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ABSTRACT. Alzheimer’s disease (AD) is a neurodegenerative disor-
der and the most common cause of dementia in elderly people. Nu-
merous studies have focused on the dysregulated genes in AD, but 
the pathogenesis is still unknown. In this study, we explored critical 
hippocampal genes and pathways that might potentially be involved 
in the pathogenesis of AD. Four transcriptome datasets for the hip-
pocampus of patients with AD were downloaded from ArrayExpress, 
and the gene signature was identified by integrated analysis of mul-
tiple transcriptomes using novel genome-wide relative significance and 
genome-wide global significance models. A protein-protein interaction 
network was constructed, and five clusters were selected. The biologi-
cal functions and pathways were identified by Gene Ontology and Kyo-
to Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analysis. A total of 6994 genes were screened, and the top 300 genes 
were subjected to further analysis. Four significant KEGG pathways 
were identified, including oxidative phosphorylation and Parkinson’s 
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disease, Huntington’s disease, and Alzheimer’s disease pathways. The 
hub network of cluster 1 with the highest average rank value was de-
fined. The genes (NDUFB3, NDUFA9, NDUFV1, NDUFV2, NDUFS3, 
NDUFA10, COX7B, and UQCR1) were considered critical with high 
degree in cluster 1 as well as being shared by the four significant path-
ways. The oxidative phosphorylation process was also involved in the 
other three pathways and is considered to be relevant to energy-related 
AD pathology in the hippocampus. This research provides a perspec-
tive from which to explore critical genes and pathways for potential AD 
therapies.

Key words: Alzheimer’s disease; Hippocampus; Critical genes; 
Pathways

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder, and is the most prevalent 
cause of dementia with no reported cure to date (Desai et al., 2005). As AD progresses, patients 
usually develop the symptoms of short-term to long-term memory loss, accompanied by con-
fusion, irritability, aggression, mood swings, language difficulties (Reisberg et al., 1987), and 
eventually death (Schoenberg et al., 1987). According to a recent report (Thies et al., 2013), 
approximately 76 million people in the world were living with AD in 2013. Brookmeyer et al. 
(2007) have estimated that AD could affect one in 85 people worldwide by 2050. Therefore, 
developing primary and secondary prevention strategies based on genes relevant to AD has 
become a popular field of research in recent decades (Boada et al., 2014). Liao et al. (2014) 
studied the effect of ATP-binding cassette subfamily A member 7 gene (ABCA7) on the risk of 
AD, and found that ABCA7 was significantly associated with AD (P = 0.0026). A study of the 
influence of 10 recently identified AD risk genes on the age-at-onset phenotype was carried 
out by Thambisetty et al. (2013) to identify genes that could potentially delay the onset of AD.

Despite the numerous studies on risk genes for AD, the molecular pathogenesis is still 
unclear (Yin et al., 2014), which constitutes a major challenge for research on AD. So far, several 
hypotheses have attempted to explain the causes of AD, including genetics, and the choliner-
gic, amyloid, and tau hypotheses. Among them, the cholinergic hypothesis forms the basis for 
most currently available drug therapies (Babic et al., 1999). A relationship has been identified 
between the cognitive and behavioral symptoms of AD and the dysfunction of certain brain re-
gions (Liang et al., 2008a). A comprehensive study carried out by Liang et al. (2012) based the 
identification of the most critical dysregulated genes in six different AD-relevant brain regions 
on a sub-graph algorithm. However, this study only analyzed one dataset for each brain region 
and ignored the large body of research that has focused on one particular brain region.

The hippocampus is located under the cerebral cortex (Freund and Buzsáki, 1996), 
and is a major component of the human brain. The hippocampus is considered to be the first 
affected region in the brains of AD patients, because it plays vital role in consolidating infor-
mation from short-term to long-term memory (West et al., 2000), the dysregulation of which 
is an early and severe symptom in AD patients (Lopez et al., 2003). Thus, we have focused our 
attention on the hippocampus to identify vital genes and pathways that might potentially give 
insight into effective therapies for AD.
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In recent years, a large amount of transcription data has been produced and deposited 
in publically available data repositories (Parkinson et al., 2007; Barrett et al., 2011). These 
repositories allow researchers to discover genetic and diagnostic signatures by data integration 
and bioinformatic analysis, which can provide insight into the biological mechanisms of AD. 
In order to integrate transcription data from different platforms and protocols, a new model has 
been employed, which measures the genome-wide relative significance (GWRS) and genome-
wide global significance (GWGS) (Liu et al., 2013).

