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ABSTRACT

Radiomics is a relatively new word for the field of radiology, meaning the extraction of a high
number of quantitative features from medical images. Artificial intelligence (Al) is broadly a set
of advanced computational algorithms that basically learn the patterns in the data provided to
make predictions on unseen data sets. Radiomics can be coupled with Al because of its better ca-
pability of handling a massive amount of data compared with the traditional statistical methods.
Together, the primary purpose of these fields is to extract and analyze as much and meaningful
hidden quantitative data as possible to be used in decision support. Nowadays, both radiomics
and Al have been getting attention for their remarkable success in various radiological tasks,
which has been met with anxiety by most of the radiologists due to the fear of replacement by
intelligent machines. Considering ever-developing advances in computational power and avail-
ability of large data sets, the marriage of humans and machines in future clinical practice seems
inevitable. Therefore, regardless of their feelings, the radiologists should be familiar with these
concepts. Our goal in this paper was three-fold: first, to familiarize radiologists with the radiomics
and Al; second, to encourage the radiologists to get involved in these ever-developing fields;
and, third, to provide a set of recommendations for good practice in design and assessment of
future works.

adiomics is a new word for the field of radiology, deriving from a combination of “ra-

dio”, meaning medical images, and “omics”, indicating the various fields like genomics

and proteomics that contribute to our understanding of various medical conditions.
Radiomics is simply the extraction of a high number of features from medical images (1).
The typical radiomic analysis includes the evaluation of size, shape, and textural features
that have useful spatial information on pixel or voxel distribution and patterns (1). These
radiomic features are further used in creating statistical models with an intent to provide
support for individualized diagnosis and management in a variety of organs and systems
such as brain (2, 3), pituitary gland (4, 5), lung (6), heart (7), liver (8), kidney (9-12), adrenal
gland (13, 14), and prostate (15).

Artificial intelligence (Al) is broadly a set of systems that can accurately perform inferences
from a large amount of data, based on advanced computational algorithms (16). Just as in
humans, learning is a fundamental need for any intelligent behavior of machines. Hence,
the Al is a general concept encompassing different learning algorithms, namely, machine
learning (ML) and lately very popular deep learning algorithms (Fig. 1) (17, 18). Although
the concept of Al goes back to 1950s, it has gained momentum since 2000 because of the
advances in computational power (19-21). Today, Al technology provides numerous indis-
pensable tools for intelligent data analysis for solving several medical problems, particularly
for diagnostic issues (17, 18, 21-24).

Relationship between radiomics and Al are mutual. Due to its ever-growing high-dimen-
sional nature, the field of radiomics needs much more powerful analytic tools, and Al ap-
pears to be a potential candidate for this purpose, with its extreme capabilities. On the oth-
er hand, in medical image analysis, Al applications inevitably need the radiomics because
the metrics that are used to train and build the Al models are delivered through radiomic
approaches, specifically, feature extraction and feature engineering techniques.
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In this paper, we reviewed the radiomics
and Al with a rather practical point of view.
Our goal was three-fold: first, to familiarize
the radiologists with the radiomics and Al;
second, to encourage them to get involved
in these ever-developing fields; and, third,
to provide a set of recommendations and
tips for good practice.

Critical questions and answers

Why do we need radiomics?

In conventional radiology practice, ex-
cept for a few measurements like size and
volume, the imaging data sets are gen-
erally evaluated visually or qualitatively.
This approach not only involves intra- and
interobserver variability but also leaves a
very large amount of hidden data in the
medical images unused. A common clini-
cal scenario for explaining the need for ra-
diomics would be possible with imagining
two patients with tumors with rather dif-
ferent qualitative features like size, shape,
borders, and heterogeneity. The survival
of the patients in this scenario will prob-
ably be different even though the tumors
have histopathologically similar features.
If one could have predicted the prognosis
of the patients before any intervention or
treatment, the management of the pa-
tients would be different. This is actually
called precision medicine. In precision
medicine, the patients that belong to dif-
ferent subtypes need to be identified for
achieving better outcomes. Radiomics can
be considered an objective way to achieve
these goals. Using either conventional (1)

* Radiomics is simply the extraction of a high
number of quantitative features from medi-
cal images.

* Artificial intelligence is broadly a set of ad-
vanced computational algorithms that can
accurately perform predictions for decision
support.

* Primary purpose of radiomics and artificial
intelligence is to extract and analyze as much
and meaningful hidden quantitative imaging
data as possible to be used in objective de-
cision support for any medical condition of
interest.

* Radiomics and artificial intelligence are vast
fields with a wide range of different method-
ologic aspects, leading to a lack of consen-
sus in many steps, which is a challenge that
needs to be overcome in the near future.

Artificial intelligence

Machine learning

Neural networks

Deep learning

Figure 1.Venn diagram of the concepts related to artificial intelligence (Al). Al is the simulation

of human intelligence processes like learning, reasoning, and self-correction by the machines,
particularly the computer systems. Al is a broad concept that covers many machine learning
techniques such as k-nearest neighbors, support vector machine, decision trees, and neural networks.
Neural networks include various algorithms ranging from very simple to complex architectures, such
as multi-layer perceptron and deep learning or convolutional neural networks.

or advanced imaging techniques (25, 26),
the primary purpose of the radiomics is to
extract as much and meaningful hidden
objective data as possible to be used in
decision support.

