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Prostate cancer is the sixth most common cancer worldwide and the second leading 
cause of cancer death in American men (1). Prostate cancer has a diverse range of risk 
based upon disease presentation, ranging from low-risk indolent to high-risk aggres-

sive disease. Early detection and localization of prostate cancer at a treatable stage is im-
portant as excellent cancer-specific survival is expected for most locally confined diseases. 
The most common method to diagnose prostate cancer uses transrectal ultrasonography 
(TRUS) to sample twelve regions distributed throughout the prostate, most often recom-
mended after an elevated prostate specific antigen (PSA) blood test or an abnormal digital 
rectal exam (2). Common treatments for patients with localized intermediate and high-risk 
disease include radical prostatectomy and radiation therapy, whereas active surveillance is 
commonly considered for patients harboring low-risk disease. Selecting among these treat-
ment options is difficult due to the clinical and biologic heterogeneity of prostate cancer 
disease. 

Clinical risk assessment is primarily determined by pathologic grade based on the Gleason 
grading system, as initially proposed in the 1960s and modified multiple times thereafter 
(3). While the Gleason grading system has limitations, it generally captures the full range 
of biologic aggressiveness and has historically correlated with the risk of recurrent cancer 
after definitive treatment (4). Gleason pattern 3 consists of well-formed, individual glands 
of various sizes. Cancers containing only Gleason pattern 3 (i.e., overall Gleason score as-
signment 3+3) are generally considered low risk. Gleason pattern 4 includes poorly formed, 
fused, and cribriform glands. Within the spectrum of intermediate-risk disease, the presence 
of cribriform pattern in radical prostatectomy specimens has shown association to poor sur-
gical and clinical endpoints, including higher rates of extra-prostatic extension, positive sur-
gical margins, biochemical recurrence, and cancer-specific mortality (5, 6). Gleason pattern 5 
consists of high-risk histologic patterns including sheets of tumor, individual cells, and cords 
of cells. In general, tumors containing only Gleason 3+3 have a minimal risk of progression 
to metastatic cancer, while tumors with dominant Gleason patterns 4 and 5 cancers carry a 
higher likelihood of progression to metastatic disease and cancer-specific mortality. Pros-
tate cancer is known to exhibit heterogeneous distribution of morphologies both within and 
across tumors of the same patient, with increasing number of observed morphologies in 
larger cancers of worsening grade (7). Due to this diversity, the final grade as reported by the 
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Gleason system is based on the combina-
tion of the most dominant and second most 
dominant patterns observed. In some set-
tings a tertiary pattern, otherwise defined as 
a minor component of high-grade cancer, 
is reported in combination with the overall 
Gleason score when a small population of 
high-grade glands are observed upon eval-
uation of radical prostatectomy specimens. 
Although it is central in risk assessment and 
patient management for localized prostate 
cancer, the Gleason scoring system is known 
to suffer from high variability across pathol-
ogists, and even within the same patholo-
gist, due to the subjective nature of scoring 
assignment (8, 9). 

Multiparametric magnetic resonance 
imaging (mpMRI) is well-established as 
an important aide for prostate cancer 
diagnosis. mpMRI provides high-con-
trast, high-resolution anatomical images 
of the prostate and pelvic regions using 
T2-weighted imaging, diffusion-weighted 
imaging (DWI), and dynamic contrast en-
hanced (DCE) imaging sequences for the 
detection of clinically significant prostate 
cancers (10). However, the combined as-
sessment and interpretation of all mpMRI 
sequences requires a considerable level 
of expertise from radiologists. The cur-
rent classification of abnormal regions on 
mpMRI imaging is defined by the Prostate 
Imaging Reporting and Detection System 
version 2 (PI-RADSv2) (11). This system, 
while widely accepted, is also prone to in-
ter-reader variability, leading to variable 
sensitivity, specificity, and a wide range 
of cancer detection rates (12–14). Despite 
these shortcomings, mpMRI has shown 
practice-changing value for urologists to 
more accurately direct needle biopsies 
into suspicious regions of the prostate and 
superior performance in disease sampling 

compared with TRUS biopsy techniques 
(15–17). However, even with targeting 
based on mpMRI findings, biopsy sam-
pling error and tumor heterogeneity leads 
to inaccurate pathologic characterization 
of final whole-organ assessment after sur-
gery. 