In the current study, we initially downloaded transcription data from the hippocampus 
of AD patients in ArrayExpress. Using the GWRS and GWGS method, robust gene signatures 
were identified. To interrogate the interrelationships within these genes, protein-protein inter-
actions (PPIs) were used to discover hub genes and sub-networks. These gene signatures were 
also tested by functional and pathway enrichment analysis. This research might provide infor-
mation on vital genes and pathways that could potentially be exploited by therapies for AD. 

MATERIAL AND METHODS

Data recruitment and preprocessing

In this study, four hippocampal microarray expression profiles from patients with 
AD and age-matched normal controls were downloaded from ArrayExpress, including E-
GEOD-1297 (Blalock et al., 2004), E-GEOD-5281 (Liang et al., 2007, 2008b), E-GEOD-28146 
(Blalock et al., 2011), and E-GEOD-36980 (Hokama et al., 2014). From these four datasets, a 
total of 61 AD patients and 40 normal controls were included in the current study. The charac-
teristics of these studies are shown in Table 1.

Table 1. Characteristics of the previous studies included in the current study.

Accession No.	 Year	 Sample size	 Platform

		  Total (cases/controls)	

E-GEOD-1297	 2004	 31 (22/9)	 Affymetrix HG-U133A
E-GEOD-5281	 2007	   23 (10/13)	 Affymetrix HG-U133Plus2
E-GEOD-28146	 2011	 30 (22/8)	 Affymetrix HG-U133Plus2
E-GEOD-36980	 2014	 17 (7/10)	 Affymetrix HuGene-1.0st

Prior to analysis, the original expression information from all conditions was sub-
jected to data preprocessing. For each dataset, in order to eliminate the influence of nonspe-
cific hybridization, background correction and normalization were carried out using the robust 
multichip average (RMA) method (Ma et al., 2006) and a quartile-based algorithm (Rifai et 
al., 2001), respectively. Perfect match and mismatch values were revised using the Micro Ar-
ray Suite 5.0 (MAS 5.0) algorithm (Pepper et al., 2007), and selected via the median method. 
The data were then screened using the feature filter method of the genefilter package. Each 
probe is mapped to one gene, and the probe is discarded if it cannot match any genes. 

Integrated analysis of gene signatures from multiple microarray datasets 

In the present study, the GWRS and GWGS method was used to identify gene signa-
tures. The details of this approach have been described in previous research (Liu et al., 2013). 
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The degree of differential gene expression in each single microarray database was measured 
by GWRS on a genome-wide scale (r value) based on fold change. In this method, the number 
of datasets was denoted by n, and the number of unique genes across n datasets was denoted 
by m. The GWRS of the i-th gene in the j-th dataset was measured by:

where rij, i = 1-m, j = 1-n, was the rank number of the i-th gene in the j-th study. In current 
study, the value of n was 4.

Based on the corresponding GWRS across multiple microarray datasets, the GWGS 
of a gene was measured by:

where wj represents the relative weight of the j-th dataset. A gene with a large GWGS value 
was considered to be globally significant across multiple studies. The degree of differential 
expression was measured by the fold change. We assigned a rank number for each gene ac-
cording to its degree of differential expression. In the study by Liu et al. (2013), the top 200 
genes were considered. In our study, the reliability and robustness of the network should also 
be taken into account. Therefore, the top 300 genes were finally selected for further analysis, 
as 300 was the smallest number of genes that would allow optimal performance to be retained 
for classification accuracy in this study. 

Construction of a PPI network

Since genes seldom implement their functions independently, network analysis pres-
ents a powerful tool for understanding the functional organization of the proteome. To reveal 
the dysfunctional clusters and identify genes that may play a vital role in the disease process, 
the PPI network was constructed by linking causal disease genes with the 300 most responsive 
genes. For protein interaction data, we utilized a known interactome database from the search 
tool for the retrieval of interacting genes/proteins (STRING) (Jensen et al., 2009). The PPI 
network was constructed using Cytoscape (Scardoni et al., 2009), a free software package 
for visualizing, modeling, and analyzing the integration of biomolecular interaction networks 
with high-throughput expression data. 

Identification of clusters

In order to detect the densely connected regions and their functions in the network, 
we utilized a plug-in for the Cytoscape software, ClusterONE (Nepusz et al., 2012), to per-
form the clustering analysis. The top 300 genes with corresponding P values and fold changes 
were mapped into Cytoscape software. To find the densely connected network module, we 
discarded the clusters with fewer than 11 nodes and a density lower than 0.2.