Why do we need Al in radiomics?

The main reason for using Al in radiomics
is its better capability of handling a massive
amount of data compared with the tradi-
tional statistical methods. Al algorithms are
essentially used for classification problems.
These algorithms basically learn the data
provided by analyzing patterns and then
make predictions on unseen data sets to
check whether these patterns are correct or
not. Al algorithms are not only able to ana-
lyze the numeric data provided by the pre-
defined or hand-crafted radiomic features
but also able to directly analyze the images
in order to automatically design its own ra-
diomic features (17, 27-30). This very popu-
lar and advanced subset of Al is called deep
learning (28). Deep learning algorithms are
also able to perform segmentation tasks it-
self, without any need for human interven-
tion (31).
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Is it possible to get involved in radiomics
as a radiologist?

Yes, that is perfectly possible. Collec-
tive work is of paramount importance be-
cause the workflow of radiomics covers a
wide range of consecutive steps including
preprocessing, segmentation, feature ex-
traction, and data handling (1). Depending
on the software used, each step might re-
quire a massive amount of time and work-
load. Authors think that there would be at
least three ways to get involved in radiom-
ics in any subfield of medical imaging.

First, the simplest way would be to look
for the paid software programs. Those kinds
of programs are easy to use because the
providers simplified almost all radiomic
pipeline. Some of those could provide some
statistical tools for further analysis as well.

Second, a little bit harder way would be to
use free software programs that allow radio-
mic feature extraction with a graphical user
interface (GUI). Most popular software pro-
grams for hand-crafted feature extraction
are MaZda (32), LIFEx (33), PyRadiomics (34),
and IBEX (35). Nonetheless, even though the
authors encourage the radiologists starting
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with these software programs, they also
highly recommend being cautious because
the pipeline is not well established in such
programs and there are many parameters
to be dealt with such as establishing discret-
ization levels, normalization approach, re-
sampling, and clearing the non-radiomic
data from final feature table. Furthermore,
there are also software programs for deep
feature extraction with GUI directly from
images within the layers of neural network
such as Nvidia's Digits (https://developer.
nvidia.com/digits) and Deep Learning Stu-
dio (https://deepcognition.ai/).

Third, the hardest way would be to use
software programs that allow feature ex-
traction if the user has coding skills or at
least familiarity with coding. Most popular
platforms for this purpose are MATLAB and
Python platforms, which have massive li-
braries for both hand-crafted and deep fea-
ture extraction.

Is it possible to get involved in Al as a
radiologist?

Yes, that is perfectly possible as well.
Authors think that there would be at least
three ways to get involved in Al as a radiol-
ogist without formal training about data or
computer science.

First, the simplest way would be to find or
to be a part of a data science collaboration
about medical imaging. Data or computer
scientists need meaningful clinical perspec-
tives to provide the unmet need for Al in
radiology.

Second, a little bit harder but not the
hardest way would be to get some conven-
tional statistical basis and to learn how to
use data mining software programs that
allow performing Al tasks without knowing
how to code. There are many free software
programs for this purpose such as Waika-
to environment for knowledge analysis
(WEKA) software (36), Orange data mining
software (37), RapidMiner (https://rapid-
miner.com/), Rattle in R statistics (38), and
Deep learning studio (https://deepcogni-
tion.ai/). All of these software programs
have a GUI to easily implement a wide
range of Al tasks covering the very simple
to very complex ML algorithms. Also, some
of those software programs have options
for integration to other common environ-
ments (e.g., Python and R) for much more
advanced features. Being radiologists, the
authors recommend starting first with

WEKA or Orange software-like programs
considering their simplicity and ease in
using the interface. On the other hand, it
should be kept in mind that not every soft-
ware is capable to complete every task. For
instance, in our personal experience, WEKA
is enough to perform many ML tasks, but
it has limited and poor visual capabilities
unless it is integrated with the other envi-
ronments.

Third, the hardest way is, of course, to
start with learning how to code. Although
it usually seems difficult and daunting to
learn to code from scratch, there are very
simple languages to start with, such as Py-
thon language, which is an object-oriented
language with an intuitive and easy to un-
derstand syntax, being rather similar to hu-
man language. Learning Python language
provides various opportunities to use
many available Al libraries such as Google’s
TensorFlow even for users with low-level
programming skills. There are extensive re-
sources to learn to code for Al implementa-
tion like books, websites, and online cours-
es (e.g., Coursera, Udemy, edX) at a low cost.

What about the future of radiologists
considering the advances in Al?

