Review: The Molecular Basis of Resistance in Mycobaterium tuberculosis

Abstract

Tuberculosis is a serious global public health problem and its high prevalence is strongly associated with the increase of drug resistance. This steady increase in the frequency of M. tuberculosis strains resistant to one or more agents commonly used to treat tuberculosis has drawn worldwide attention to understanding the molecular basis of resistance in M. tuberculosis. TB resistance is a great concern in the antibiotic resistance pandemic due to the high risk of death, as patients can remain infected for months or years and also because of the difficulty of the treatment. A molecular understanding of the series of events that render M. tuberculosis multi-drug resistant is very important in order to find a fast and appropriated diagnosis as well as a new target for new drugs.

Share and Cite:

L. Santos, "Review: The Molecular Basis of Resistance in Mycobaterium tuberculosis," Open Journal of Medical Microbiology, Vol. 2 No. 1, 2012, pp. 24-36. doi: 10.4236/ojmm.2012.21004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. S. Kibiki, B. Mulder, W. M. Dolmans, et al., “M. tuberculosis Genotypic Diversity and Drug Susceptibility Pattern in HIV-Infected and Non-HIV-Infected Patients in Northern Tanzania,” BMC Microbiol, Vol. 7, 2007, p. 51. doi:10.1186/1471-2180-7-51
[2] I. M. Baptista, M. C. Oelemann, et al., “Drug Resistance and Genotypes of Strains of Mycobacterium tuberculosis Isolated from Human Immunodeficiency Virus-Infected and Non-Infected Tuberculosis Patients in Bauru, Sao Paulo, Brazil,” Memorias do Instituto Oswaldo Cruz, Vol. 97, No. 8, 2002, pp. 1147-1152. doi:10.1590/S0074-02762002000800015
[3] L. C. Santos, H. de M. Bousquet, A. M. Pereira, et al., “A High Prevalence of Resistance in New Tuberculosis Cases of Midwestern Brazil,” Infection Genetics Evolution, Vol. 10, No. 7, 2010, pp. 1052-1057. doi:10.1016/j.meegid.2010.06.018
[4] P. Silva and J. A. Ainsa, “Drugs and Drug Interactions,” In: J. C. Palomino, S. C. Leao, V. Ritacco, Eds., Tuberculosis. From Basic Science to Patient Care, 2007. http://www.TuberculosisTextbook.com
[5] I. C. Shamputa, L. Rigouts, L. A. Eyongeta, et al., “Genotypic and Phenotypic Heterogeneity among Mycobacterium tuberculosis Isolates from Pulmonary Tuberculosis Patients,” Journal of Clinical Microbiology, Vol. 42, No. 12, 2004, pp. 5528-5536. doi:10.1128/JCM.42.12.5528-5536.2004
[6] Y. Zhang and W. W. Yew, “Mechanisms of Drug Resistance in Mycobacterium tuberculosis,” The International Journal of Tuberculosis and Lung Disease, Vol. 13, No. 11, 2009, pp. 1320-1330.
[7] C. E. Ozturk, A. Sanic, et al., “Molecular Analysis of Isoniazid, Rifampin and Streptomycin Resistance in Mycobacterium tuberculosis Isolates from Patients with Tuberculosis in Duzce, Turkey,” Japanese Journal of Infectious Diseases, Vol. 58, No. 5, 2005, pp. 309-312.
[8] H. Soini and J. M. Musser, “Molecular Diagnosis of Mycobacteria,” Clinical Chemistry, Vol. 47, No. 5, 2001, pp. 809-814.
[9] WHO, “Anti-Tuberculosis Drug Resistance in the World, Fourth Global Report,” Word Health Organization, Geneva, 2008.
[10] A. Faustini, A. J. Hall and C. A. Perucci, “Risk Factors for Multidrug Resistant Tuberculosis in Europe: A Systematic Review,” Thorax, Vol. 61, No. 2, 2006, pp. 158-163. doi:10.1136/thx.2005.045963
[11] A. R. Valim, L. G. Possuelo, et al., “Evaluation and Genotyping of Multidrug-Resistant Cases of Tuberculosis in Southern Brazil,” Microbial Drug Resistance, Vol. 12, No. 3, 2006, pp. 186-191. doi:10.1089/mdr.2006.12.186
[12] A. Wright, M. Zignol, et al., “Epidemiology of Antituberculosis Drug Resistance 2002-07: An Updated Analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance,” The Lancet, Vol. 373, No. 9678, 2009, pp. 1861-1873. doi:10.1016/S0140-6736(09)60331-7
[13] K. Weyer, “Survey of Tuberculosis Drug Resistance, 2001-2002,” Western Cape, 2001, 2008.