 

(Equation 1)

(Equation 2)
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Functional enrichment analysis

To further study the functions and enriched pathways of these top 300 genes, func-
tional enrichment and pathway analysis were performed based on the Gene Ontology (GO) 
database (Version No. 2010.09.03) (http://www.geneontology.org/) and the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database (www.genome.jp/kegg/) (Kanehisa and 
Goto, 2000), respectively. In the functional analysis, GO terms with P values greater than 
0.01 were discarded. The enriched terms with more than five genes present and P values 
< 0.01 were considered to be statistically significant in the pathway enrichment analysis 
(Duncan et al., 2010). The two analyses were performed using the database for annotation, 
visualization, and integrated discovery (DAVID, http://david.abcc.ncifcrf.gov/tools.jsp) 
(Huang et al., 2008). The significant categories were identified by the Expression Analysis 
Systematic Explorer (EASE) score (Hosack et al., 2003). 

RESULTS

Integrated analysis of gene signatures

After preprocessing the expression data from the four different datasets, the num-
ber of genes in E-GEOD-1297, E-GEOD-5281, E-GEOD-28146, and E-GEOD-36980 were 
12493, 20109, 20109, and 10986, respectively, using the GWRS algorithm. A method based 
on fold change was applied when measuring the GWRS value for differential expression. 
Figure 1 shows the fold change for the top 44 genes. The GWGS of a gene was then mea-
sured based on the GWRS value. A total of 6994 genes were screened using the intersection 
of the microarray datasets. The top 300 AD genes in the hippocampus were identified for 
further analysis (Table 2). 

Figure 1. Stacked bar plots of fold changes for the top 44 ranked genes across four transcriptome datasets from the 
hippocampus of patients with Alzheimer’s disease.
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Table 2. Top 300 genes identified by integrated analysis that affect the hippocampus in Alzheimer’s disease.

No.	 Genes	 No.	 Genes	 No.	 Genes

1	 MAP3K9	 101	 RAD51C	 201	 DLGAP4
2	 ZNF204P	 102	 EHD3	 202	 RGS4
3	 DLGAP2	 103	 CCT4	 203	 ATP6V0B
4	 KAT6B	 104	 HIF1AN	 204	 COPS5
5	 GGA3	 105	 SHQ1	 205	 ELOVL4
6	 UQCR10	 106	 SEPT6	 206	 ADRBK2
7	 NIF3L1	 107	 RIC8A	 207	 TOMM70A
8	 KIAA0368	 108	 BEND5	 208	 SLC20A1
9	 HOPX	 109	 PPP1R7	 209	 QPCT
10	 C14orf2	 110	 KCNJ3	 210	 XK
11	 PPP1R11	 111	 ACTR10	 211	 PRDM2
12	 NDUFA10	 112	 C14orf132	 212	 BCL11A
13	 FAR2	 113	 NME1	 213	 CCDC130
14	 GPR22	 114	 WDFY3	 214	 UBR7
15	 MKKS	 115	 TRIM14	 215	 ATP5J
16	 LZTS1	 116	 MTMR4	 216	 UBE2W
17	 PTPN4	 117	 TOMM34	 217	 PPP1CA
18	 COPS4	 118	 ATG9A	 218	 MYT1L
19	 NHP2	 119	 B4GALNT1	 219	 PRKCZ
20	 WIF1	 120	 MICU1	 220	 RHOQ
21	 OFD1	 121	 FIBP	 221	 CDC5L
22	 PID1	 122	 TSSC1	 222	 NDUFS3
23	 LIG4	 123	 AMD1	 223	 POP4
24	 PREP	 124	 MTX2	 224	 KCNK1
25	 LMO4	 125	 PPIA	 225	 PFKM
26	 SPRED2	 126	 MICALL2	 226	 MED24
27	 FIG4	 127	 ZNF839	 227	 IMP4
28	 KIAA1279	 128	 KCNK10	 228	 UTP18
29	 REEP1	 129	 TRO	 229	 WARS
30	 FABP3	 130	 DNAJC16	 230	 GLRB
31	 TPI1	 131	 MRPL16	 231	 ADSL
32	 GABBR2	 132	 ASNS	 232	 PFDN2
33	 MRPL15	 133	 PSMB7	 233	 OGDHL
34	 RIMBP2	 134	 BAZ1B	 234	 NDUFA9
35	 ACOT7	 135	 TTPAL	 235	 MXRA8
36	 PITPNB	 136	 DUSP6	 236	 MTOR
37	 HAUS2	 137	 RNFT2	 237	 DEAF1
38	 DUSP8	 138	 UGP2	 238	 ROBO3
39	 DNM1L	 139	 LRP8	 239	 RSG1
40	 PORCN	 140	 U2AF1	 240	 PTDSS1
41	 UCHL3	 141	 KIAA1045	 241	 CACNB2
42	 NGFRAP1	 142	 HCCS	 242	 NDUFV2
43	 SNX27	 143	 STRAP	 243	 KPNA2
44	 TLN2	 144	 THOC5	 244	 TCEAL2
45	 POLB	 145	 FSD1	 245	 L1CAM
46	 SHFM1	 146	 KCNQ2	 246	 DMTF1
47	 TMEM246	 147	 ICT1	 247	 BAG4
48	 CAPZA2	 148	 FAM32A	 248	 SLC25A44
49	 SLC25A4	 149	 VAPB	 249	 SYT13
50	 INSIG2	 150	 MAD2L1BP	 250	 FAM178A
51	 CCT3	 151	 ATP5J2	 251	 RFX4
52	 TM9SF4	 152	 MZT2B	 252	 NIT1
53	 PDIA6	 153	 ACACA	 253	 NDUFA13
54	 LDB2	 154	 CCNC	 254	 BOP1
55	 RBM25	 155	 SYNGR3	 255	 KCND3
56	 EPB41L1	 156	 COX7B	 256	 KANSL3
57	 LRRC47	 157	 NDUFB3	 257	 WWTR1
58	 TBC1D30	 158	 USO1	 258	 GTF2H3
59	 NCALD	 159	 RIT2	 259	 ACOT8
60	 SBNO1	 160	 TXNL1	 260	 GLS2