Unique from many other primary can-
cer models, the surgical practice of radical 
removal of the entire prostate gland in lo-
calized disease allows for 1:1 spatial corre-
spondence between radiologic imaging 
and pathologic imaging. This has led to a 
large body of literature characterizing tis-
sue characteristics with functional imaging 
characteristics of mpMRI, most prominently 
using DWI imaging characteristics such as 
the apparent diffusion coefficient (ADC). 
Restriction of water molecules leads to 
differential signal properties of DWI, spe-
cifically reflecting the increased cellular 
density and nuclear-to-cytoplasmic ratio 
disturbed in cancerous tissues. In prostate 
cancer, several studies have established a 
negative relationship between ADC values 
and tumor Gleason score (18–20). However, 
the outright use of quantitative DWI char-
acteristics for lesion detection is limited by 
the lack of clear distinction in ADC values 
of normal and tumor regions (21). Further-
more, the relationship between ADC and 
tumor-level Gleason score overall remains 
moderate, likely due to local heterogeneity 
in the proportion (density) and spatial dis-
tribution (sparsity) of cancerous cells within 
the tumor (22). Truong et al. (23) have re-
ported preliminary evidence that advanced 
morphologic features, such as cribriform, 
influences the visibility of prostate lesions 
more so than tumors of the same grade 
with differing architectural patterns. 

Overall, the complex heterogeneity of 
localized prostate cancer has led to vari-
ability in clinical practice for both radiol-
ogy and pathology. The use of artificial 
intelligence (AI) applications in both ra-
diology and pathology has increased sub-
stantially in the last decade (24), including 
more recently with the adoption of deep 
learning techniques applied to medical 
imaging. Here, we provide a summary of 
recent AI applications to radiology, pa-
thology, and combined radiology-pathol-
ogy characterization of localized prostate 
cancer where the intrinsic connection be-
tween histology and functional imaging 
in prostate cancer motivates the use of 
combined techniques for enhanced char-
acterization.

Current uses of artificial 
intelligence in localized 
prostate cancer 
Radiologic applications

In general, AI shows great promise in 
decreasing reader interpretation times, 
increasing performance of non-expert ra-
diologists, and enabling large-scale screen-
ing practices without additional burden to 
radiologists. Applications of AI to prostate 
mpMRI are specifically expected to increase 
sensitivity of prostate cancer detection and 
decrease inter-reader variability (25). There 
are several examples of AI-based systems 
for prostate mp-MRI in the literature. In 
general, mp-MRI based AI tasks either focus 
on automated detection, aiming to localize 
suspicious regions within an image set, or 
automated diagnostic classification, aiming 
to predict the aggressiveness of a region of 
interest. 

Traditional machine-learning based de-
tection systems typically require several 
pre-processing steps, including extraction 
of prostate gland regions and quantitative 
metrics from MRI sequences. To date, sever-
al studies have evaluated in-house AI algo-
rithms developed for automated detection 
on prostate cancer on mpMRI (26–31). De-
spite differences in terms of features used 
for voxel and candidate region classifica-
tion, MRI modalities, and methods used for 
classification and multimodal fusion, these 
studies demonstrate robust detection on 
the order of 75% to 80% or more, within the 
range of reported radiologist performance 
(11). In a recent multi-reader, multi-institu-
tional study, Gaur et al. (32) have shown in 
their multi-institution study that AI-based 
detection, from algorithm presented in (33), 
improved specificity in conjunction with PI-
RADSv2 categorization as well as slightly im-
proved radiologist efficiency, and they found 
an index lesion sensitivity for PIRADSv2 ≥3 
of 78%. Here the greatest benefit was seen 
in the TZ where it helped moderately expe-
rienced readers to achieve 83.8% sensitivity 
with automated detection versus 66.9% with 
mpMRI alone. Litjens et al. (28) were able to 
demonstrate the combining AI-based pre-
diction and PI-RADS improved both detec-
tion of cancer, as well as discrimination of 
clinically revelant (i.e., aggressive) disease.