As it can be seen in recent world-wide an-
nual radiology meetings like RSNA (Radio-
logical Society of North America) and ECR
(European Congress of Radiology), there
is an evident shift of the overall theme to
radiomics and Al, which is much more ap-
parent than any other medical field. Both
radiomics and Al have been getting atten-
tion for their remarkable success in various
radiological tasks, which has been met with
anxiety by most of the radiologists due to
the fear of replacement by the intelligent
machines. Considering ever-developing
advances in computational power and avail-
ability of large data sets, the marriage of hu-
mans and machines in future clinical prac-
tice seems inevitable. Therefore, regardless
of their feelings, the radiologists should be
familiar with these concepts. Authors be-
lieve that the radiomics with Al might be
helpful for the radiologists by completing
or facilitating certain tasks to some extent,
reducing the heavy workload of the radiolo-
gists, which actually would make the radiol-
ogists much more intelligent than ever by
providing an opportunity to deal with only
the more complex and sophisticated radio-
logical problems in their practice.

Radiomic workflow

To provide a wider perspective to the
readers, over-simplified radiomic pipelines
are simply given in Fig. 2 before going into
a detailed review of each step.

Image acquisition

Radiomics can be applied to various
imaging techniques including computed
tomography, magnetic resonance imag-
ing (MRI), positron-emission tomography,
X-ray, and ultrasonography. There are a
wide variety of acquisition techniques cur-
rently in use. Besides, different vendors
offer various image reconstruction meth-
ods that are customized at each institution
depending on the need. This is not only a
problem in multi-institutional scale but also
a problem in the same institution. Although
itis usually underestimated or ignored in vi-
sual analysis, the use of different acquisition
and image processing techniques might
have a great impact in radiomics because
it is a process on pixel or voxel level, which
may affect image noise and in turn texture,
possibly reflecting a different underlying
pathology (39, 40). These differences might
also lead to inconsistent results in radiomic
analyses in independent data sets, which is
one of the major problems of the radiom-
ics (39, 40). From a realistic perspective, we
should acknowledge that it is not possible
to bring all the image acquisition proto-
cols into uniformity. On the other hand,
our primary goal should be to find the best
technical pipeline to create the most stable
and accurate radiomic models that are even
applicable to the images obtained with dif-
ferent protocols. To do this, each imaging
modality must be taken care of considering
their own peculiarities.

Preprocessing

Radiomics has a dependency on some
image parameters. The most important of
those that need to be dealt with in any im-
aging modality are the size of the pixel or
voxels (41), number of the gray levels (41),
and range of gray level values (42). In addi-
tion, signal intensity nonuniformity should
be removed in MRI (43, 44). There are nu-
merous methods for dealing with these
dependencies. For the normalization of the
gray level values, the +3sigma normaliza-
tion is the most widely used method (45).
Pixel resampling can be done using various
interpolation methods such as linear and
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Figure 2. Over-simplified representation of traditional and deep learning-based radiomics.
Representative CT and MRI images in Fig. 2 and Fig. 3 are obtained from the Cancer Imaging Archive
(TCIA), specifically from the collections of TCGA-KIRC (72, 73) and LGG-1p19qgDeletion (73-75), which

are publicly and freely available.

cubic B-spline interpolation (46). Different
software programs offer different discret-
ization methods, for instance, fixed bin
size and fixed bin number (47). N3 and N4
bias field correction algorithms are widely
established techniques for avoiding sig-
nal intensity nonuniformity (44). Although
some of these preprocessing steps are in-
cluded in the radiomic software programs,
it should be known that many user-friendly
open-source tools exist for advanced radio-
logic imaging data preprocessing such as
ImagelJ, MIPAV (Medical Image Processing,
Analysis, and Visualization), and 3DSlicer.

Segmentation

The most critical step in radiomics is con-
sidered to be the segmentation process
because the radiomic features are most-
ly extracted from the segmented areas
or volumes. The segmentation process is
challenging because of the fact that some
tumors have a very unclear margin. The
manual segmentation is considered the
gold standard provided that it is performed
by experts, which is very time-consuming.
On the other hand, manual segmentation
is subject to intra- and inter-reader variabil-
ity (48), leading to radiomic feature repro-
ducibility problems. To avoid this variabil-

ity, a few automatic and semi-automatic
methods have been described as follows:
active contour (snake) methods (49), level
set methods (50), region-based methods
(51), graph-based methods (52), and deep
learning-based methods (53). Although the
automatic segmentation techniques are
objective, they are prone to error, especially
when images have artifacts and noise and
lesions of interest are very heterogeneous.

Feature extraction

Considering the definition of radiom-
ic features, most of them are not part of
the radiologists’ lexicon. In this context, it
should be kept in mind that radiomics is a
hypothesis-free approach. This means that
there is no a priori hypothesis made about
the clinical relevance of the features, which
are computed automatically by image anal-
ysis algorithms created by experts. The
purpose of the approach is to discover pre-
viously unseen image patterns using these
agnostic or non-semantic features and to
perform classification based on the most
discriminative ones, this is also named as
the development of radiomic signature. Au-
thors' view on the subject is also the same.
As long as the models are validated on in-
dependent data sets, radiomics might be a
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valid approach, regardless of the individual
meaning of the features. In summary, the
whole process means that except for some
of the histogram or first-order features, if
one attempts to define each radiomic fea-
ture in a clinical context, it probably results
in failure.