Continued on next page
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No.	 Genes	 No.	 Genes	 No.	 Genes

61	 PDHA1	 161	 KTN1	 261	 NCL
62	 C12orf43	 162	 SCG3	 262	 XRCC6
63	 ATP6V1D	 163	 FAM134C	 263	 CSRNP2
64	 ZAK	 164	 FBXO21	 264	 RABGGTB
65	 MCTS1	 165	 AP1S1	 265	 ANKRD46
66	 MARS	 166	 VPS41	 266	 PSMA1
67	 POLR1B	 167	 PRAF2	 267	 ARMCX2
68	 NPTX2	 168	 PTPRO	 268	 MARK1
69	 SMARCC2	 169	 RGS7	 269	 CELF3
70	 GABRA5	 170	 ST6GALNAC5	 270	 AEBP1
71	 RALGAPB	 171	 FBXO34	 271	 DYNLRB1
72	 BABAM1	 172	 TTBK2	 272	 ELMO2
73	 TOMM22	 173	 FRMPD4	 273	 B4GALT6
74	 CFLAR	 174	 RB1CC1	 274	 ARF5
75	 POP7	 175	 GPRASP1	 275	 TAC1
76	 RAB15	 176	 SCG5	 276	 RNMT
77	 NOLC1	 177	 ZHX3	 277	 ADH5
78	 RFK	 178	 HK1	 278	 PPM1G
79	 ARPC5L	 179	 SMOX	 279	 SHANK2
80	 OXR1	 180	 SCN2B	 280	 EI24
81	 BHLHB9	 181	 THYN1	 281	 KDM5B
82	 RAN	 182	 AP3B2	 282	 KCTD2
83	 BRD3	 183	 CHRNB2	 283	 STAU2
84	 TFEB	 184	 SMARCA4	 284	 SFXN3
85	 ITPKB	 185	 PIP4K2C	 285	 RALBP1
86	 TM2D3	 186	 LEPROTL1	 286	 SFSWAP
87	 SCAI	 187	 MRPS7	 287	 UBE2Q1
88	 LGI1	 188	 SLC4A1AP	 288	 HPRT1
89	 RAD23B	 189	 DYNLL1	 289	 CCT2
90	 NEDD4L	 190	 ATRN	 290	 FAM20B
91	 SPATS2	 191	 TSPAN5	 291	 PENK
92	 CHGA	 192	 PINK1	 292	 SLC2A4RG
93	 UXS1	 193	 TBL1X	 293	 SPATS2L
94	 NELL1	 194	 NEUROD6	 294	 LEMD3
95	 LHX6	 195	 GFPT1	 295	 ADARB1
96	 HERC1	 196	 ATP2B3	 296	 CAPRIN2
97	 CUL1	 197	 ARID1A	 297	 MRPL44
98	 MTHFD1	 198	 C6orf211	 298	 TAX1BP1
99	 NDUFV1	 199	 MRPL9	 299	 KDM1A
100	 SUCLG1	 200	 KCNJ6	 300	 TDRKH

Table 2. Continued.

