Absence of Nitric Oxide Synthase 3 Increases Amyloid β-Protein Pathology in Tg-5xFAD Mice

Abstract

Aim: The abnormal accumulation, assembly and deposition of the amyloid β-protein (Aβ) are prominent pathological features of patients with Alzheimer’s disease (AD) and related disorders. A number of factors in the brain can influence Aβ accumulation and associated pathologies. The aim of the present study was to determine the consequences of deleting nitric oxide synthase (NOS) 3, the endothelial form of NOS, in Tg-5xFAD mice, a model of parenchymal AD-like amyloid pathology. Methods: Tg-5xFAD mice were bred with NOS3-/- mice. Cohorts of Tg-5xFAD mice and bigenic Tg-5xFAD/NOS3-/- mice were aged to six months followed by collection of the blood and brain tissues from the mice for biochemical and pathological analyses. Results: ELISA analyses show that the absence of NOS3 results in elevated levels of cerebral and plasma Aβ peptides in Tg-5xFAD mice. Immunohistochemical analyses show that the absence of NOS3 increased the amount of parenchymal Aβ deposition and fibrillar amyloid accumulation in Tg-5xFAD mice. The elevated levels of Aβ were not due to changes in the expression levels of transgene encoded human amyloid precursor protein (APP), endogenous β-secretase, or increased proteolytic processing of APP. Conclusions: The results from this study suggest that the loss of NOS3 activity enhances Aβ pathology in Tg-5xFAD mice. These findings are similar to previous studies of NOS2 deletion suggesting that reduced NOS activity and NO levels enhance amyloid-associated pathologies in human APP transgenic mice.

Share and Cite:

Z. Hu, A. Kotarba and W. Nostrand, "Absence of Nitric Oxide Synthase 3 Increases Amyloid β-Protein Pathology in Tg-5xFAD Mice," Neuroscience and Medicine, Vol. 4 No. 2, 2013, pp. 84-91. doi: 10.4236/nm.2013.42013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Alzheimer’s Association, “Alzheimer’s Disease Facts and Figures,” Alzheimer’s and Dementia: The Journal of the Alzheimer’s Association, Vol. 8, No. 2, 2012, pp. 131-168. doi:10.1016/j.jalz.2012.02.004
[2] D. J. Selkoe, “Alzheimer’s Disease: Genes, Proteins and Therapy,” Physiological Reviews, Vol. 8, 2001, pp. 741-766.
[3] J. Hardyand D. J. Selkoe, “The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics,” Science, Vol. 297, No. 5580, 2002, pp. 353-356. doi:10.1126/science.1072994
[4] A. A. Rensink, R. M. de Waal, B. Kremer and M. M. Verbeek “Pathogenesis of Cerebral Amyloid Angiopathy,” Brain Research Brain Research Reviews, Vol. 43, No. 2, 2003, pp. 207-223. doi:10.1016/j.brainresrev.2003.08.001
[5] J. Attems, K. Jellinger, D. R. Thal and W. Van Nostrand, “Sporadic Cerebral Amyloid Angiopathy,” Neuropathology Applied Neurobiology, Vol. 37, No. 1, 2011, pp. 75-93. doi:10.1111/j.1365-2990.2010.01137.x
[6] J. Kang, et al. “The Precursor of Alzheimer's Disease Amyloid A4 Protein Resembles a Cell-Surface Receptor,” Nature, Vol. 325, 1987, pp. 733-736. doi:10.1038/325733a0
[7] R. E. Tanzi, et al., “Amyloid ß Protein Gene: cDNA, mRNA Distribution and Genetic Linkage near the Alzheimer’s Locus,” Science, Vol. 235, No. 4791, 1987, pp. 880-884. doi:10.1126/science.2949367
[8] R. Vassar, et al., “ß-Secretase Cleavage of the Alzheimer’s Precursor Protein by the Transmembrane Aspartic Protease BACE,” Science, Vol. 286, No. 5440, 1999, pp. 735-741. doi:10.1126/science.286.5440.735
[9] B. De Strooper, B., et al., “Deficiency of Presenilin-1 Inhibits the Normal Cleavage of Amyloid Precursor Protein,” Nature, Vol. 391, 1998, pp. 387-390. doi:10.1038/34910
[10] M. S. Wolfe, et al. “Two Transmembrane Aspartates in Presenilin-1 Required for Presenilin Endoproteolysis and a Secretase Activity,” Nature, Vol. 398, 1999, pp. 513-517. doi:10.1038/19077
[11] K. D. Kroncke, C. V. Fehsel and V. Kolb-Bachofen, “Implications of Inducible Nitric Oxide Synthase Expression and Enzyme Activity,” Antioxidant Redox & Signaling, Vol. 2, No. 3, 2000, pp. 585-605. doi:10.1089/15230860050192341
[12] D. A. Wink, et al. “Mechanisms of the Antioxidant Effects of Nitric Oxide,” Antioxidants Redox & Signaling, Vol. 3, No. 2, 2001, pp. 203-213. doi:10.1089/152308601300185179
[13] W. A. Pryor and G. L. Squadrito, “The Chemistry of Peroxynitrite: A Product from the Reaction of Nitric Oxide with Superoxide,” American Journal of Physiology, Vol. 268, 1995, pp. 699-722.
[14] P. Pacher, J. S. Beckman and L. Liaudet, “Nitric Oxide and Peroxynitrite in Health and Disease,” Physiological Reviews, Vol. 87, No. 1, 2007, pp. 315-424. doi:10.1152/physrev.00029.2006
[15] C. Iadecola, “Bright and Dark Sides of Nitric Oxide in Ischemic Brain Injury,” Trends in Neuroscience, Vol. 20, No. 3, 1997, pp. 132-139. doi:10.1016/S0166-2236(96)10074-6
[16] I. N. Mungrue, D. S. Bredt, D. J. Stewart and M. Husain, “From Molecules to Mammals: What’s NOS Got to Do with It?” Acta Physiologica Scandinavica, Vol. 179, No. 2, 2003, pp. 123-35. doi:10.1046/j.1365-201X.2003.01182.x
[17] U. Forstermann and W. C. Sessa, “Nitric Oxide Synthases: Regulation and Function,” European Heart Journal, Vol. 33, No. 7, 2012, pp. 829-837. doi:10.1093/eurheartj/ehr304
[18] C. A. Colton, et al., “NO Synthase 2 (NOS2) Deletion Promotes Multiple Pathologies in a Mouse Model of Alzheimer’s Disease,” Proceedings of the National Academy of Sciences USA, Vol. 103, No. 34, 2006, pp. 12867-12872. doi:10.1073/pnas.0601075103
[19] D. M. Wilcock, et al., “Progression of Amyloid Pathology to Alzheimer’s Disease Pathology in an Amyloid Precursor Protein Transgenic Mouse Model by Removal of Nitric Oxide Synthase 2,” Journal of Neuroscience, Vol. 28, 2008, pp. 1537-1545. doi:10.1523/JNEUROSCI.1090-04.2004
[20] S. A. Austin, A. V. Santhanam and Z. S. Katusic, “Endothelial Nitric Oxide Modulates Expression and Processing of Amyloid Precursor Protein,” Circulation Research, Vol. 107, 2010, pp. 1498-1502. doi:10.1161/CIRCRESAHA.110.233080
[21] H. Oakley, et al., “Intraneuronal Beta-Amyloid Aggregates, Neurodegeneration and Neuron Loss in Transgenic Mice with Five Familial Alzheimer’s Disease Mutations: Potential Factors in Amyloid Plaque Formation,” Journal of Neuroscience, Vol. 26, No. 40, 2006, pp. 10129-10140. doi:10.1523/JNEUROSCI.1202-06.2006