There are two categories of radiom-
ic features. The first one is predefined or
hand-crafted features, being created by
human image processing experts. These
are also called as traditional features. Some
of the traditional radiomic features (i.e.,
predefined or hand-crafted features) are
presented in Table 1. The second one is
deep features, which has gained populari-
ty nowadays because some deep learning
algorithms design and select the features
themselves for a given task within its layers,
without need for any human intervention
(28). Some recent works have also suggest-
ed the superiority of the deep features to
traditional features (54, 55).

Radiomic features can be extracted using
different image types, which contributes to
the high-dimensionality of the radiomics.
Commonly encountered image types are
presented in Fig. 3.

Radiomic data handling

Data preparation

Before further analysis of the radiomic
data obtained using Al algorithms, certain
conditions need to be addressed. Possible
data preparation steps would be as follows:
feature scaling, discretization, continuiza-
tion, randomization, over-sampling, un-
der-sampling, and so on.

Considering their major impact in Al-
based classification performance, the
authors recommend that at least feature
scaling and randomization need to be con-
sidered in every scientific work.

Radiomic feature values are produced
in different scales, which highly interferes
with the stability of inner parameters of the
Al algorithms, for instance, weights and bi-
ases of the artificial neural network. Feature
scaling means changing the numeric values
to a common scale, avoiding significant
distortions in the ranges of values. Feature
scaling involves two broad categories: nor-
malization and standardization. The choice
of the technique depends on the assump-
tions about the distribution of the data that
Al algorithms make that will be used in fur-
ther analysis.

Kogak et al.



Figure 3. a-c. Different image types for radiomic feature extraction: (a), original image; (b), filtered image; (c), wavelet-transformed images.
Representative CT and MRI images in Fig. 2 and Fig. 3 are obtained from the Cancer Imaging Archive (TCIA), specifically from the collections of TCGA-KIRC
(72, 73) and LGG-1p19qDeletion (73-75), which are publicly and freely available.

Table 1. Examples of traditional radiomic features

Feature categories Example radiomic features
Size Area
Volume

Maximum 3D diameter
Major axis length
Minor axis length
Surface area
Shape Elongation
Flatness
Sphericity
Spherical disproportion
First-order texture? Energy
Entropy
10th percentile
90th percentile
Skewness
Kurtosis
Second-order texture® Gray level co-occurrence matrix
Gray level run length matrix
Gray level size zone matrix
High-order texture® Autoregressive model

Haar wavelet

2First-order features describe the distribution of intensity within the segmentation. ®!Second-order features
describe the statistical relationships between pixels or voxels. ‘High-order features are usually based on matrices
that consider relationships between three or more pixels or voxels.

Randomization of the data set, on the
other hand, is another important factor in
creating models because the performance
of the ML algorithms is influenced by the
initiation or seeding factors. If it is not ap-
plied before model creation, some patterns
in the data set might strongly influence the
results.

Class balance is an important factor to
reveal the actual performance of ML clas-
sifiers. In the case of significant imbalance,
the results might be misleading. To deal
with this problem, over-sampling and un-
der-sampling techniques can be used. One
of the commonly-used and accepted tech-
niques for balancing the classes is synthetic
minority over-sampling technique (SMOTE)
(56), which creates new and similar instanc-
es from the minority class that are not the
exact replications of the actual instances.

Dimension reduction

Radiomic approaches generally lead to
high-dimensionality, meaning that they
produce a very large number of features
to be dealt with. It is a common practice to
bring the high-dimensionality to lower lev-
els to optimize the classifier performance,
which is basically called dimension reduc-
tion (57). The dimension reduction can be
done using different approaches such as
feature reproducibility analysis (58), collin-
earity analysis (9), algorithm-based feature
selection (57, 59), and cluster analysis.

Feature reproducibility analysis should
be done for evaluation of the features that
are sensitive to segmentation variabilities
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Figure 4. Simplified illustration of the model
fitting spectrum. Under-fitting (blue dashed-line)
and over-fitting (green dashed-line) are common
problems to be solved to create more optimally-
fitted (red dashed-line) and generalizable
models that are useful on unseen or new data.
Under-fitting corresponds to the models having
poor performance on both training and test
data. In general, the under-fitting problem

is not discussed because it is evident in the
evaluation of performance metrics. Over-fitting,
on the other hand, refers to the models having
an excellent performance in training data, but
very poor performance on test data. In models
with over-fitting, the algorithm learns both the
relevant data and the noise that is the primary
reason of the over-fitting. In reality, all data sets
have noise to some extent. However, in case

of small data, the effect of the noise could be
much more evident. To reduce the over-fitting,
possible steps would be to expand the data
size, to use data augmentation techniques,

to utilize architectures that generalize well,

to use regularization techniques (e.g., L1-L2
regularizations and drop-out), and to reduce

to the complexity of the architecture or to use
less complex classification algorithms. Black and
orange circles represent different classes.

(58), particularly the segmentation tasks
that need human intervention (10). Fur-
thermore, if possible, this analysis should
be extended to evaluate the influence of
the different acquisition protocols (60-62).
The goal of the reproducibility analysis is
to reduce the dimension by excluding the
features with relatively poor reproducibility.
One of the most common statistical tools
for this analysis is the intra-class correlation
coefficient (ICC) (63). There are different
types of ICC that need to be considered in
the analysis (63).