PPI network 

According to the PPI data downloaded from STRING, the relationships between these 
300 genes relevant to AD in the hippocampus were identified, and a PPI network was con-
structed (Figure 2). In total, the constructed PPI network included 184 nodes and 661 edges, 
where nodes refer to gene signatures and the edges between nodes indicate the interactions 
of genes in the network. From the network, we could observe that there was more than one 
interaction between some nodes, with reference to experimental interactions, domain fusion, 
interactions inferred by curator, interolog mapping, phylogenetic profiling, predictive text 
mining, and unspecified methods such as coexpression. When calculating the degree of each 
gene, we merged multiple edges between two nodes into one, and counted them as one edge in 
the following topology analysis. Genes from the PPI network showing a high degree included 
NDUFS3 (degree = 23), COPS5 (degree = 16), SUCLG1 (degree = 15), NDUFB3 (degree = 
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13), NDUFV2 (degree = 13), PPP1CA (degree = 12), IMP4 (degree = 11), PSMA1 (degree 
= 11), ADSL (degree = 11), MRPL15 (degree = 11), ATP5J (degree = 11), NDUFA9 (degree 
= 11), NDUFV1 (degree = 10), SLC2A4RG (degree = 10), and CCT3 (degree = 10). These 
genes are likely to be crucial for maintaining the function and coherence of signaling mecha-
nisms. In addition, the transcription factors (TFs) were chosen according to data for the known 
regulatory TFs (Vaquerizas et al., 2009). Six TFs were mapped on the PPI network, including 
DMTF1, DEAF1, PRDM2, NEUROD6, MYT1L, and CDC5L.

Figure 2. PPI network for the top 300 genes with differential expression in the hippocampus of patients with 
Alzheimer’s disease. Purple refers to transcription factors, red refers to the genes common to cluster 1 and the KEGG 
pathways for oxidative phosphorylation, Parkinson’s disease, Huntington’s disease, and Alzheimer’s disease.

Clusters

The clusters with densely connected nodes in the PPI network were detected using 
the ClusterONE plug-in of the Cytoscape software. In the current study, five clusters were 
identified with parameters set to a minimum size of 11 and a minimum density of 0.2. Figure 
3 presents the five significant clusters selected from the top 300 genes. The number of nodes 
in each cluster was 17, 14, 11, 12, and 13, while the number of corresponding edges was 159, 
46, 13, 30, and 16, respectively. 
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Figure 3. (A) Cluster 1, (B) cluster 2, (C) cluster 3, (D) cluster 4, and (E) cluster 5 of the top 300 genes with 
differential expression in the hippocampus of patients with Alzheimer’s disease. Purple refers to transcription 
factors, red refers to the genes common to cluster 1 and the KEGG pathways for oxidative phosphorylation, 
Parkinson’s disease, Huntington’s disease, and Alzheimer’s disease.

Functional enrichment analysis

Functional enrichment analysis of the resulting gene signature was performed, including 
GO enrichment and KEGG pathway enrichment. GO analysis was carried out in three catego-
ries, including biological processes (BP), molecular functions (MF), and cellular components 
(CC). The results of GO analysis show that the top 300 genes were significantly enriched in 97 
terms. After discarding the terms with P values greater than 0.01, the most significant five GO 
terms of BP, MF, and CC are presented in Table 3. The most significant terms for BP, MF, and CC 
were the generation of precursor metabolites and energy (P = 8.21 x 10-7), NADH dehydrogenase 
activity (P = 9.04 x 10-5), and mitochondrial membrane (P = 1.40 x 10-6), respectively. Pathway 
enrichment analysis showed that these genes were significantly enriched in four terms. The most 
significant term was oxidative phosphorylation (P = 2.05 x 10-5), including the genes NDUFB3, 
ATP5J2, UQCR10, NDUFA9, NDUFV1, NDUFV2, COX7B, NDUFS3, NDUFA10, ATP6V1D, 
ATP6V0B, and ATP5J. The other terms were Parkinson’s disease (P = 9.87 x 10-5), Huntington’s 
disease (P = 0.0053), and Alzheimer’s disease (P = 0.0095), and all of these pathways are related 
to neuropathy. The four pathways are presented in Table 4.
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Table 3. Significantly enriched GO terms for the hippocampus of patients with Alzheimer’s disease.