While fewer studies have reported on 
the use of deep learning algorithms for au-
tomated detection of prostate cancer on 
mpMRI, early literature supports improved 
detection rates compared with previous 

Main points

•	 Recent studies show artificial intelligence (AI) 
has potential to aide in detection and classi-
fication of prostate cancer on radiology and 
pathology imaging.

•	 Current radiology AI applications suffer from 
training data that does not reflect the hetero-
geneity in tissue composition observed on 
pathology.

•	 Pathology-based AI applications enable high 
quality radiology-pathology correlation and 
have the potential to serve as input to train 
improved radiology-based AI algorithms.



works (34–36). Notably, Song et al. (37) re-
port high diagnostic performance of 87% 
sensitivity in a cohort of 195 patients. Here, 
combination of automated detection and 
with expert radiologist PI-RADSv2 classifi-
cation improved the detection of clinically 
significant cancer than with the radiolo-
gist alone. Multi-task algorithms, such as 
the method reported by Alkadi et al. (38), 
combine prostate gland segmentation for 
spatial context with lesion detection for 
improved performance. Yang et al. (39) re-
port novel work demonstrating separate 
development and training on T2-weighted 
and ADC images improved detection per-
formance when compared with methods 
learning across image sets. As the literature 
matures, it is expected that further increase 
in performance will be observed.

While these examples utilize various tech-
niques and imaging features, they have all 
demonstrated promising ability to detect 
prostate cancer on mpMRI. However, they 
are inherently limited by training against a 
pathology validation set in which only a sin-
gle Gleason score is assigned to each lesion, 
so called “weak labels”, that underestimate 
known intra-lesion heterogeneity (Fig.). This 
has resulted in underperformance of algo-
rithms for certain pathologic grades (33). 
For these reasons, current AI algorithms are 
not ideally suited for intra-lesion spatial tar-

geting of aggressive regions on mpMRI at 
biopsy. Ideally, voxel-based classifiers such 
as those previously described should be 
used to train the algorithm against a system 
that defines each “patch” of tumor in terms 
of its regional Gleason score to allow for 
more accurate spatial learning.

AI-enabled pathology-to-radiology 
correlation

To improve spatial labeling at the mp- 
MRI level, detailed pathologic information 
of each lesion would theoretically be re-
quired as input. Spatial annotation of this 
level is impractical due to the time-con-
suming nature of spatially annotating at the 
full resolution of digital pathology images, 
which can range up to 10 GB on the order 
of 100 000×100 000 pixels per section for 
whole mount prostate specimens (40). For 
these reasons, historical applications of AI 
techniques have included approaches for 
semantic segmentation of histology slides, 
such as automated detection and segmen-
tation of all nuclei and tissue components 
to allow for further classification and/or 
analysis of diseased regions (41). 

Commonly used machine learning work-
flows in prostate cancer rely heavily on se-
mantic segmentation of epithelial, stromal, 
and lumen components on tissue slides 
due to the varying representation of each 

within normal and malignant structures 
(42). Gertych et al. (43) developed machine 
learning techniques for differentiating stro-
ma and epithelial components, followed by 
classifier of benign and malignant regions 
using quantitative features derived from 
epithelial components. Gorelick et al. (44) 
reported improved classification of malig-
nant tissue when including segmentation 
of lumen. Others have focused on segmen-
tation of entire glandular structures (45), 
which have been used to enable morphol-
ogy quantification for further classification 
of malignant tissues (46, 47). More recently, 
Li et al. (48) were able to demonstrate that 
an expectation-maximization approach to 
deep learning can provide improved gland 
segmentation in prostate cancer. 

