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Abstract 
 

Quorum sensing (QS) has been shown to be important for the pathogenesis of Pseudomonas aeruginosa 

in number of infections and for the expression of various virulence genes. Although QS has been shown to 

regulate the expression of virulence factors such as elastase, protease and rhamnolipid but link to others such 

as lipopolysaccharide (LPS) or exo-polysaccharide has not been studied in detail yet. Present study 

investigated the contribution of QS to the phenotypic expression of multiple virulence factors in vitro. 

Multiple virulence factors were estimated among wild type P. aeruginosa and its isogenic QS mutant strains 

by standard methods. Results indicated that QS also regulates the expression of LPS, haemolysin, 

siderophores and polysaccharides in addition to well-known virulence factors such as elastase, protease and 

rhamnolipids. Role in biofilm formation and motilities was further established. It may be concluded that QS 

regulates the expression of multiple virulence factors in P. aeruginosa. It also depicts that QS may regulates 

more than it is speculated. Therefore, role of QS signal molecules can also be explored further for other 

regulation possibilities, as futuristic drug target for the development of preventive strategies and important 

virulence factor per se. 
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1. Introduction 

 

Pseudomonas aeruginosa, an extremely 

versatile gram negative bacterium is responsible 

for number of infections such as eye, burns, 

wounds, cystic fibrosis, respiratory tract and 

urinary tract (UTI) which leads to significant 

morbidity and mortality [1]. Virulence is usually 

attributed to number of cellular and extracellular 

virulence factors like pilli, flagella, 

lipopolysaccharide, elastase, alkaline proteases, 

pyocyanin, pyoverdin, haemolysins, 

phospholipase C, rhamnolipids and biofilm [2]. In 
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number of in vivo studies, it has been speculated 

that expression of these multiple virulence factors 

and biofilm formation are under the regulation of 

quorum sensing (QS) operative via responding to 

small diffusible signalling molecules, acyl 

homoserine lactones (AHLs). In P. aeruginosa QS 

network is operative through two distinctive, 

interdependent systems, lasR/lasI and the 

rhlR/rhlI [2, 3]. Both these components operate in 

a hierarchal cascade. Nearly 5% of the P. 

aeruginosa total genome (over 300 genes) is under 

the regulation of QS [4], out of which, functions 

of many genes is still not understood well.  

Importance of QS to establish a successful 

infection have been shown in number of infection 

model studies such as acute pulmonary infection, 

burn wound infection, microbial keratitis, chronic 

lung infection and UTI by employing QS deficient 

strains. In these studies, inability of QS deficient 

strains to induce successful infection was 

proposed to be linked with decreased production 

of protease, elastase and rhamnolipid [5-11]. Few 

clinical studies have also suggested that QS are 

fully functional during infections within infected 

tissues like sputum from cystic fibrosis patients 

and renal tissue in UTI [11-12]. In addition, QS 

deficient strains have also been reported to be 

associated with various infections like wound, 

cystic fibrosis and UTI since these mutants were 

not found to be completely avirulent. It indicated 

that there may be certain other virulence factors 

which may not be stringently regulated by QS 

[13]. However, very limited literature is available 

where role of QS has been shown to be associated 

with regulation of virulence factors other than 

elastase, protease and rhamnolipid etc. Moreover, 

report on in vitro phenotypic expression of various 

virulence factors among QS competent and 

deficient strains is also lacking. More or less, all 

the speculations have been made on the basis of in 

vivo studies only. Keeping this in view, present 

study was carried out to evaluate in vitro 

expression of various cell associated and 

extracellular virulence factors among wild type P. 

aeruginosa and its isogenic QS deficient strains 

for better understanding of inter-linkage and 

definitive role of individual QS component to the 

regulation of these virulence factors.  

 

2. Materials and methods 

 

2.1 Bacterial strains 

Wild type P. aeruginosa PA01 and its 

isogenic single mutants JP1 (∆LasI), R1 (∆LasR) 

and isogenic double mutant strains JP2 

(∆LasI∆RhlI) and JP3 (∆LasR∆RhlR) were used. 

These mutants were generated by inactivating the 

respective quorum sensing genes either by gene 

replacement or transposon insertion in these 

genes. Tetracycline (50µg/ml) and mercuric 

chloride (7.5µg/ml) were added to the Luria broth 

for the growth of double mutant strains. 

Tetracycline (50µg/ml) was used for single mutant 

strains.   

 

2.2 Test supernatant and cells 

Cultures were grown in Luria broth at 37
o
C at 

120 rpm for 16-18hrs. After incubation, cultures 

were centrifuged at 10,000g at 4
o
C for 15 min. 