Collinearity analysis is another plausible
way of dimension reduction because a very
large number of the features have simi-
lar information and the extent of which is
called the strength of collinearity (64). Pear-
son’s correlation coefficient can be used
to determine redundant features, in other
words, the collinear features. If a pair of ra-

Figure 5. Over-simplified illustration of k-nearest
neighbors. This machine learning algorithm
classifies the unknown objects or instances

(blue triangle) by assigning them to the similar
objects of the classes (orange vs. black circles)
based on the number of neighbors. For instance,
considering 3-nearest neighbors, the class
represented with black circles outnumbers the
other class (orange circles) so that the unknown
object is assigned to the class represented

with black circles. On the other hand, in case of
5-nearest neighbors, it is assigned to the class
with orange circles because the number of the
instances in this class outnumbers the one with
black circles.

diomic features had high collinearity, the
one having the highest collinearity with the
others should be excluded from the analy-
sis. Of note, there are also some algorithms
for this purpose that selects features based
on the collinearity status and maximum rel-
evance to the classes, for instance, correla-
tion-based feature selection algorithm (59).
These algorithms are useful because it re-
duces the workload in dimension reduction
by doing two techniques at the same time,
that is, collinearity analysis and feature se-
lection.

The most widely used dimension reduc-
tion technique is algorithm-based feature
selection (57). There are various algorithms
with different functions such as least abso-
lute shrinkage and selection operator (65),
correlation-based feature selection algo-
rithm (59), ReliefF (66), and Gini index (67).
The researchers should experiment with
these algorithms for achieving the best re-
sults.

The most confusing issue in dimension
reduction is the final number of features
that should be achieved. Although there is
no guideline about this, it would be good
to reduce the total number of features at
least to one-tenth of the total labeled data.
However, authors also think that although
it is better to keep the number of features
as low as possible, it should not be a major
concern as long as they are validated on the
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Figure 6. Over-simplified illustration of naive
Bayes in a probabilistic space. Naive Bayes is

a probabilistic machine learning algorithm
and simply based on the strong (naive)
independence among the predictor variables
(or features). Also, this algorithm assumes that
all features equally contribute to the outcome
or class prediction. Black and orange circles
represent different classes. Black and orange
lines represent different probability levels for the
instances in different classes.

independent external data with a satisfying
performance.

Al-based statistical analysis

Requirements before an Al initiative

There are certain musts that need to be
taken care of before an Al initiative: (i), con-
sistent data; (i), well curation of the data;
(iii), expert-driven processing of the data;
and (iv) a valid clinical problem or problems
to be answered by the Al.

Sample size is also a significant issue to
be considered before an Al-based analysis.
Although it is usual to encounter Al or ML-
based studies with a very small number of
patients in the literature, the radiologists
should be aware that the sample size is an
important factor to avoid some problems
in model fitting (Fig. 4) and to improve the
generalizability on unseen data. Particular-
ly for very complex algorithms like deep
learning, there is absolute need of massive
amount of data. Nonetheless, in case of lim-
ited or small data, it should be known that
there are some well-known augmentation
techniques (e.g., image transformation,
synthetic minority over-sampling) to be
considered as well.

The perception of Al and its training is
underestimated by many others in the
field. In contrast to the Al systems de-
signed for the distinction of daily life pic-
tures, this task is a little bit more difficult in
the field of medicine. Because a nonpro-
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Table 2. Checklist of the key features that need to be considered and transparently reported in Al-based radiomic studies

Study parts Key features

Baseline study characteristics Nature (Retrospective/Prospective)
Unmet need for radiomics
Sample size with details of classes
Data source (Single/Multi-institutional/Public)
Data curation by experts
Data overlap
Eligibility criteria
Scanning protocol Acquisition protocol
Processing protocol
Preprocessing Pixel or voxel resampling
Discretization
Normalization
Bias field correction
Different image types
Registration
Segmentation Manual/Semi-automated/Full-automated
2D/3D/a few slice-based
Excluded/Included regions
Feature extraction Software details
Feature types
References for equations
Different image types (Original/Filtered/Transformed)
Reliability analysis Reproducibility analysis to exclude features with poor reproducibility
- Segmentation variability
- Protocol differences
Data handling Randomization
Normalization
Standardization
Class balance
Data augmentation
Collinearity analysis
Feature selection
Al-based statistical analysis Adequacy of sample size considering complexity of Al algorithm
Algorithm parameters
Experiments with different algorithms
Validation technique
Precautions for over- and under-fitting
Details for separation of feature selection and model validation
Different performance metrics

Statistical comparison of classification performance

Al, artificial intelligence; 2D, two-dimensional; 3D, three-dimensional.
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Figure 7. Over-simplified illustration of logistic
regression. Even though many extensions of
the logistic regression exist, this algorithm
simply uses the logistic function to classify the
instances to the binary classes. Black and orange
circles represent different classes.
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Figure 9. a, b. Over-simplified illustrations of
decision tree and random forest. In panel (a),
decision tree simply creates the most accurate
and simple decision points in classification of
the instances, providing the most interpretable
models for the humans; x, z, and w represent
features. In panel (b), to increase the stability and
generalizability of the classifications, decision
tree algorithm can be iterated several times
with various methods. One of the well-known
examples is the random forest classifier.

fessional or layperson cannot provide re-
liable processed data for training, experts,
in other words, good radiologists and par-
ticularly dedicated ones are needed.