[14] T. Cohen, M. C. Becerra and M. B. Murray, “Isoniazid Resistance and the Future of Drug-Resistant Tuberculosis,” Microbial Drug Resistance, Vol. 10, No. 4, 2004, pp. 280-285. doi:10.1089/mdr.2004.10.280
[15] G. L. Li, D. F. Zhao, et al., “Molecular Characterization of Drug-Resistant Beijing Family Isolates of Mycobacterium tuberculosis from Tianjin, China,” Biomedical and Environmental Sciences, Vol. 23, No. 3, 2010, pp. 188-193. doi:10.1016/S0895-3988(10)60051-7
[16] B. J. Marais, T. C. Victor, A. C. Hesseling, et al., “Beijing and Haarlem Genotypes Are Overrepresented among Children with Drug-Resistant Tuberculosis in the Western Cape Province of South Africa,” Journal of Clinical Microbiology, Vol. 44, No. 10, 2006, pp. 3539-3543. doi:10.1128/JCM.01291-06
[17] E. R. Dalla Costa, M. O. Ribeiro, et al., “Correlations of Mutations in katG, oxyR-ahpC and inhA Genes and in Vitro Susceptibility in Mycobacterium tuberculosis Clinical Strains Segregated by Spoligotype Families from Tuberculosis Prevalent Countries in South America,” BMC Microbiology, Vol. 9, 2009, p. 39. doi:10.1186/1471-2180-9-39
[18] H. A. Shoeb, B. U. Bowman, et al., “Peroxidase-Mediated Oxidation of Isoniazid,” Antimicrobial Agents and Chemotherapy, Vol. 27, No. 3, 1985, pp. 399-403.
[19] G. S. Timmins, S. Master, et al., “Nitric Oxide Generated from Isoniazid Activation by KatG: Source of Nitric Oxide and Activity Against Mycobacterium tuberculosis,” Antimicrobial Agents and Chemotherapy, Vol. 48, No. 8, 2004, pp. 3006-3009. doi:10.1128/AAC.48.8.3006-3009.2004
[20] R. Rawat, A. Whitty and P. Tonge, “The Isoniazid-NAD Adduct Is a Slow, Tight-Binding Inhibitor of InhA, the Mycobacterium tuberculosis Enoyl Reductase: Adduct Affinity and Drug Resistance,” Proceeding of the National Academy of Sciences of the Unite States of Aaerica, Vol. 100, No. 24, 2003, pp. 13881-13886.
[21] K. Johnsson, D. King and P. Schultz, “Studies on the Mechanism of Action of Isoniazid and Ethionamide in the Chemotherapy of Tuberculosis,” Journal of the American Chemical Society, Vol. 117, No. 17, 1995, pp. 5009-5010. doi:10.1021/ja00122a038
[22] M. Tsukamura and S. Tsukamura, “Isotopic Studies on the Effect of Isoniazid on Protein Synthesis of Mycobacteria,” Japanese Journal of Tuberculosis and Chest Diseases, Vol. 11, 1963, pp. 14-27.
[23] K. Takayama, L. Wang and H. L. David, “Effect of Isoniazid on the in Vivo Mycolic Acid Synthesis, Cell Growth, and Viability of Mycobacterium tuberculosis,” Antimicrobial Agents and Chemotherapy, Vol. 2, No. 1, 1972, pp. 29-35.
[24] Global and A. TB, “Isoniazid,” Tuberculosis (Edinb), Vol. 88, No. 2, 2008, pp. 112-116. doi:10.1016/S1472-9792(08)70011-8
[25] T. Yoshiyama, H. Yanai, et al., “Development of Acquired Drug Resistance in Recurrent Tuberculosis Patients with Various Previous Treatment Outcomes,” The International Journal of Tuberculosis and Lung Disease, Vol. 8, No. 1, 2004, pp. 31-38.
[26] V. Valcheva, I. Mokrousov, et al., “Molecular Snapshot of Drug-Resistant and Drug-Susceptible Mycobacterium tuberculosis Strains Circulating in Bulgaria,” Infection, Genetics and Evolution, Vol. 8, No. 5, 2008, pp. 657-663. doi:10.1016/j.meegid.2008.06.006
[27] S. V. Ramaswamy, R. Reich, et al., “Single Nucleotide PolymorPhisms in Genes Associated with Isoniazid Resistance in Mycobacterium tuberculosis,” Antimicrobial Agents and Chemotherapy, Vol. 47, No. 4, 2003, pp. 1241-1250. doi:10.1128/AAC.47.4.1241-1250.2003
[28] R. A. Slayden and C. E. Barry, “The Genetics and BioChemistry of Isoniazid Resistance in Mycobacterium tuberculosis,” Microbes and Infection, Vol. 2, No. 6, 2000, pp. 659-669. doi:10.1016/S1286-4579(00)00359-2
[29] D. A. Rouse and S. L. Morris, “Molecular Mechanisms of Isoniazid Resistance in Mycobacterium tuberculosis and Mycobacterium bovis,” Infection and Immunity, Vol. 63, No. 4, 1995, pp. 1427-1433.