Terms	 P value	 Genes

Biological process (BP)		
   Generation of precursor	 8.21E-007	 NDUFB3, TXNL1, SLC25A4, NDUFA9, SUCLG1, OGDHL, HK1, NDUFA13, PFKM, 
      metabolites and energy		  NDUFA10, ATP6V1D, ATP6V0B, PPP1CA, TPI1, UQCR10, NDUFV1, GFPT1, NDUFV2, 
		  PDHA1, NDUFS3, ATP5J
   Oxidative phosphorylation	 6.17E-005	 NDUFB3, UQCR10, NDUFA9, NDUFV1, NDUFV2, NDUFS3, NDUFA10, 
		  ATP6V1D, ATP6V0B, ATP5J
   Mitochondrial ATP synthesis	 4.63E-004	 NDUFB3, UQCR10, NDUFA9, NDUFV1, NDUFV2, NDUFS3, NDUFA10
      coupled electron transport
   ATP synthesis coupled to	 4.63E-004	 NDUFB3, UQCR10, NDUFA9, NDUFV1, NDUFV2, NDUFS3, NDUFA10
      electron transport
   Mitochondrial electron	 8.55E-004	 NDUFB3, NDUFA9, NDUFV1, NDUFV2, NDUFS3, NDUFA10
      transport, NADH to ubiquinone
Molecular Function (MF)		
   NADH dehydrogenase activity	 9.04E-005	 NDUFB3, NDUFA9, NDUFV1, NDUFV2, NDUFA13, NDUFS3, NDUFA10
   NADH dehydrogenase	 9.04E-005	 NDUFB3, NDUFA9, NDUFV1, NDUFV2, NDUFA13, NDUFS3, NDUFA10
      (quinone) activity
   NADH dehydrogenase	 9.04E-005	 NDUFB3, NDUFA9, NDUFV1, NDUFV2, NDUFA13, NDUFS3, NDUFA10
      (ubiquinone) activity
   Oxidoreductase activity, 	 1.90E-004	 NDUFB3, NDUFA9, NDUFV1, NDUFV2, NDUFA13, NDUFS3, NDUFA10
      acting on NADH or NADPH, 
      with quinone or similar
      compound as acceptor
   Oxidoreductase activity, 	 0.003153	 NDUFB3, NDUFA9, NDUFV1, NDUFV2, NDUFA13, NDUFS3, NDUFA10
      acting on NADH or NADPH
Cellular Component (CC)		
   Mitochondrial membrane	 1.40E-006	 HCCS, NDUFB3, ATP5J2, DNM1L, SLC25A4, NDUFA9, MTX2, SUCLG1, COX7B, HK1,
		  NDUFA13, PINK1, NDUFA10, UQCR10, TOMM70A, NDUFV1, NDUFV2, TOMM22, 
		  SLC25A44, MTOR, NDUFS3, TOMM34, ATP5J
   Mitochondrion	 1.59E-006	 NDUFB3, HCCS, MTX2, COX7B, OGDHL, SFXN3, ADH5, PINK1, HK1, C14ORF2, 
		  GLS2, MTHFD1, UQCR10, ACOT7, ACOT8, MRPL15, MRPL16, SLC25A44, PDHA1, 
		  NDUFS3, OXR1, ATP5J, TOMM34, ATP5J2, DNM1L, FIBP, SLC25A4, NDUFA9, 
		  SUCLG1, NDUFA13, MRPL9, REEP1, MRPS7, NDUFA10, CAPRIN2, KIAA1279, 
		  TOMM70A, NDUFV1, NDUFV2, TOMM22, MTOR, MRPL44
   Mitochondrial envelope	 3.83E-006	 HCCS, NDUFB3, ATP5J2, DNM1L, SLC25A4, NDUFA9, MTX2, SUCLG1, COX7B, HK1,
		  NDUFA13, PINK1, NDUFA10, UQCR10, TOMM70A, NDUFV1, NDUFV2, TOMM22, 
		  SLC25A44, MTOR, NDUFS3, TOMM34, ATP5J
   Mitochondrial part	 4.64E-006	 NDUFB3, HCCS, MTX2, OGDHL, COX7B, HK1, PINK1, GLS2, UQCR10, MRPL16, 
		  SLC25A44, PDHA1, NDUFS3, ATP5J, TOMM34, ATP5J2, DNM1L, SLC25A4, NDUFA9,
		  SUCLG1, MRPL9, NDUFA13, NDUFA10, TOMM70A, NDUFV1, NDUFV2, TOMM22, MTOR
   Mitochondrial membrane part	 1.11E-005	 NDUFB3, ATP5J2, TOMM70A, NDUFA9, NDUFV1, NDUFV2, COX7B, NDUFA13, 
		  TOMM22, NDUFS3, NDUFA10, ATP5J