Figure 8. Over-simplified illustrations of support vector machine. In simple terms, this algorithm
transforms the original data (left illustration) to a different space (right illustration) to develop
optimal plane or vector (red line) that separates the classes. Black and orange circles represent

different classes.

Model development

Model development can be done using
various algorithms. The most common al-
gorithms are k-nearest neighbors (Fig. 5),
naive Bayes (Fig. 6), logistic regression (Fig.
7), support vector machine (Fig. 8), decision
tree (Fig. 9a), random forest (Fig. 9b), neural
networks, and deep learning (Fig. 10) (18).
These algorithms can also be combined with
meta-classifiers or ensemble techniques
like adaptive boosting and bootstrap ag-
gregation to enhance generalizability (10).
Furthermore, there are also other ensem-
ble learning techniques that are composed
of more than one algorithm, particularly
weak classifiers like k-nearest neighbors,
naive Bayes, and C4.5 tree algorithms (68).
Although the selection of the algorithm
seems to be arbitrary in the literature, the
best practice would be the selection of the
algorithm with multiple experiments.

Validation

Nowadays, radiomics is considered a
mere research area. In order to be accept-
ed in the clinical arena, the results need
to be validated using independent data
sets, preferably using data from a different
institution (1, 69). Hence, the most valu-
able strategy for the validation of models
is considered the independent external
validation. However, in small scale pilot or
preliminary works, it is not always possible
to have such independent validation data.
In such cases, internal validation tech-
niques can be used. The most common
internal validation techniques that can be
encountered in the literature are k-fold,
leave-one-out cross-validation, and hold-
out. In addition, there are much more so-
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phisticated techniques such as random
subsampling, bootstrap cross-validation,
and nested cross-validation. Widely used
validation techniques are simply present-
ed in Fig. 11 with a didactic approach. Se-
lection of the cross-validation technique
mostly depends on the need and capabil-
ity of the performer in the software along
with the specifications of the hardware
used. The most important problem in in-
ternal validation that must be considered
is the possible leakage of the feature se-
lection algorithm in the whole data, which
might lead to overly optimistic results. For
creating such unseen data sets, although
the hold-out technique seems to be the
most appropriate internal validation
method, there is also nested cross-valida-
tion technique that is primarily used for
this purpose and might give similar esti-
mates to an independent validation (70).

Performance evaluation

Performance evaluation of the classifica-
tions is generally done using the area under
the receiver operating characteristic curve
(AUQ) (39). It should be kept in mind that
AUC might be a poor performance evalua-
tor if the data set has a class imbalance. For
this reason, other performance metrics like
accuracy, sensitivity, specificity, precision,
recall, F1 measure, and Matthews correla-
tion coefficient should be supplied for fur-
ther assessment.

Comparison of the validation performance
of the Al algorithms can be done by conven-
tional statistical methods (71). Depending
on the assumptions of the methods and the
number of the classifiers, commonly used
statistical tools for comparisons are student
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Figure 10. Over-simplified illustration of artificial neural network, particularly deep learning. Neural networks are multi-layer networks of neurons

or nodes that are inspired by biological neuronal architecture. Due to computational limitations, early neural networks had very few layers of nodes,
generally fewer than 5. Today, it is possible to create useful neural network architectures with many layers. Deep learning or deep neural network
generally corresponds to a network with more than 20-25 hidden layers. Variety of deep learning architectures exist in that convolutional neural networks
(CNN) are widely used in image analysis. In CNN, image inputs are directly scanned using small-sized filters or kernels, creating transformed images within
certain layers like convolutional ones. Convolutional and pooling (or down-sampling) layers are important operations in the CNN architectures, providing
the best and most important features of the images (e.g., edges). There are also many important parts of deep learning architectures like activation
functions (e.g., rectified linear unit [ReLU], sigmoid function, softmax), regularization (e.g., drop-out layer), and so on. Today, no formula exists to establish
the correct number and type of layers for a given classification problem. Therefore, optimal architecture is created with a trial-and-error process. On the
other hand, some previously proven architectures and their derivatives are also widely used in similar tasks such as U-Net for segmentation process.
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Figure 11. Validation techniques with over-simplified illustrations. In k-fold cross-validation, data set
is systematically split to k number of folds, with no overlap in validation parts. In leave-one-out cross-
validation, data set is systematically divided to a number that is equal to the number of labeled data
set, with no overlap in validation parts. In bootstrapping validation, whole data is sampled to create
unseen validation parts that are filled or replaced with similar labeled data in the training data set. In
random subsampling, data set is randomly sampled many times to create validation parts that may
have overlaps in different experiments. In nested cross-validation, the internal loop is used for feature
selection along with model optimization; and external loop is used for model validation to simulate
an independent process. In hold-out technique, a single split is created with random sampling. In
independent validation, validation part corresponds to a completely different data set, preferably

an external data set. Except for bootstrapping validation, black and red circles represent training and
validation data sets, respectively.

t-test, Wilcoxon signed-rank test, analysis of
variance, Friedman test, and so on. In mul-
tiple comparisons, the multiplicity problem
needs to be addressed. The best performing
and stable classifier or classifiers are generally
selected for the clinical application of interest.