[30] M. H. Hazbon, et al., “Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis,” Antimicrobial Agents and Chemotherapy, Vol. 50, No. 8, 2006, pp. 2640-2649. doi:10.1128/AAC.00112-06
[31] Y. K. Park, et al., “Comparison of Drug Resistance Genotypes between Beijing and Non-Beijing Family Strains of Mycobacterium tuberculosis in Korea,” Journal of Microbiological Methods, Vol. 63, No. 2, 2005, pp. 165-172. doi:10.1016/j.mimet.2005.03.002
[32] M. Y. Lipin, et al., “Association of Specific Mutations in katG, rpoB, rpsL and rrs Genes with Spoligotypes of Multidrug-Resistant Mycobacterium tuberculosis Isolates in Russia,” Clinical Microbiology and Infection, Vol. 13, No. 6, 2007, pp. 620-626. doi:10.1111/j.1469-0691.2007.01711.x
[33] I. Mokrousov, et al., “High Prevalence of KatG Ser315Thr Substitution among Isoniazid-Resistant Mycobacterium tuberculosis Clinical Isolates from Northwestern Russia, 1996 to 2001,” Antimicrobial Agents and Chemotherapy, Vol. 46, No. 5, 2002, pp. 1417-1424. doi:10.1128/AAC.46.5.1417-1424.2002
[34] B. C. Finzel, T. L. Poulos and J. Kraut, “Crystal Structure of Yeast Cytochrome C Peroxidase Refined at 1.7-A Resolution,” Journal of Biological Chemistry, Vol. 259, No. 21, 1984, pp. 13027-13036.
[35] B. Heym, B. Saint-Joanis and S. T. Cole, “The Molecular Basis of Isoniazid Resistance in Mycobacterium tuberculosis,” Tubercle and Lung Disease, Vol. 79, No. 4, 1999, pp. 267-271. doi:10.1054/tuld.1998.0208
[36] D. R. Sherman, et al., “Compensatory ahpC Gene Expression in Isoniazid-Resistant Mycobacterium tuberculosis,” Science, Vol. 272, No. 5268, 1996, pp. 1641-1643. doi:10.1126/science.272.5268.1641
[37] A. Telenti, et al., “Genotypic Assessment of Isoniazid and Rifampin Resistance in Mycobacterium tuberculosis: A Blind Study at Reference Laboratory Level,” Journal of Clinical Microbiology, Vol. 35, No. 3, 1997, pp. 719-723.
[38] M. Zhang, et al., “Detection of Mutations Associated with Isoniazid Resistance in Mycobacterium tuberculosis Isolates from China,” Journal of Clinical Microbiology, Vol. 43, No. 11, 2005, pp. 5477-5482. doi:10.1128/JCM.43.11.5477-5482.2005
[39] S. Ramaswamy and J. M. Musser, “Molecular Genetic Basis of Antimicrobial Agent Resistance in Mycobacterium tuberculosis: 1998 Update,” Tubercle and Lung Disease, Vol. 79, No. 1, 1998, pp. 3-29. doi:10.1054/tuld.1998.0002
[40] L. A. Basso and J. S. Blanchard, “Resistance to Antitubercular Drugs,” Advances in Experimental Medicine and Biology, Vol. 456, 1998, pp. 115-144. doi:10.1007/978-1-4615-4897-3_7
[41] R. Johnson, et al., “Drug Resistance in Mycobacterium tuberculosis,” Current Issues in Molecular Biology, Vol. 8, No. 2, 2006, pp. 97-111.
[42] A. Banerjee, et al., “inhA, a Gene Encoding a Target for Isoniazid and Ethionamide in Mycobacterium tuberculosis,” Science, Vol. 263, No. 5144, 1994, pp. 227-230. doi:10.1126/science.8284673
[43] A. Dessen, et al., “Crystal Structure and Function of the Isoniazid Target of Mycobacterium tuberculosis,” Science, Vol. 267, No. 5204, 1995, pp. 1638-1641. doi:10.1126/science.7886450
[44] K. Mdluli, et al., “Inhibition of a Mycobacterium tuberculosis Beta-Ketoacyl ACP Synthase by Isoniazid,” Science, Vol. 280, No. 5369, 1998, pp. 1607-1610. doi:10.1126/science.280.5369.1607
[45] R. A. Slayden and C. E. Barry, “The Role of KasA and KasB in the Biosynthesis of Meromycolic Acids and Isoniazid Resistance in Mycobacterium tuberculosis,” Tuberculosis (Edinb), Vol. 82, No. 4-5, 2002, pp. 149-160. doi:10.1054/tube.2002.0333
[46] A. S. Lee, et al., “Contribution of KasA Analysis to Detection of Isoniazid-Resistant Mycobacterium tuberculosis in Singapore,” Antimicrobial Agents and Chemotherapy, Vol. 43, No. 8, 1999, pp. 2087-2089.
[47] A S. Piatek, et al., “Genotypic Analysis of Mycobacterium tuberculosis in Two Distinct Populations Using Molecular Beacons: Implications for Rapid Susceptibility Testing,” Antimicrobial Agents and Chemotherapy, Vol. 44, No. 1, 2000, pp. 103-110. doi:10.1128/AAC.44.1.103-110.2000
[48] A. S. Lee, A. S. Teo and S. Y. Wong, “Novel Mutations in ndh in Isoniazid-Resistant Mycobacterium tuberculosis Isolates,” Antimicrobial Agents and Chemotherapy, Vol. 45, No. 7, 2001, pp. 2157-2159. doi:10.1128/AAC.45.7.2157-2159.2001
[49] C. Vilcheze, et al., “Altered NADH/NAD+ Ratio Mediates Coresistance to Isoniazid and Ethionamide in Mycobacteria,” Antimicrobial Agents and Chemotherapy, Vol. 49, No. 2, 2005, pp. 708-720. doi:10.1128/AAC.49.2.708-720.2005
[50] H. R. van Doorn, et al., “Public Health Impact of Isoniazid-Resistant Mycobacterium tuberculosis Strains with a Mutation at Amino-Acid Position 315 of KatG: A Decade of Experience in The Netherlands,” Clinical Microbiology and Infection, Vol. 12, No. 8, 2006, pp. 769-775.