Table 4. Significantly enriched KEGG pathways for the hippocampus of patients with Alzheimer’s disease.

Term	 Genes	 P value

Oxidative phosphorylation	 NDUFB3, ATP5J2, UQCR10, NDUFA9, NDUFV1, NDUFV2, COX7B, 	       2.05E-005
	 NDUFS3, NDUFA10, ATP6V1D, ATP6V0B, ATP5J
Parkinson’s disease	 NDUFB3, UQCR10, SLC25A4, NDUFA9, NDUFV1, NDUFV2, COX7B, 	       9.87E-005
	 PINK1, NDUFS3, NDUFA10, ATP5J
Huntington’s disease	 NDUFB3, UQCR10, SLC25A4, NDUFA9, NDUFV1, NDUFV2, COX7B, 	 0.0053
	 NDUFS3, NDUFA10, ATP5J
Alzheimer’s disease	 NDUFB3, UQCR10, NDUFA9, NDUFV1, NDUFV2, COX7B, NDUFS3, 	 0.0095
	 NDUFA10, ATP5J

Identification of the hub sub-network

For all the resulting clusters, the average rank value based on the P value and degree 
was calculated, and the cluster with the highest rank value and degree was considered a hub 
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sub-network. The results are shown in Table 5. Genes in cluster 1 with an average rank value 
of 5.61 and average degree of 8.94 were significantly connected. Compared with our ear-
lier enrichment analysis, eight of the 17 genes in cluster 1 (NDUFB3, NDUFA9, NDUFV1, 
NDUFV2, NDUFS3, NDUFA10, COX7B, and UQCR10) shared the four significant KEGG 
pathways mentioned above, further confirming the significance of cluster 1.

Table 5. Average rank value and degree for each cluster.

Cluster	 1	 2	 3	 4	 5

Number of nodes	 17.0	 14.0	 11.0	 12.0	 13.0
Rank (average)	     5.61	     5.60	     4.95	     5.09	     5.19
Degree (average)	     8.94	     5.00	     2.63	     4.25	     3.38

DISCUSSION

AD affects many people in older age, and is a complex disease with a pathogenesis 
that is unclear. The goal of this study was to identify important genes, sub-networks, and 
potential pathways involved in AD to contribute to the understanding of its molecular patho-
genesis. We first combined the genes from microarray data using GWRS and GWGS meth-
ods, and then analyzed these genes using functional enrichment analysis, pathway enrichment 
analysis, PPI, and cluster analysis.

In our study, a total of 6994 genes were identified using a robust new model that 
enabled integrative analysis of multiple microarray datasets produced by different platforms 
and protocols. PPI network analysis revealed several gene signatures with high connectivity, 
which might be candidates for the pathogenesis of AD. 

In the present study, NDUFS3 (degree = 23) showed the highest degree in the net-
work. Zhang et al. (2012) verified that NDUFS3 was significantly upregulated in the oxida-
tive phosphorylation and AD pathways in diabetic nephropathy. Meanwhile, NDUFS3 had 
the highest connectivity in the constructed PPI network and was a common gene in the four 
significant pathways we identified in AD, supporting an association with AD pathogenesis. 
NDUFV1 is the core subunit, along with NDUFS3, in human mitochondrial complex I, and 
this is considered the minimal assembly required for catalysis. 