Cell free supernatants and cell pellets were 

separated and used in various experiments.    

 

2.3 Protease production 

Proteolytic activity was estimated according 

to the method of Visca et al., [14]. Briefly, 0.5 ml 

of culture supernatant was diluted in 10mM Tris 

buffer (pH 7.5) and incubated with 15mg hide 

powder azure (Sigma Chemicals, USA) at 37
o
C 

for 1hr. Absorbance was measured at 595nm and 

results were expressed in units per liter (U/L). 

 

2.4 Elastase activity 

Elastase activity was measured following the 

method of Visca et al., [14]. 15mg of substrate 

(elastin-congo red; Sigma Chemicals, USA) was 

suspended in 1 ml of culture supernatant mixed 

with 1ml of 100mM Tris-Succinate buffer (pH 

7.0) supplemented with 1mM CaCl2.  Tubes were 

kept at 37
o
C for 2hrs under shaking conditions.  

Reaction was stopped by adding 1ml of 0.7M 

sodium phosphate buffer (pH 6.0) and was 

centrifuged at 4000g for 5min at 4
o
C. Absorbance 

was taken at 495nm and results were expressed in 

units per liter (U/L). 

 

2.5 Hemolysis estimation 
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Both cell free and cell bound hemolysin was 

estimated following the method of Linkish and 

Vogt [15]. 

 

2.6 Cell bound hemolysins 

1.5ml of 2% human RBC’s suspension was 

mixed with 1.5ml of biofilm cells and incubated at 

37ºC for 2hrs. Mixture was centrifuged at 8000g 

for 15min. Supernatant was collected and 

absorbance was read at 545nm. The amount of 

hemolysin (mg/ml) was calculated by using 

lyophilized hemoglobin as reference.  

 

2.7 Cell free hemolysins 

1.5ml of 2% human RBC’s suspension was 

mixed with 1.5ml of cell free supernatant and 

incubated at 37ºC for 2hrs. Assay mixture was 

centrifuged at 5000g for 5min and absorbance was 

taken at 545nm. 

 

2.8 Pyocyanin estimation 

Pyocyanin was measured according to the 

method of Huerta et al., [16]. Briefly, 3ml of 

culture supernatant was mixed with 1.2ml of 

chloroform. Mixture was incubated for 30 minutes 

at room temperature. Absorbance of chloroform 

layer was measured at 690nm. Concentration of 

pyocyanin was expressed as µg/ml. 

 

2.9 Pyoverdin estimation 

Estimation was done by the method of 

Ankenbauer et al., [17]. 1ml of culture supernatant 

was diluted with 50mM Tris-HCl (pH 7.4) and 

fluorescence was measured at 460nm by exciting 

the samples at 400nm in Gibson Spectro-

glowflourometer.  

 

2.10 Pyochelin estimation 

Quantitation of pyochelin was done by the 

method of Arnow, [18]. 1ml supernatant, 1ml each 

of 0.5N HCl, Nitrite molybdate reagent and 1N 

NaOH were mixed and the final volume was made 

to 5ml with DW. Absorbance was taken at 510nm. 

 

2.11 Rhamnolipid estimation 

Rhamnolipid was quantified by Orcinol 

method [19]. Briefly, strains were grown 

overnight in chemically defined media and culture 

supernatant was extracted with diethyl ether.100µl 

of this extract was diluted with 1:10 in freshly 

prepared orcinol reagent (7.5 volume of 60% 

H2SO4 and 1 volume of 1.6% (w/v) orcinol in 

distilled water) and mixture was heated in water 

bath at 80
o
C for 30min. Absorbance was measured 

at 421nm. L-Rhamnose (Sigma chemicals, USA) 

was used to standardize the assay.   

 

2.12 LPS estimation 

LPS was determined by following the method 

of Morrison and Leive [20]. Briefly, 200µl of 

culture was mixed with 100µl of H2SO4 and 

heated in boiling water bath for 15min. 200µl 

periodic reagent (0.125N sodium periodate in 

0.125N H2SO4) was added to this and heated at 

55
o
C for 22min. 400µl of Arsenite solution (2% 

Sodium arsenite in 0.5N HCl) and 1.6ml of thio-

barbituric acid (0.71% in TBA with 0.7ml of 1N 

NaOH) was added to this mixture and was 

incubated in boiling water bath for 12min. 

Absorbance was measured at 532nm. Purified 

KDO was used to standardize the assay. 