[51] M. S. Silva, et al., “Mutations in katG, inhA, and ahpC Genes of Brazilian Isoniazid-Resistant Isolates of MycoBacterium tuberculosis,” Journal of Clinical Microbiology, Vol. 41, No. 9, 2003, pp. 4471-4474. doi:10.1128/JCM.41.9.4471-4474.2003
[52] S. Ahmad and E. “Mokaddas, Contribution of AGC to ACC and Other Mutations at Codon 315 of the katG Gene in Isoniazid-Resistant Mycobacterium tuberculosis Isolates from the Middle East,” International Journal of Antimicrobial Agents, Vol. 23, No. 5, 2004, pp. 473-479. doi:10.1016/j.ijantimicag.2003.10.004
[53] S. Borukhov and E. Nudler, “RNA Polymerase Holoenzyme: Structure, Function and Biological Implications,” Current Opinion in Microbiologyl, Vol. 6, No. 2, 2003, pp. 93-100. doi:10.1016/S1369-5274(03)00036-5
[54] D. J. Jin and C. A. Gross, “Three rpoBC Mutations that Suppress the Termination Defects of rho Mutants also Affect the Functions of nusA Mutants,” Molecular and General Genetics, Vol. 216, No. 2-3, 1989, pp. 269-275. doi:10.1007/BF00334365
[55] L. Minakhin, et al., “Bacterial RNA Polymerase Subunit Omega and Eukaryotic RNA Polymerase Subunit RPB6 are Sequence, Structural, and Functional Homologs and Promote RNA Polymerase Assembly,” Proceeding of the National Academy of Sciences of the Unite States of Aaerica, Vol. 98, No. 3, 2001, pp. 892-897.
[56] Global and A. TB, “Rifampin,” Tuberculosis (Edinb), Vol. 88, No. 2, 2008, pp. 151-154. doi:10.1016/S1472-9792(08)70024-6
[57] D. A. Mitchison, “The Action of Antituberculosis Drugs in Short-Course Chemotherapy,” Tubercle, Vol. 66, No. 3, 198, pp. 219-225.
[58] H. Traore, et al., “Detection of Rifampicin Resistance in Mycobacterium tuberculosis Isolates from Diverse Countries by a Commercial Line Probe Assay as an Initial Indicator of Multidrug Resistance,” The International Journal of Tuberculosis and Lung Disease, Vol. 4, No. 5, 2000, pp. 481-484.
[59] A. Telenti, et al., “Direct, Automated Detection of Rifampin-Resistant Mycobacterium tuberculosis by Polymerase Chain Reaction and Single-Strand Conformation Polymorphism Analysis,” Antimicrobial Agents and Chemotherapy, Vol. 37, No. 10, 1993, pp. 2054-2058.
[60] G. Pozzi, et al., “rpoB Mutations in Multidrug-Resistant Strains of Mycobacterium tuberculosis Isolated in Italy,” Journal of Clinical Microbiology, Vol. 37, No. 4, 1999, pp. 1197-1199.
[61] P. Matsiota-Bernard, G. Vrioni and E. Marinis, “Characterization of rpoB Mutations in Rifampin-Resistant Clinical Mycobacterium tuberculosis Isolates from Greece,” Journal of Clinical Microbiology, Vol. 36, No. 1, 1998, pp. 20-23.
[62] A. R. Valim, et al., “Mutations in the rpoB Gene of Multidrug-Resistant Mycobacterium tuberculosis Isolates from Brazil,” Journal of Clinical Microbiology, Vol. 38, No. 8, 2000, pp. 3119-3122.
[63] L. K. Yuen, D. Leslie and P. J. Coloe, “Bacteriological and Molecular Analysis of Rifampin-Resistant Mycobacterium tuberculosis Strains Isolated in Australia,” Journal of Clinical Microbiology, Vol. 37, No. 12, 1999, pp. 3844-3850.
[64] M. Heep, et al., “Frequency of rpoB Mutations Inside and Outside the Cluster I Region in Rifampin-Resistant Clinical Mycobacterium tuberculosis Isolates,” Journal of Clinical Microbiology, Vol. 39, No. 1, 2001, pp. 107-110. doi:10.1128/JCM.39.1.107-110.2001
[65] D. Hillemann, et al., “Use of the Genotype MTBDR Assay for Rapid Detection of Rifampin and Isoniazid Resistance in Mycobacterium tuberculosis Complex Isolates,” Journal of Clinical Microbiology, Vol. 43, No. 8, 2005, pp. 3699-3703. doi:10.1128/JCM.43.8.3699-3703.2005
[66] L. Herrera, et al., “Molecular Analysis of Rifampicin-Resistant Mycobacterium tuberculosis Isolated in Spain (1996- 2001). Description of New Mutations in the rpoB Gene and Review of the Literature,” International Journal of Antimicrobial Agents, Vol. 21, No. 5, 2003, pp. 403-408. doi:10.1016/S0924-8579(03)00036-0
[67] A. Telenti, et al., “Detection of Rifampicin-Resistance Mutations in Mycobacterium tuberculosis,” The Lancet, Vol. 341, No. 8846, 199, pp. 647-650.