These applications have additionally 
shown promise for serving as pre-process-
ing steps to enable more complex histo-
pathologic spatial analysis with radiologic 
imaging. Kwak et al. (31) have shown that 
MRI signal characteristics are significantly 
associated with tissue composition density 
derived from automated tissue-level com-
partment segmentation of stroma, epitheli-
um, epithelial nuclei, and lumen. In a similar 
analysis, McGarry et al. (49) shows that ra-
diopathomic maps of epithelium and lumen 
density can be used to distinguish cancerous 
regions of varying grade. The use of AI for 
correlation between pathologic features and 
radiologic signature has shown that both 
histologic grade and mpMRI diffusion char-
acteristics correlate more strongly with glan-
dular components and crowding than with 
nuclear count and crowding (50–52). Chat-
terjee et al. (50) demonstrated that differenc-
es between cancers with Gleason patterns 
3, 4, and 5 were also greater for the gland 
component volumes than for the cellularity 
metrics. Meanwhile, Hectors et al. (51) were 
able to establish a stronger relationship us-
ing advanced diffusion models mimicking 
human tissue. Importantly, establishing the 
relationship between tissue components 
and imaging signatures across these studies 
were achieved utilizing multiple different al-
gorithms applied to pathologic data, provid-
ing strong evidence for distinct biophysical 
foundations for radiologic signatures and 
motivating utility and development of new 
imaging techniques (53). 

Advanced pathologic applications 
In several cancers, automated detection 

and quantification of tissue components 
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Figure. Example mpMRI (T2-weighted and ADC images) with corresponding whole mount 
hematoxylin-eosin (H&E) section demonstrating two pathologically-defined tumors. Overall assessment 
in this patient resulted in Gleason grade 3+4 score assignment, resulting in weak labels derived from 
total tumor extent. However, detailed pathologic assessment demonstrates majority of Gleason pattern 
4 is located in the anterior portion of the tumor, with predominately Gleason pattern 3 throughout 
remainder of the tumor field. Opportunities for improved spatial learning include density mapping of 
dominant pathologic grading and exclusion of non-cancerous structures within tumor field.
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demonstrate utility in predicting patient 
outcome. For example, nuclear and stromal 
features have shown correlation to patient 
prognosis in breast cancer (54, 55). Tumor 
infiltrating lymphocyte detection via deep 
learning models allows for spatial analysis 
of immune profiling, demonstrating inde-
pendent prediction of treatment outcomes 
(56). However, these techniques so far have 
not demonstrated value in prostate cancer, 
where the major focus has turned to auto-
mated Gleason grading on digital patho-
logic assessment.

Despite increasing popularity of machine 
learning applications to complex medical 
imaging problems, automated algorithms 
for Gleason grading demonstrate limited 
success largely because of the subjectivity 
of the system (57–59). This includes sub-op-
timal prediction in binary classification of 
low- versus high-risk disease, with some 
studies showing highest error rates in the 
group of intermediate-to-high risk prostate 
cancers (57). However, these machine learn-
ing methods are highly sensitive to multiple 
pre-processing and feature extraction steps. 
Traditional machine learning methods have 
relied on building classifiers from hand-
crafted features derived in relatively homo-
geneous settings, such as those derived in 
tissue microarrays. This leads to lack of gen-
eralizability to whole slide images of hetero-
geneous tissue components. More recent 
advances in deep learning applications have 
shown promise for improved performance 
of prostate cancer grading algorithms. 

Work by Nir et al. (60) evaluating multi-
ple machine and deep learning methods 
demonstrate best results of 92% accuracy in 
cancer detection and 79% accuracy in clas-
sification of low and high grade prostate 
cancers when trained on tissue micro-array 
data, though agreement with expert pa-
thologists was moderately low and overall 
system accuracy suffered when validated in 
an external dataset of whole-mount imag-
es. Other preliminary works differentiating 
low-to-intermediate (Gleason Grade ≤ 3+4) 
from unfavorable intermediate-to-high risk 
(Gleason Grade ≥ 4+3) only achieved 75% 
classification accuracy (61). Improved clas-
sification was found when performance 
was evaluated in a set of well-curated tis-
sue microarrays, where Arvanti et al. (62) 
reported 70% overall sensitivity in classify-
ing tissues as benign, Grade 3, Grade 4, or 
Grade 5. Here, Grade 5 achieved the highest 
per-class recall of 88% in contrast to 58% 
in Grade 4. Despite this, the deep learning 

model was able to achieve high agreement 
with pathologist interpretations (kappa, 
0.71–0.75). High level annotations derived 
within 40 patients were used to build a cus-
tom network for both detection and grad-
ing of prostate cancer, demonstrating 99% 
epithelial detection accuracy and 71%–79% 
accuracy for low- and high-grade disease 
(63). In the largest study to date, Nagpal et 
al. (64) have developed and validated their 
deep learning algorithm against a cohort of 
29 board-certified pathologists in Gleason 
scoring whole-slide images from prostatec-
tomy patients and was able to provide more 
accurate quantitation of Gleason patterns 
and better risk stratification for prediction 
of biochemical recurrence. Even still, per-
formance remains 70% for Gleason grading. 