 

2.13 Total polysaccharide estimation 

Total polysaccharide content was measured 

by use of the phenol-sulphuric acid assay [21]. 5 

ml of 0.5% phenol and 2.5 ml of concentrated 

H2SO4 were added to each sample and left to cool 

for 30 min. Samples were centrifuged (3,000g for 

15 min), and supernatant was measured 

spectrophotometrically at 485 nm. H2O blanks 

were treated as above. Total carbohydrate was 

expressed in mg using glucose as reference. 

 

2.14 Protein estimation 

Protein content in the samples was estimated 

by using modified method of Lowry et al., [22]. 

Briefly, 2.5ml working solution (98ml of 2% 

Na2CO3 in 0.1 N NaOH + 1ml of 1% 

CuSO4.5H2O+1ml of 2% Sodium Potassium 

Tartarate) was mixed with protein samples and 

incubated at room temperature for 10 min. After 

this, 1N Folin-Ciocateu’s reagent was mixed and 

incubated at 37
o
C for 30min at room temperature. 

Optical density was taken at 660 nm. Blank 

containing distilled water was also processed 

simultaneously. Bovine serum albumin was used 

as reference. 
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2.15 Motility assays 

Swimming, swarming, and twitching 

motilities were assayed on agar plates containing 

specific media [23]. 

 

2.16 Swimming motility 

Plates containing 1% tryptone, 0·5% NaCl 

and 0·3% agarose were prepared and were point 

inoculated from an overnight LB culture. Plates 

were incubated at 30°C for 24hr and motility was 

assayed as the radius of the circular expansion of 

bacterial growth from the point of inoculation.  

 

2.17 Swarming motility 

Plates of nutrient agar containing 

bacteriological agar (0.5% w/v) and glucose 

(5g/liter) were prepared. Plates were allowed to 

dry at room temperature. Cells were point 

inoculated from overnight culture and incubated at 

37°C for 24hr.  

 

2.18 Twitching motility 

The overnight culture was stabbed through 

agar of LB plates (1% agar) to the bottom of the 

Petri dish and incubated for 48hr at 37
o
C. After 

removal of agar, attached cells were stained with 

crystal violet (1% w/v) and the radius of growth 

expansion was determined. 

 

2.19 Statistical analysis 

All the experiments were repeated three times 

to validate the reproducibility of experiments. 

Results were analysed statistically by Student’s t 

test using SPSS 11.05 to calculate p values and 

p<0.05 were taken as significant. 

 

3. Results and Discussion 

 

QS play an important role in the regulation of 

cell physiology in P. aeruginosa. QS system, 

consisted of inducer and regulator proteins of las 

and rhl components which works interdependently 

in an hierarchal manner to regulate the expression 

of various genes including virulence ones [4, 24]. 

In the present study, effect of individual QS 

inducer or regulator component on phenotypic 

expression of various virulence factors was 

observed. Both these components of QS cascade 

have been implicated in the pathogenesis of 

various infections. Culture supernatants were 

evaluated for the production of extracellular 

factors such as elastase, protease, rhamnolipid, 

cell free hemolysin, pyochelin, pyocyanin and 

pyoverdin while cell pellet was used for the 

estimation of cell associated factors as cell bound 

hemolysin, total polysaccharide, protein and LPS 

content. Overnight grown cultures were used for 

the motilities assay.  

Secretion of extra cellular enzymes is an 

important aspect of pathogenicity which helps in 

combating adverse conditions and tissue 

colonization inside the host. Elastase and protease 

are such two enzymes in P. aeruginosa. In the 

present study, significantly reduced secretion of 

both enzymes was observed among QS deficient 

strains as compared to the wild type (p ≤0.001, 

Table 1). Inability of these QS deficient strains to 

produce elastase and protease has been linked with 

their avirulence and non-invasive in different 

experimental model studies [10]. Rumbaugh et al., 

[6] also pointed avirulence of QS deficient strains 

due to non-production of elastase and protease. QS 

deficient clinical isolates have also been reported 

to produce low level of elastase and protease [25]. 

Less production of protease and elastase by 

clinical isolates from different infections have also 

been related with deletion of QS components [26]. 

Various other workers have also documented low 

levels of elastase and protease among QS deficient 

strains [27-31].      

Siderophores and haemolysin are another 

aspect of P. aeruginosa virulence which aids to 

virulence of this pathogen by chelating bound 

tissue iron during infections [32]. Importance of 

siderophores and haemolysin has been 

documented in the pathogenesis of respiratory 

tract, corneal, burn wound and urinary tract 

infections [14, 33]. Significantly reduced 

production of iron mopping agents were observed 

in QS deficient strains indicating that production 

of these agents are also regulated by QS (p 

≤0.001, Table 1). Arevalo et al., [34] have also 

demonstrated significantly reduced growth of QS 

deficient strains in the presence of haemoglobin as 

sole source of iron in comparison to wild type. 