[68] D. L. Williams, et al., “Contribution of rpoB Mutations to Development of Rifamycin Cross-Resistance in Mycobacterium tuberculosis,” Antimicrobial Agents and Chemotherapy, Vol. 42, No. 7, 1998, pp. 1853-1857.
[69] N. Siddiqi, et al., “Molecular Characterization of Multidrug-Resistant Isolates of Mycobacterium tuberculosis from Patients in North India,” Antimicrobial Agents and Chemotherapy, Vol. 46, No. 2, 2002, pp. 443-450. doi:10.1128/AAC.46.2.443-450.2002
[70] V. Kapur, et al., “Rapid Mycobacterium Species Assignment and Unambiguous Identification of Mutations Associated with Antimicrobial Resistance in Mycobacterium tuberculosis by Automated DNA Sequencing,” Archives of Pathology & Laboratory Medicine, Vol. 119, No. 2, 1995, pp. 131-138.
[71] S. Morris, et al., “Molecular Mechanisms of Multiple Drug Resistance in Clinical Isolates of Mycobacterium tuberculosis,” Journal of Infectious Diseases, Vol. 171, No. 4, 1995, pp. 954-960. doi:10.1093/infdis/171.4.954
[72] S. Ahmad, et al., “Characterization of rpoB Mutations in Rifampin-Resistant Mycobacterium tuberculosis Isolates from the Middle East,” Diagnostic Microbiology and Infectious Disease, Vol. 38, No. 4, 2000, pp. 227-232. doi:10.1016/S0732-8893(00)00200-5
[73] V. Kapur, et al., “Characterization by Automated DNA Sequencing of Mutations in the Gene (rpoB) Encoding the RNA Polymerase Beta Subunit in Rifampin-Resistant Mycobacterium tuberculosis Strains from New York City and Texas,” Journal of Clinical Microbiology, Vol. 32, No. 4, 1994, pp. 1095-1098.
[74] H. Taniguchi, et al., “Rifampicin Resistance and Mutation of the rpoB Gene in Mycobacterium tuberculosis,” FEMS Microbiology Letters, Vol. 144, No. 1, 1996, pp. 103-108. doi:10.1111/j.1574-6968.1996.tb08515.x
[75] S. Spindola de Miranda, et al., “Mutations in the rpoB Gene of Rifampicin-Resistant Mycobacterium tuberculosis Strains Isolated in Brazil and France,” Memórias do Instituto Oswaldo Cruz, Vol. 96, No. 2, 2001, pp. 247-250. doi:10.1590/S0074-02762001000200019
[76] Y. Zhang, et al., “Mode of Action of Pyrazinamide: Disruption of Mycobacterium tuberculosis Membrane Transport and Energetics by Pyrazinoic Acid,” Journal Antimicrobial Chemotheapyr, Vol. 52, No. 5, 2003, pp. 790-795. doi:10.1093/jac/dkg446
[77] M. M. Wade and Y. Zhang, “Anaerobic Incubation Conditions Enhance Pyrazinamide Activity Against Mycobacterium tuberculosis,” Journal of Medical Microbiology, Vol. 53, Part 8, 2004, pp. 769-773. doi:10.1099/jmm.0.45639-0
[78] M. M. Wade and Y. Zhang, “Effects of Weak Acids, UV and Proton Motive Force Inhibitors on Pyrazinamide Activity Against Mycobacterium tuberculosis in Vitro,” Journal Antimicrobial Chemotheapyr, Vol. 58, No. 5, 2006, pp. 936-941. doi:10.1093/jac/dkl358
[79] A. Scorpio and Y. Zhang, “Mutations in pncA, a Gene Encoding Pyrazinamidase/Nicotinamidase, Cause Resistance to the Antituberculous Drug Pyrazinamide in Tubercle Bacillus,” Nature Medicine, Vol. 2, No. 6, 1996, pp. 662-667. doi:10.1038/nm0696-662
[80] P. Sheen, et al., “Effect of Pyrazinamidase Activity on Pyrazinamide Resistance in Mycobacterium tuberculosis,” Tuberculosis (Edinb), Vol. 89, No. 2, 2009, pp. 109-113. doi:10.1016/j.tube.2009.01.004
[81] Y. Zhang, et al., “Role of Acid pH and Deficient Efflux of Pyrazinoic Acid in Unique Susceptibility of Mycobacterium tuberculosis to Pyrazinamide,” Journal of Bacteriology, Vol. 181, No. 7, 1999, pp. 2044-2049.
[82] Global and A. TB, “Pyrazinamide,” Tuberculosis (Edinb), Vol. 82, No. 2, 2008, pp. 141-144.