NDUFV1 encodes an enzyme subunit of NADH:ubiquinone oxidoreductase complex 
I, and requires one 4Fe-4S cluster and one flavin mononucleotide (FMN) molecule as cofac-
tors. Defects in NDUFV1 lead to several diseases, such as Leigh syndrome, a severe neuro-
logical disorder characterized by bilaterally symmetrical necrotic lesions in subcortical brain 
regions. NDUFA10 and NDUFA9 encode subunits that each bind one flavin adenine dinucleo-
tide (FAD) cofactor and are considered accessory subunits of complex I that have no involve-
ment in catalysis. NDUFB3 is also an accessory subunit of complex I that is not believed to be 
involved in catalysis. A study of Liu et al. (2011) indicated that defects in NDUFV2 are closely 
related to AD and other encephalopathies. COX7B is one of the nuclear-encoded polypeptide 
chains of cytochrome c oxidase (complex IV), the terminal oxidase in mitochondrial electron 
transport. COX7B is reportedly increased in AD brains and its over-expression in cells was 
shown to enhance amyloid-beta peptide (1-40) toxicity, which has been implicated in neuronal 
cell death in AD (Nagai et al., 2004). UQCR10 is a component of complex III and interacts 
with cytochrome c1. ATP5J2 and ATP5J in complex V produce ATP from ADP in the presence 
of a proton gradient across the membrane, which is generated by electron transport complexes 
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of the respiratory chain. These genes exhibited a high degree in our network, showing their 
potential importance for the molecular pathogenesis of AD.

In the current study, four significant pathways (oxidative phosphorylation, Parkin-
son’s disease, Huntington’s disease, and Alzheimer’s disease pathways) were detected by 
KEGG enrichment analysis of those top 300 genes. Among them, the most significant was the 
oxidative phosphorylation pathway, with the lowest P value of 2.05 x 10-5. Oxidative phos-
phorylation is a pervasive and highly efficient metabolic pathway that provides energy for 
basal metabolism from ATP reformation in the mitochondria of cells (Rolfe and Brown, 1997). 
In this pathway, redox reactions occur via the transfer of electrons from electron donors to 
acceptors. The electron transport chain includes five main protein complexes (NADH dehy-
drogenase, succinate dehydrogenase, the cytochrome bcl complex, cytochrome c oxidase, and 
ATP synthase) and is considered the vital energy producer. Coincidentally, several genes that 
we identified, such as NDUFB3, NDUFA9, NDUFV1, NDUFV2, NDUFS3, and NDUFA10 in 
cluster 1, are related genes that are associated with NADH dehydrogenase. During oxidative 
phosphorylation, some reactive oxygen species are produced simultaneously, such as superox-
ide and hydrogen peroxide, which lead to free radical propagation, cell damage, disease, and 
senescence. Previous studies have highlighted the relationship between oxidative phosphory-
lation and AD. According to a study by Sun et al. (2012), an energy deficiency in the brain 
might be the commonest etiological agent for AD. Shoffner (1997) also showed that functional 
decreases in the activity of enzymes involved in oxidative phosphorylation appeared to occur 
in AD and may be related to other neurodegenerative processes, which supports the concept 
that oxidative phosphorylation plays an important role in the pathophysiology of AD. The 
oxidative phosphorylation pathway is shown in Figure 4. The importance of the oxidative 
phosphorylation pathway in the present study was further confirmed by the KEGG pathway 
for AD (Figure 5). In the Parkinson’s disease and Huntington’s disease pathways, oxidative 
phosphorylation has also been identified as one of the most significant processes involved in 
these diseases. This suggests that the oxidative phosphorylation pathway is highly relevant to 
the pathogenesis of neurological disease.

Figure 4. KEGG oxidative phosphorylation pathway. Genes involved in the oxidative phosphorylation pathway are 
shown. Red stars denote the detected genes.
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Figure 5. A part of the KEGG Alzheimer’s disease pathway. Our detected genes were found in four respiratory 
chain complexes (Cx I, Cx III, Cx IV, and Cx V).

Using cluster analysis, we found five clusters with densely connected genes. Genes 
in cluster 1 are the most closely connected, with the highest values for rank and degree, and 
are considered the hub sub-network for AD. Moreover, eight genes in cluster 1 also partici-
pate in the significant pathways that we identified, including NDUFB3, NDUFA9, NDUFV1, 
NDUFV2, NDUFS3, NDUFA10, COX7B, and UQCR10. Most of these genes showed a high 
degree in the network and some have a proven role in AD. This further confirms the signifi-
cance of cluster 1 in AD.

In this paper, several hub genes were identified, and many of these genes have seldom 
been reported in previous research on AD. The bioprocesses and significant signaling pathways 
associated with AD were presented systematically. Comprehensive network analysis was con-
ducted on the dysregulation of gene expression in AD, and a hub sub-network was shown for the 
development of AD. The identification of these pathways and several critical genes might give 
new insight into potential therapies for AD. However, the current study was based on previous 
reports. The results need to be confirmed by further research and more clinical evidence.
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