Final recommendations

Radiomics and Al are vast fields with
their wide range of different methodologic
aspects. This variety leads to a lack of con-
sensus in many steps, which is a challenge
that needs to be overcome in the near fu-
ture. In Table 2, the authors recommend
using a checklist of the key features that
need to be at least considered and transpar-
ently reported in future Al-based radiomic
works. Although it is not possible to cover
all aspects of radiomics and Al in a review
article, we believe the key features included
in this paper will be helpful for researchers,
reviewers, and the future of the radiomics.

Conflict of interest disclosure
The authors declared no conflicts of interest.

References

1. Gillies RJ, Kinahan PE, Hricak H. Radiomics:
images are more than pictures, they are data.
Radiology 2016; 278:563-577. [CrossRef]

2. Su(, Jiang J, Zhang S, et al. Radiomics based
on multicontrast MRI can precisely differen-
tiate among glioma subtypes and predict tu-
mour-proliferative behaviour. Eur Radiol 2019;
29:1986-1996. [CrossRef]

Radiomics with artificial intelligence « 493


https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/s00330-018-5704-8

Wang Q, Li Q, Mi R, et al. Radiomics nomogram
building from multiparametric MRI to predict
grade in patients with glioma: a cohort study.
J Magn Reson Imaging 2019; 49:825-833.
[CrossRef]

Kocak B, Durmaz ES, Kadioglu P, et al. Predict-
ing response to somatostatin analogues in
acromegaly: machine learning-based high-di-
mensional quantitative texture analysis on
T2-weighted MRI. Eur Radiol 2019; 29:2731-
2739. [CrossRef]

Zeynalova A, Kocak B, Durmaz ES, et al. Preop-
erative evaluation of tumour consistency in
pituitary macroadenomas: a machine learn-
ing-based histogram analysis on convention-
al T2-weighted MRI. Neuroradiology 2019;
61:767-774. [CrossRef]

Yang L, Yang J, Zhou X, et al. Development of
a radiomics nomogram based on the 2D and
3D CT features to predict the survival of non-
small cell lung cancer patients. Eur Radiol 2019;
29:2196-2206. [CrossRef]

Mannil M, von Spiczak J, Muehlematter UJ, et
al. Texture analysis of myocardial infarction in
CT: Comparison with visual analysis and im-
pact of iterative reconstruction. Eur J Radiol
2019; 113:245-250. [CrossRef]

Peng J, Zhang J, Zhang Q, Xu Y, Zhou J, Liu L. A
radiomics nomogram for preoperative predic-
tion of microvascular invasion risk in hepatitis B
virus-related hepatocellular carcinoma. Diagn
Interv Radiol 2018; 24:121-127. [CrossRef]
Kocak B, Durmaz ES, Ates E, Kaya OK, Kilick-
esmez O. Unenhanced CT texture analysis
of clear cell renal cell carcinomas: a machine
learning-based study for predicting histo-
pathologic nuclear grade. AJR Am J Roentge-
nol 2019; W1-WS8. [CrossRef]

Kocak B, Yardimci AH, Bektas CT, et al. Textural
differences between renal cell carcinoma sub-
types: Machine learning-based quantitative
computed tomography texture analysis with
independent external validation. Eur J Radiol
2018; 107:149-157. [CrossRef]

Kocak B, Durmaz ES, Ates E, Ulusan MB. Ra-
diogenomics in clear cell renal cell carcinoma:
machine learning-based high-dimensional
quantitative CT texture analysis in predicting
PBRM1 mutation status. AJR Am J Roentgenol
2019; 212:W55-W63. [CrossRef]

Bektas CT, Kocak B, Yardimci AH, et al. Clear cell
renal cell carcinoma: machine learning-based
quantitative computed tomography texture
analysis for prediction of fuhrman nuclear grade.
Eur Radiol 2019; 29:1153-1163. [CrossRef]

Ho LM, Samei E, Mazurowski MA, et al. Can
texture analysis be used to distinguish benign
from malignant adrenal nodules on unen-
hanced CT, contrast-enhanced CT, or In-phase
and opposed-phase MRI? AJR Am J Roentge-
nol 2019; 212:554-561. [CrossRef]

Shi B, Zhang G-M-Y, Xu M, Jin Z-Y, Sun H. Dis-
tinguishing metastases from benign adrenal
masses: what can CT texture analysis do? Acta
Radiol 2019; 284185119830292. [CrossRef]
Min X, Li M, Dong D, et al. Multi-parametric
MRI-based radiomics signature for discrimi-
nating between clinically significant and insig-
nificant prostate cancer: Cross-validation of a
machine learning method. Eur J Radiol 2019;
115:16-21. [CrossRef]

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

Thrall JH, Li X, Li Q, et al. Artificial intelligence
and machine learning in radiology: opportu-
nities, challenges, pitfalls, and criteria for suc-
cess.J Am Coll Radiol 2018; 15(3 Pt B):504-508.
[CrossRef]