[83] W. R. Butler and J. O. Kilburn, “Susceptibility of Mycobacterium tuberculosis to Pyrazinamide and Its Relationship to Pyrazinamidase Activity,” Antimicrobial Agents and Chemotherapy, Vol. 24, No. 4, 1983, pp. 600-601.
[84] J. Sekiguchi, et al., “Detection of Multidrug Resistance in Mycobacterium tuberculosis,” Journal of Clinical Microbiology, Vol. 45, No. 1, 2007, pp. 179-192. doi:10.1128/JCM.00750-06
[85] J. K. McClatchy, A. Y. Tsang and M. S. Cernich, “Use of Pyrazinamidase Activity on Mycobacterium tuberculosis as a Rapid Method for Determination of Pyrazinamide Susceptibility,” Antimicrobial Agents and Chemotherapy, Vol. 20, No. 4, 198, pp. 556-557.
[86] A. Scorpio, et al., “Characterization of pncA Mutations in Pyrazinamide-Resistant Mycobacterium tuberculosis,” Antimicrobial Agents and Chemotherapy, Vol. 41, No. 3, 1997, pp. 540-543.
[87] N. Lemaitre, et al., “Characterization of New Mutations in Pyrazinamide-Resistant Strains of Mycobacterium tuberculosis and Identification of Conserved Regions Important for the Catalytic Activity of the Pyrazinamidase pncA,” Antimicrobial Agents and Chemotherapy, Vol. 43, No. 7, 1999, pp. 1761-1763.
[88] F. Rodrigues Vde, et al., “Characterization of pncA Mutations in Pyrazinamide-Resistant Mycobacterium tuberculosis in Brazil,” Antimicrobial Agents and Chemotherapy, Vol. 49, No. 1, 2005, pp. 444-446. doi:10.1128/AAC.49.1.444-446.2005
[89] K. Takayama and J. O. Kilburn, “Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis,” Antimicrobial Agents and Chemotherapy, Vol. 33, No. 9, 1989, pp. 1493-1499.
[90] S. Sreevatsan, et al., “Ethambutol Resistance in Mycobacterium tuberculosis: Critical Role of embB Mutations,” Antimicrobial Agents and Chemotherapy, Vol. 41, No. 8, 1997, pp. 1677-1681.
[91] A. E. Belanger, et al., “The embAB Genes of Mycobacterium Avium Encode an Arabinosyl Transferase Involved in Cell Wall Arabinan Biosynthesis that is the Target for the Antimycobacterial Drug Ethambutol,” Proceeding of the National Academy of the Sciences of the United States of America, Vol. 93, No. 21, 1996, pp. 11919-11924.
[92] A. Telenti, et al., “The emb Operon, a Gene Cluster of Mycobacterium tuberculosis Involved in Resistance to Ethambutol,” Nature Medicine, Vol. 3, No. 5, 1997, pp. 567-570. doi:10.1038/nm0597-567
[93] A. Jain, et al., “Novel Mutations in emb B Gene of Ethambutol Resistant Isolates of Mycobacterium tuberculosis: A Preliminary Report,” Indian Journal of Medical Research, Vol. 128, No. 5, 2008, pp. 634-639.
[94] Global and A. TB, “Ethambutol,” Tuberculosis (Edinb), Vol. 88, No. 2, 2008, pp. 102-105. doi:10.1016/S1472-9792(08)70008-8
[95] S. V. Ramaswamy, et al., “Molecular Genetic Analysis of Nucleotide Polymorphisms Associated with Ethambutol Resistance in Human Isolates of Mycobacterium tuberculosis,” Antimicrobial Agents and Chemotherapy, Vol. 44, No. 2, 2000, pp. 326-336. doi:10.1128/AAC.44.2.326-336.2000
[96] F. Alcaide, G. E. Pfyffer and A. Telenti, “Role of embB in Natural and Acquired Resistance to Ethambutol in Mycobacteria,” Antimicrobial Agents and Chemotherapy, Vol. 41, No. 10, 1997, pp. 2270-2273.
[97] S. Abbadi, et al., “Characterization of IS6110 Restriction Fragment Length Polymorphism Patterns and Mechanisms of Antimicrobial Resistance for Multidrug-Resistant Isolates of Mycobacterium tuberculosis from a Major Reference Hospital in Assiut, Egypt,” Journal of Clinical Microbiology, Vol. 39, No. 6, 2001, pp. 2330-2334. doi:10.1128/JCM.39.6.2330-2334.2001
[98] J. Davies, L. Gorini and B. D. Davis, “Misreading of RNA Codewords Induced by Aminoglycoside Antibiotics,” Molecular Pharmacology, Vol. 1, No. 1, 1965, pp. 93-106.
[99] Heifets, L. D., E., “Clinical Mycobateriology Laboratory. Tuberculosis and the Tubercle Bacillus,” In: S. E. Cole, K. McMurray, D. Jacobs and WJr, Eds., ASM, Washington DC, 2005.
[100] Global and A. TB, “Streptomycin,” Tuberculosis (Edinb), Vol. 82, No. 2, 2008, pp. 162-163.