Reduction in growth was restored to normal by 

supplementing the media with QS signal 

molecules, indicating that iron acquiring 
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mechanism are definitely under the regulation of 

QS. Deziel et al., [35] have also observed that QS 

deficient strains express siderophores in late phase 

of growth after complementation with another QS 

mechanism. Regulation of siderophores by QS 

has also been reported by various other workers 

[28, 31]. 

 
Table 1: Production of different extra cellular virulence factors as estimated in culture supernatants of Pseudomonas 

aeruginosa wild type PAO1 and its isogenic QS single and double mutant strains. 

   

LPS, another important aspect of gram 

negative pathogens virulence, has not been studied 

in detail in relation to QS in P. aeruginosa. 

Limited literature is available on this aspect. LPS 

is important for organism’s pathogenicity and 

immunogenicity. In the present study, LPS was 

also produced in significant reduced amount by 

QS deficient strains (p ≤0.001, Table 2). It 

indicates that probably production of this factor is 

also under the regulation of QS either directly or 

via some other regulators. Although possible 

relationship between QS and LPS has also been 

suggested earlier [36-37] but our study reports 

direct effect of QS competence on the production 

of LPS. Nakamuru et al., [37] have shown that 

amount of LPS secreted in the culture supernatant 

was directly related with the ability of QS. 

However, more thorough study may throw more 

light on the mechanism of regulation of LPS by 

QS. Polysaccharides are important for initial 

attachment and later biofilm formation. Present 

study showed reduced amount of polysaccharide 

in QS deficient strains (p ≤0.001, Table 2). Shih 

and Huang, [38] have also shown immature and 

thinner biofilm formation among QS deficient 

strains due to low exo-polysaccharide (eps) 

production among these strains.  

Motilities have also been shown to be 

inversely related with the amount of eps [39]. P. 

aeruginosa displays swarming, swimming and 

twitching motilities which helps in initial 

attachment and later in re-location of biofilm from 

one site to another [5, 40]. Motilities were also 

observed to be significantly arrested in QS mutant 

strains as compared to wild type PAO1 (p ≤0.001, 

Table 2, Figure 1). It has also been demonstrated 

that both las and rhl QS systems contributes 

equally to motilities. It has also been indicated that 

QS is essential for normal motilities and loss of 

any of QS component affects the motilities [5, 41]. 

Importance of motilities has been showed in 

biofilm formation since it has been observed that 

QS deficient strains lacking motilities forms thin 

and disperse biofilm [42-43]. Normal motility has 

also been showed to be important for the pathogen 

dissemination in burn wound infection model [44]. 

Rhamnolipid, a bio-surfactant, helps the organism 

in motility and biofilms dispersion from the 

infection site [45-46]. In the present study, QS 

deficient strains also produced significantly low 

level of rhamnolipid as compared to wild type (p 

Strains  Protease 

 (IU/L) 

Elastase 

(IU/L) 

Rhamnolipid  

(mg/ml) 

Cell Free Haemolysin  

(mg/ml) 

Pyochelin  

(0D 510nm) 

Pyocyanin  

(µg/ml) 

Pyoverdin 

 (nm) 

PAO1 36.7± 0.7 17.0 ± 0.6  1.0± 0.08 4.1±0.5 0.3±0.01 8.55±0.16 2920±25.0 

JP1 0.7 ± 0.05 

p ≤0.0001 

0.28± 0.05  

p ≤0.0001 

 

0.36± 0.02 

p ≤0.01 

 

2.1±0.5 

p ≤0.01 

0.04±0.01 

p ≤0.0001 

 

3.26±0.25 

p ≤0.0001 

 

1219±12.6 

p ≤0.0001 

 

R1 0.33±0.05    

p ≤0.0001 

1.4 ± 0.05 

p ≤0.0001 

.026± 0.03 

p ≤0.0001 

 

3.2±0.2 

p ≤0.03 

 

0.07±0.01 

p ≤0.0001 

 

4.43±0.15 

p ≤0.0001 

 

1351±12.6 

p ≤0.0001 

 

JP2 0.09±0.01 

 p ≤0.0001 

0.1 ± 0.07 

p ≤0.0001 

 

0.14± 0.01 

p ≤0.001 

 

0.98±0.09 

p ≤0.0005 

 

0.02±0.01 

p ≤0.0001 

 

3.4±0.05 

p ≤0.0001 

 

1092±5.2 

p ≤0.0001 

 