[22] K. Johnson-Wood, et al., “Amyloid Precursor Protein Processing and A坆 Deposition in a Transgenic Mouse Model of Alzheimer’s Disease,” Proceedings of the National Academy of Sciences USA, Vol. 94, No. 4, 1997, pp. 1550-1555. doi:10.1073/pnas.94.4.1550
[23] R. B. DeMattos, et al., “Clusterin Promotes Amyloid Plaque Formation and Is Critical for Neuritic Toxicity in a Mouse Model of Alzheimer’s Disease,” Proceedings of the National Academy of Sciences USA, Vol. 99, No. 16, 2002, pp. 10843-10848. doi:10.1073/pnas.162228299
[24] J. Davis-Salinas, S. M. Saparito-Irwin, F. M. Donovan, D. D. Cunningham and W. E. Van Nostrand, “Thrombin Receptor Activation Induces Secretion and Nonamyloidogenic Processing of Amyloid ß-Protein Precursor,” Journal of Biological Chemistry, Vol. 269, 1994, pp. 22623-22627.
[25] D. W. Dickson, et al., “Ubiquitin Immunoelectron Microscopy of Dystrophic Neurites in Cerebellar Senile Plaques of Alzheimer’s Disease,” Acta Neuropathologica, Vol. 79, 1990, pp. 486-493.
[26] J. Davis, et al., “Early-Onset and Robust Cerebral Microvascular Accumulation of Amyloid ß-Protein in Transgenic Mice Expressing Low Levels of a Vasculotropic Dutch/Iowa Mutant form of Amyloid ß-Protein Precursor,” Journal of Biological Chemistry, Vol. 279, 2004, pp. 20296-20306. doi:10.1074/jbc.M312946200
[27] J. M. Long, et al., “Stereological Estimation of Total Microglia Number in Mouse Hippocampus,” Journal of Neuroscience Methods, Vol. 84, No. 1-2, 1998, pp. 101-108. doi:10.1016/S0165-0270(98)00100-9
[28] J. Miao, et al., “Cerebral Microvascular Amyloid ß-Protein Deposition Induces Vascular Degeneration and Neuroinflammation in Transgenic Mice Expressing Human Vasculotropic Mutant Amyloid ß-Protein Precursor,” American Journal of Pathology, Vol. 167, No. 2, 2005, pp. 505-515. doi:10.1016/S0002-9440(10)62993-8
[29] E. G. Shesely, et al., “Elevated Blood Pressures in Mice Lacking Endothelial Nitric Oxide Synthase,” Proceedings of the National Academy of Sciences USA, Vol. 93, No. 23, 1996, pp. 13176-13181. doi:10.1073/pnas.93.23.13176
[30] R. Deane, R. D. Bell, A. Sagare and B. V. Zlokovic, “Clearance of Amyloid-Beta Peptide across the BloodBrain Barrier: Implication for Therapies in Alzheimer’s Disease,” CNS Neurological Disorders Drug Targets, Vol. 8, 2009, pp. 16-30. doi:10.2174/187152709787601867
[31] M. Carpentier, Y. Robitaille, L. DesGroseillers, G. Boileau and M. Marcinkiewicz, “Declining Expression of Neprilysin in Alzheimer Disease Vasculature: Possible Involvement in Cerebral Amyloid Angiopathy,” Journal Neuropathology and Experimental Neurology, Vol. 61, 2002, pp. 849-856.
[32] A. Perez, L. Morelli, J. C. Cresto and E. M. Castano, “Degradation of Soluble Amyloid Beta-Peptides 1 -40, 1 -42 and the Dutch Variant 1 -40 Q by Insulin Degrading Enzyme from Alzheimer Disease and Control Brains,” Neurochemical Research, Vol. 25, No. 2, 2000, pp. 247-255. doi:10.1023/A:1007527721160
[33] J. R. Backstrom, G. P. Lim, M. J. Cullen and Z. A. Tokes, “Matrix Metalloproteinase-9 (MMP-9) Is Synthesized in Neurons of the Human Hippocampus and Is Capable of Degrading the Amyloid-Beta Peptide (1 -40),” Journal of Neuroscience, Vol. 16, 1996, pp. 7910-7919.
[34] C. C. Liu, T. Kanekiyo, H. Xu and G. Bu, “Apolipoprotein E and Alzheimer’s Disease: Risk, Mechanisms and Therapy,” Nature Review Neurology, Vol. 9, No. 184, 2013, pp. 106-118. doi:10.1038/nrneurol.2013.32
[35] I. Lefterov, et al., “Apolipoprotein A-1 Deficiency Increases Cerebral Amyloid Angiopathy and Cognitive Deficits in APP/PS1dE9 Mice,” Journal of Biological Chemistry, Vol. 285, 2010, pp. 36945-36957. doi:10.1074/jbc.M110.127738
[36] T. L. Lewis, et al., “Overexpression of Human Apolipoprotein A-I Preserves Cognition and Attenuates Neuroinflammation and Cerebral Amyloid Angiopathy in a Mouse Model of Alzheimer’s Disease,” Journal of Biological Chemistry, Vol. 285, 2010, pp. 36958-36968. doi:10.1074/jbc.M110.127829
[37] H. Potter, I. M. Wefes and L. N. Nilsson, “The Inflammation-Induced Pathological Chaperones ACT and apoE Are Necessary Catalysts of Alzheimer Amyloid Formation,” Neurobiology of Aging, Vol. 22, No. 6, 2001, pp. 923-930. doi:10.1016/S0197-4580(01)00308-6
[38] J.N. Buxbaum, et al., “Transthyretin Protects Alzheimer’s Mice from the Behavioral and Biochemical Effects of Abeta Toxicity,” Proceedings of the National Academy of Sciences USA, Vol. 105, No. 7, 2008, pp. 2681-2686. doi:10.1073/pnas.0712197105

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.