[101] M. Finken, et al., “Molecular Basis of Streptomycin Resistance in Mycobacterium tuberculosis: Alterations of the Ribosomal Protein S12 Gene and Point Mutations within a Functional 16S Ribosomal RNA Pseudoknot,” Molecular Microbiology, Vol. 9, No. 6, 1993, pp. 1239-1246. doi:10.1111/j.1365-2958.1993.tb01253.x
[102] J. Nair, et al., “The rpsL Gene and Streptomycin Resistance in Single and Multiple Drug-Resistant Strains of Mycobacterium tuberculosis,” Molecular Microbiology, Vol. 10, No. 3, 1993, pp. 521-527. doi:10.1111/j.1365-2958.1993.tb00924.x
[103] A. P. Carter, et al., “Functional Insights from the Structure of the 30S Ribosomal Subunit and Its Interactions with Antibiotics,” Nature, Vol. 407, No. 6802, 2000, pp. 340-348. doi:10.1038/35030019
[104] A. Meier, et al., “Correlation of Molecular Resistance Mechanisms and Phenotypic Resistance Levels in Streptomycin-Resistant Mycobacterium tuberculosis,” Antimicrobial Agents and Chemotherapy, Vol. 40, No. 11, 1996, pp. 2452-2454.
[105] CDC, “Emergence of Mycobacterium tuberculosis with Extensive Resistance to Second-Line Drugs—Worldwide, 2000-2004,” Morbidity Mortality Weekly Report, Vol. 55, No. 11, 2006, pp. 301-305.
[106] T. H. Holtz and J. P. “Cegielski, Origin of the Term XDR-TB,” European Respiratory Journal, Vol. 30, No. 2, 2007, p. 396. doi:10.1183/09031936.00042607
[107] K. Drlica and M. Malik, “Fluoroquinolones: Action and Resistance,” Current Topics in Medicinal Chemistry, Vol. 3, No. 3, 2003, pp. 249-282. doi:10.2174/1568026033452537
[108] H. E. Takiff, et al., “Cloning and Nucleotide Sequence of Mycobacterium tuberculosis gyrA and gyrB Genes and Detection of Quinolone Resistance Mutations,” Antimicrobial Agents and Chemotherapy, Vol. 38, No. 4, 1994, pp. 773-780.
[109] J. Y. Wang, et al., “Fluoroquinolone Resistance in Mycobacterium tuberculosis Isolates: Associated Genetic Mutations and Relationship to Antimicrobial Exposure,” Journal of Antimicrobial Chemotherapy, Vol. 59, No. 5, 2007, pp. 860-865. doi:10.1093/jac/dkm061
[110] A. S. Lee, et al., “Characterization of Pyrazinamide and Ofloxacin Resistance among Drug Resistant Mycobacterium tuberculosis Isolates from Singapore,” International Journal of Infectious Diseases, Vol. 6, No. 1, 2002, pp. 48-51. doi:10.1016/S1201-9712(02)90136-0
[111] A. F. Cheng, et al., “Multiplex PCR Amplimer Conformation Analysis for Rapid Detection of gyrA Mutations in Fluoroquinolone-Resistant Mycobacterium tuberculosis Clinical Isolates,” Antimicrobial Agents and Chemotherapy, Vol. 48, No. 2, 2004, pp. 596-601. doi:10.1128/AAC.48.2.596-601.2004
[112] O. V. Antonova, et al., “Detection of Mutations in Mycobacterium tuberculosis Genome Determining Resistance to Fluoroquinolones by Hybridization on Biological Microchips,” Bulletin of Experimental Biology and Medicine, Vol. 145, No. 1, 2008, pp. 108-113. doi:10.1007/s10517-008-0034-5
[113] S. S. Hegde, et al., “A Fluoroquinolone Resistance Protein from Mycobacterium tuberculosis That Mimics DNA,” Science, Vol. 308, No. 5727, 2005, pp. 1480-1483. doi:10.1126/science.1110699
[114] G .J. Alangaden, et al., “Mechanism of Resistance to Amikacin and Kanamycin in Mycobacterium tuberculosis,” Antimicrobial Agents and Chemotherapy, Vol. 42, No. 5, 1998, pp. 1295-1297.
[115] Y. Suzuki, et al., “Detection of Kanamycin-Resistant Mycobacterium tuberculosis by Identifying Mutations in the 16S rRNA Gene,” Journal of Clinical Microbiology, Vol. 36, No. 5, 1998, pp. 1220-1225.
[116] Global and A. TB, “Amikacin,” Tuberculosis (Edinb), Vol. 88, No. 2, 2008, pp. 87-88. doi:10.1016/S1472-9792(08)70003-9
[117] Global and A. TB, “Capreomycin,” Tuberculosis (Edinb), Vol. 88, No. 2, 200, pp. 89-91.