JP3 Not Detectable 0. 0.25± 0.05 

p ≤0.0001 

 

0.20± 0.01 

p ≤0.0001 

 

1.47±0.1 

p ≤0.0006 

 

0.05±0.01 

p ≤0.0001 

 

3.0±0.20 

p ≤0.0001 

 

956±4.6 

p ≤0.0001 
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≤0.001, Table 1). Although rhamnolipid has been 

established as important virulence factor in lungs 

of CF patients, [47] which also participates in 

stimulation of phagocytosis and inflammatory 

responses [48-49] but very few reports are 

available on relation of QS and rhamnolipid 

production. It has been documented that QS 

regulates the production of rhamnolipid [30-31]. 

 

Table 2: Production of different cell associated virulence factors and motilities (as zone of growth expansion) as 

estimated in cell form of Pseudomonas aeruginosa wild type PAO1 and its isogenic QS single and double mutant 

strains. 

 

 

Figure 1: Photograph showing swimming motility (Plate 1), swarming motility (Plate 2) and twitching motility (Plate 

3) as shown by standard strain of P. aeruginosa PAO1 and its isogenic single and double mutants. 

 

Number of infection model studies have 

demonstrated that QS play important role in the 

pathogenesis of P. aeruginosa. However most of 

these observations were more or less on the basis 

of outcome of infection in infection model studies. 

Direct estimation of phenotypic expression of 

virulence factors with respect to QS has been 

reported in very few studies. Moreover, elastase, 

protease and biofilm were most extensively 

studied parameters [50]. In the present study, we 

demonstrated reduced level of multiple virulence 

factors in QS mutant strains which explain their 

avirulence in different infection model studies. 

Results also indicates that both las and rhl QS not 

only regulates the phenotypic expression of known 

virulence factors but there are number of other 

phenotypic characters which are linked with QS 

since reduced lavel of expression of these factors 

was observed among QS deficient strains. 

Although both the components (las and rhl) 

contributes equally to the regulation of various 

factors but strains deficient in both the 

components showed more significant reduction as 

compared to loss of single component. To the best 

of our knowledge, this study is first of its kind to 

show that QS regulates multiple virulence factors 

Strains Polysaccharide /protein  

(µg/µg) 

LPS 

(µg/ml) 

Cell Bound 

Haemolysin        

(mg/ml) 

Swarming  

(mm) 

Swimming  

(mm) 

Twitching 

 (mm) 

PAO1 0.6± 0.02 8.62±0.15 8.0±0.5 11±0.6 10.1±0.1 8.5±0.3 

JP1 0.36± 0.02 

p ≤0.0006 

 

3.46±0.28 

p ≤0.0001 

 

1.9± 0.4 

p ≤0.0001 

 

4±0.15 

p ≤0.0001 

 

5.5±0.15 

p ≤0.0001 

 

1±0.06 

p ≤0.0001 

 

R1 0.3± 0.02 

p ≤0.0003 

4.26±0.25 

p ≤0.0001 

 

2.4±0.09 

p ≤0.0001 

 

5±0.015 

p ≤0.0001 

 

4.5±0.3 

p ≤0.0001 

 

1.5±0.06 

p ≤0.0001 

 

JP2 0.29±0.02 

p ≤0.0002 

1.58±.26 

p ≤0.0001 

 

1.18±0.01 

p ≤0.0001 

 

1±0.06 

p ≤0.0001 

 

3±0.15 

p ≤0.0001 

 

0.5±0.02 

p ≤0.0001 

 

JP3 0.27±0.02 

p ≤0.0001 

 

1.69±.02 

p ≤0.0001 

 

1.4±0.1 

p ≤0.0001 

 

2±0.07 

p ≤0.0001 

 

4±0.2 

p ≤0.0001 

 

1.5±0.06 

p ≤0.0001 
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in vitro including those which are not studied so 

far to be linked with QS. Various other studies 

have also shown that expression of multiple 

virulence factors and biofilm formation is under 

the regulation of QS and reduction in quorum 

either by means of quorum sensing inhibition or 

loss of one or another QS component results in 

reduced level of virulence factors [27-31, 35, 51]. 

These findings highlight the importance of other 

virulence factors besides elastase and protease in 

pathogenesis of these infections [6-7]. On the 

basis of present in vitro and previous in vivo 

studies, it may be concluded that phenotypic 

expression of various virulence factors of P. 

aeruginosa is definitely linked with QS. Therefore 

QS cascade can be explored as a futuristic 

attractive drug target for the development of novel 

therapeutics for the prevention and control of 

Pseudomonas infections. 
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