Determining Gene SRY shared by an XY Female and Her Normal Father,” Journal of Clinical Endocrinology & Metabolism, Vol. 87, No. 7, 2002, pp. 3428-3432. doi:10.1210/jc.87.7.3428
[11] J. C. Mazziotta, R. Woods, M. Iacoboni, N. Sicotte, K. Yaden, M. Tran, et al., “The Myth of the Normal, Average Human Brain—The ICBM Experience: (1) Subject Screening and Eligibility,” NeuroImage, Vol. 44, No. 3, pp. 914-922. doi:10.1016/j.neuroimage.2008.07.062
[12] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg and R. M. Leahy, “Magnetic Resonance Image Tissue Classification Using a Partial Volume Model,” NeuroImage, Vol. 13, No. 5, 2001, pp. 856-876. doi:10.1006/nimg.2000.0730
[13] P. L. Bazin and D. L. Pham, “Statistical and Topological Atlas Based Brain Image Segmentation,” Proceedings of the 9th International Conference on Medical Image Computing and Computer Assisted Intervention, 2007, pp. 94-101.
[14] C. Xu, X. Han and J. L. Prince, “Improving Cortical Surface Reconstruction Accuracy Using an Anatomically Consistent Gray Matter Representation,” Proceedings of 6th International Conference on Functional Mapping of the Human Brain, Academic Press, San Diego, 2000, p. S581.
[15] X. Han, D. L. Pham, D. Tosun, M. E. Rettmann, C. Xu and J. L. Prince, “CRUISE: Cortical Reconstruction Using Implicit Surface Evolution,” NeuroImage, Vol. 23, No. 3, 2004, pp. 997-1012. doi: 10.1016/j.neuroimage.2004.06.043
[16] C. Xu and J. L. Prince, “Snakes, Shapes, and Gradient Vector Flow,” IEEE Transactions on Image Processing, Vol. 7, No. 3, pp. 359-369. doi:10.1109/83.661186
[17] D. Tosun, S. Duchesne, Y. Rolland, A. W. Toga, M. Verin and C. Barillot, “3-D Analysis of Cortical Morphometry in Differential Diagnosis of Parkinson’s Plus Syndromes: Mapping Frontal Lobe Cortical Atrophy in Progressive Supranuclear Palsy Patients,” Medical Image Computing & Computer-Assisted Intervention, Vol. 10, No. 2, 2007, pp. 891-899. doi: 10.1007/978-3-540-75759-7_108
[18] C. J. Holmes, R. Hoge, L. Collins, R. Woods, A. W. Toga, and A. C. Evans, “Enhancement of MR Images Using Registration for Signal Averaging,” Journal of Computer Assisted Tomography, Vol. 22, No. 2, pp. 324-333.
[19] D. Tosun and J. L. Prince, “Cortical Surface Alignment Using Geometry Driven Multispectral Optical Flow,” Information Processing in Medical Imaging, Vol. 3565, 2005, pp. 519-531. doi:10.1007/11505730_40
[20] D. Tosun, M. E. Rettmann and J. L. Prince, “Mapping Techniques for Aligning Sulci across Multiple Brains,” Medical Image Analysis, Vol. 8, No. 3, 2004, pp. 295-309. doi:10.1016/j.media.2004.06.020
[21] Y. Benjamini and Y. Hochberg, “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing,” Journal of the Royal Statistical Society, Series B, Vol. 57, No. 1, 1995, pp. 289-300.
[22] K. Im, J. M. Lee, J. Lee, Y. W. Shin, I. Y. Kim, J. S. Kwon, et al., “Gender Difference Analysis of Cortical Thickness in Healthy Young Adults with Surface-Based Methods,” NeuroImage, Vol. 31, No. 1, 2006, pp. 31-38. doi:10.1016/j.neuroimage.2005.11.042
[23] E. Luders, K. L. Narr, P. M. Thompson, D. E. Rex, R. P. Woods, H. DeLuca, et al., “Gender Effects on Cortical Thickness and the Influence of Scaling,” Human Brain Mapping, Vol. 27, No. 4, 2006, pp. 314-324. doi:10.1002/hbm.20187
[24] B. Lv, J. Li, H. He, M. Li, M. Zhao, L. Ai, et al., “Gender Consistency and Difference in Healthy Adults Revealed by Cortical Thickness,” NeuroImage, Vol. 523, No. 2, 2010, pp. 373-382. doi:10.1016/j.neuroimage.2010.05.020
[25] E. R. Sowell, B. S.Peterson, E. Kan, R. P. Woods, J. Yoshii, R. Bansal, et al., “Sex Differences in Cortical Thickness Mapped in 176 Healthy Individuals between 7 and 87 Years of Age,” Cerebral Cortex, Vol. 17, No. 7, 2007, pp. 1550-1560. doi:10.1093/cercor/bhl066
[26] K. L. Narr, R. M. Bilder, A. W. Toga, R. P. Woods, D. E. Rex, P. R. Szeszko, et al., “Mapping Cortical Thickness and Gray Matter Concentration in First Episode Schizophrenia,” Cerebral Cortex, Vol. 15, No. 6, 2005, pp. 708-719. doi:10.1093/cercor/bhh172
[27] A. B. Wisniewski, M. T. Prendeville and A. S. Dobs. “Handedness, Functional Cerebral Hemispheric Lateralization, and Cognition in Male-to-Female Transsexuals Receiving Cross-Sex Hormone Treatment,” Archives of Sexual Behavior, Vol. 34, No. 2, 2005, pp. 167-172. doi:10.1007/s10508-005-1794-x
[28] I. Savic and P. Lindstrom, “PET and MRI Show Differences in Cerebral Asymmetry and Functional Connectivity between Homo- and Heterosexual Subjects,” Proceedings of the National Academy of Sciences, Vol. 105, No. 27, 2008, pp. 9403-9408. doi:10.1073/pnas.0801566105
[29] I. Savic and S. Arver, “Sex Dimorphism of the Brain of Male-to-Female Transsexuals,” Cerebral Cortex, Vol. 21, No. 11, 2011, pp. 2525-2533. doi:10.1093/cercor/bhr032
[30] F. J. Sánchez and E. Vilain, “Collective Self-Esteem as a Coping Resource for Male-to-Female Transsexuals,” Journal of Counseling Psychology, Vol. 56, No. 1, 2009, pp. 202-209. doi:10.1037/a0014573

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.