Remaining challenges for AI applications 
in pathology include stain normalization 
and color matching (65). Heterogeneity in 
these properties are underexplored due to 
the small nature of most datasets currently 
available. As noted, both machine learning 
and deep learning suffer in the cohort of in-
termediate-risk prostate cancers. However, 
given that morphology and classification 
pattern tasks vary widely across differing 
tumor types, direct application of algo-
rithms developed in other tissue types may 
not translate. Computationally, reading in 
the entire image is prohibitively expensive 
and limits most AI applications to patch-
based techniques. As technology continues 
to increase computing power, new oppor-
tunities for image-based tasks at full-scale 
resolution will become available.

Future opportunities for 
integrated techniques, 
radiogenomics, and beyond

Currently, both radiology and pathology 
are limited in their ability to detect and clas-
sify intermediate prostate cancers, which 
represent a critical point in clinical treat-
ment decision-making. Here, opportunities 
for new integrated techniques combining 
imaging modalities for outcome prediction 
could be readily developed as datasets ma-
ture. However, as discussed, there is a lack of 
high-quality annotations and most models 
are constructed using weakly labeled data 
ignoring tissue heterogeneity. Improving 
performance of pathologic classifiers can 
serve as the basis for high-resolution radio-
logic labels, whereby pixel-wise predication 
of prostate cancers can replace current weak 
labels. Furthermore, the promise of integrat-

ed techniques comes with the idea that im-
proved pathologic prediction and grading 
can lead to improved radiologic prediction. 

While outside the scope of this review, 
new development of AI frameworks demon-
strate that proof-of-principle integration of 
diverse data is feasible. Methods for cou-
pling weak and strong labeled data demon-
strated the highest level discrimination of 
low risk (Gleason ≤ 7) from high risk (Glea-
son ≥ 8) in digital pathology assessment 
of prostate cancer specimens (62). Com-
bined machine learning and deep learning 
techniques for longevity prediction show 
proof-of-principle for combining multi-di-
mensional data for outcome prediction 
(66). Ensemble-based methods of cascad-
ed deep learning algorithms can be readily 
used to evaluate the utility of combined 
prediction of radiologic and pathologic pre-
diction for patient outcome or prediction of 
disease risk, including molecular characteri-
zation. Recently, novel integration of patho-
logic features and genomic characteristics 
for prediction of cancer outcomes further 
demonstrates a role for AI methods in inte-
grated precision medicine initiatives (67). 

In the combination of multi-modality 
multi-dimensional data, pathologic im-
aging and evaluation represents an ideal 
intermediary step to enable further radiog-
enomic associations. Radiogenomics, i.e., 
the correlation of radiographic signatures 
with genomic features, has been evalu-
ated for prostate cancer in several small 
studies (68). Following radiogenomic work 
in glioma by Smedley et al. (69), there is 
an opportunity to apply deep learning for 
discovery-based prediction within radiog-
enomic frameworks. Recently published 
work demonstrates widespread transcrip-
tome heterogeneity within prostate cancer 
(70). This formative work by Berglund et al. 
(71) demonstrates differential gene expres-
sion across regions of the tumor microenvi-
ronment, particularly in peripheral vs. more 
central regions of the tumor, of a single 
patient. However, the degree to which this 
results in differential growth patterns re-
mains largely unexplored. Preliminary work 
correlating spatially distinct mpMRI normal 
and suspicious regions with whole exome 
sequencing additionally demonstrate het-
erogeneity within prostate lesions. 

Conclusion
In conclusion, there exists a clinical need 

in prostate cancer for improvement in stan-



dardized assessment and characterization 
on pathologic and radiologic interpretation. 
The intimate connection between histology 
and functional imaging characteristics cre-
ates a unique opportunity for AI applications 
to improve detection, classification, and 
overall prognostication. As demonstrated 
across AI literature, the need for mature data-
sets with high quality annotations are neces-
sary to continue advancements in this field. 
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