[118] C. E. Maus, B. B. Plikaytis and T. M. Shinnick, “Mutation of tlyA Confers Capreomycin Resistance in Mycobacterium tuberculosis,” Antimicrobial Agents and Chemotherapy, Vol. 49, No. 2, 2005, pp. 571-577. doi:10.1128/AAC.49.2.571-577.2005
[119] S. K. Johansen, et al., “Capreomycin Binds across the Ribosomal Subunit Interface Using tlyA-Encoded 2’-O- Methylations in 16S and 23S rRNAs,” Molecular Cell, Vol. 32, No. 2, 2006, pp. 173-182. doi:10.1016/j.molcel.2006.05.044
[120] C. E. Maus, B. B. Plikaytis and T. M. Shinnick, “Molecular Analysis of Cross-Resistance to Capreomycin, Kanamycin, Amikacin, and Viomycin in Mycobacterium tuberculosis,” Antimicrobial Agents and Chemotherapy, Vol. 49, No. 8, 2005, pp. 3192-3197. doi:10.1128/AAC.49.8.3192-3197.2005
[121] H. Taniguchi, et al., “Molecular Analysis of Kanamycin and Viomycin Resistance in Mycobacterium Smegmatis by Use of the Conjugation System,” Journal of Bacteriology, Vol. 179, No. 15, 1997, pp. 4795-4801.
[122] A. R. Baulard, et al., “Activation of the Pro-Drug Ethionamide is Regulated in Mycobacteria,” Journal of Biological Chemistry, Vol. 275, No. 36, 2000, pp. 28326-28331.
[123] Global and A. TB, “Ethionamide,” Tuberculosis (Edinb), Vol. 88, No. 2, 2008, pp. 106-108. doi:10.1016/S1472-9792(08)70009-X
[124] J. Engohang-Ndong, et al., “EthR, a Repressor of the TetR/CamR Family Implicated in Ethionamide Resistance in Mycobacteria, Octamerizes Cooperatively on its Operator,” Molecular Microbiology, Vol. 51, No. 1, 2004, pp. 175-188. doi:10.1046/j.1365-2958.2003.03809.x
[125] G. P. Morlock, et al., “ethA, inhA, and katG Loci of Ethionamide-Resistant Clinical Mycobacterium tuberculosis Isolates,” Antimicrobial Agents and Chemotherapy, Vol. 47, No. 12, 2003, pp. 3799-3805. doi:10.1128/AAC.47.12.3799-3805.2003
[126] G. Di Perri and S. Bonora, “Which Agents should We Use for the Treatment of Multidrug-Resistant Mycobacterium tuberculosis?” Journal of Antimicrobial Chemotherapy, Vol. 54, No. 3, 2004, pp. 593-602. doi:10.1093/jac/dkh377
[127] T. Cohen, et al., “Mathematical Models of the Epidemiology and Control of Drug-Resistant TB,” Expert Review of Respiratory Medicine, Vol. 3, No. 1, 2009, pp. 67-79. doi:10.1586/17476348.3.1.67
[128] M. Barnard, et al., “Rapid Molecular Screening for Multidrug-Resistant Tuberculosis in a High-Volume Public Health Laboratory in South Africa,” American Journal of Respiratory and Critical Care Medicine, Vol. 177, No. 7, 2008, pp. 787-792. doi:10.1164/rccm.200709-1436OC
[129] L. Caviedes, et al., “Rapid, Efficient Detection and Drug Susceptibility Testing of Mycobacterium tuberculosis in Sputum by Microscopic Observation of Broth Cultures,” Journal of Clinical Microbiology, Vol. 38, No. 3, 2000, pp. 1203-1208.
[130] S. Y. Lin, et al., “Rapid Detection of Isoniazid and Rifampin Resistance Mutations in Mycobacterium tuberculosis Complex from Cultures or Smear-Positive Sputa by Use of Molecular Beacons,” Journal of Clinical Microbiology, Vol. 42, No. 9, 2004, pp. 4204-4208. doi:10.1128/JCM.42.9.4204-4208.2004
[131] A. Hamid Salim, et al., “Early and Rapid Microscopy- Based Diagnosis of True Treatment Failure and MDR- TB,” International Journal of Tuberculosis and Lung Disease, Vol. 10, No. 11, 2006, pp. 1248-1254.
[132] M. Pai, et al., “Bacteriophage-Based Assays for the Rapid Detection of Rifampicin Resistance in Mycobacterium tuberculosis: A Meta-Analysis,” Journal of Infection, Vol. 51, No. 3, 2005, pp. 175-187. doi:10.1016/j.jinf.2005.05.017
[133] A. Martin, F. Portaels and J. C. Palomino, “Colorimetric Redox-Indicator Methods for the Rapid Detection of Multidrug Resistance in Mycobacterium tuberculosis: A Systematic Review and Meta-Analysis,” Journal of Antimicrobial Chemotherapy, Vol. 59, No. 2, 2007, pp. 175-183. doi:10.1093/jac/dkl477
[134] A. Martin, et al., “Nitrate Reductase Assay for the Rapid Detection of Pyrazinamide Resistance in Mycobacterium tuberculosis Using Nicotinamide,” Journal of Antimicrobial Chemotherapy, Vol. 61, No. 1, 2008, pp. 123-127. doi:10.1093/jac/dkm418
[135] C. Y. Chiang, R. Centis and G. B. Migliori, “Drug-Resistant Tuberculosis: Past, Present, Future,” Respirology, Vol. 15, No. 3, 2010, pp. 413-432. doi:10.1111/j.1440-1843.2010.01738.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.