Chartrand G, Cheng PM, Vorontsov E, et al.
Deep learning: a primer for radiologists. Radio-
graphics 2017; 37:2113-2131. [CrossRef]
Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Ma-
chine learning for medical imaging. Radio-
graphics 2017; 37:505-515. [CrossRef]
Arimura H, Soufi M, Kamezawa H, Ninomiya
K, Yamada M. Radiomics with artificial intelli-
gence for precision medicine in radiation ther-
apy. J Radiat Res 2019; 60:150-157. [CrossRef]
Kononenko I. Machine learning for medical di-
agnosis: history, state of the art and perspective.
Artif Intell Med 2001; 23:89-109. [CrossRef]
Auffermann WF, Gozansky EK, Tridandapani S.
Artificial intelligence in cardiothoracic radiol-
ogy. AJR Am J Roentgenol 2019 Feb 19;1-5.
[Epub ahead of print] [CrossRef]

Harmon SA, Tuncer S, Sanford T, Choyke PL,
Turkbey B. Artificial intelligence at the inter-
section of pathology and radiology in prostate
cancer. Diagn Interv Radiol 2019; 25:183-188.
[CrossRef]

Le EPV, Wang Y, Huang Y, Hickman S, Gilbert FJ.
Artificial intelligence in breast imaging. Clin Ra-
diol 2019; 74:357-366. [CrossRef]

Bi WL, Hosny A, Schabath MB, et al. Artificial
intelligence in cancer imaging: Clinical chal-
lenges and applications. CA Cancer J Clin 2019;
69:127-157. [CrossRef]

Harry VN, Semple SI, Parkin DE, Gilbert FJ.
Use of new imaging techniques to predict tu-
mour response to therapy. Lancet Oncol 2010;
11:92-102. [CrossRef]

Atri M. New technologies and directed agents
for applications of cancer imaging. J Clin Oncol
2006; 24:3299-3308. [CrossRef]

Savadjiev P, Chong J, Dohan A, et al. Demysti-
fication of Al-driven medical image interpreta-
tion: past, present and future. Eur Radiol 2019;
29:1616-1624. [CrossRef]

LeCunY, BengioY, Hinton G. Deep learning. Na-
ture 2015; 521:436-444. [CrossRef]

Litjens G, Kooi T, Bejnordi BE, et al. A survey on
deep learning in medical image analysis. Med
Image Anal 2017; 42:60-88. [CrossRef]

Hosny A, Parmar C, Quackenbush J, Schwartz
LH, Aerts HJWL. Artificial intelligence in radiolo-
gy. Nat Rev Cancer 2018; 18:500-510. [CrossRef]
Moeskops P, Viergever MA, Mendrik AM, Vries
LS de, Benders MJNL, Isgum I. Automatic seg-
mentation of MR brain images with a convolu-
tional neural network. IEEE Trans Med Imaging
2016; 35:1252-1261. [CrossRef]

Szczypinski PM, Strzelecki M, Materka A, Kle-
paczko A. MaZda--a software package for
image texture analysis. Comput Methods Pro-
grams Biomed 2009; 94:66-76. [CrossRef]
Nioche C, Orlhac F, Boughdad S, et al. LIFEx:
A freeware for radiomic feature calculation in
multimodality imaging to accelerate advances
in the characterization of tumor heterogeneity.
Cancer Res 2018; 78:4786-4789. [CrossRef]
van Griethuysen JJM, Fedorov A, Parmar C, et
al. Computational radiomics system to decode
the radiographic phenotype. Cancer Res 2017;
77:2104-e107. [CrossRef]

494 . November-December 2019 - Diagnostic and Interventional Radiology

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J,
Court LE. IBEX: an open infrastructure software
platform to facilitate collaborative work in radio-
mics. Med Phys 2015; 42:1341-1353. [CrossRef]
Witten IH, Frank E, Hall MA, Pal CJ. Data min-
ing: Practical machine learning tools and
techniques. 4th ed. San Francisco: Morgan
Kaufmann Publishers Inc, 2016.

Demsar J, Curk T, Erjavec A, et al. Orange: data
mining toolbox in Python. J Mach Learn Res
2013; 14:2349-2353.

Williams GJ. Rattle: a data mining GUI for R. R J
2009; 1:45-55. [CrossRef]

Varghese BA, Cen SY, Hwang DH, Duddalwar
VA. Texture analysis of imaging: what radiolo-
gists need to know. AJR Am J Roentgenol 2019;
212:520-528. [CrossRef]

Buckler AJ, Bresolin L, Dunnick NR, Sullivan DC. A
collaborative enterprise for multi-stakeholder par-
ticipation in the advancement of quantitative im-
aging. Radiology 2011; 258:906-914. [CrossRef]
Shafig-Ul-Hassan M, Zhang GG, Latifi K, et al.
Intrinsic dependencies of CT radiomic features
on voxel size and number of gray levels. Med
Phys 2017; 44:1050-1062. [CrossRef]
Shafig-Ul-Hassan M, Latifi K, Zhang G, Ullah
G, Gillies R, Moros E. Voxel size and gray level
normalization of CT radiomic features in lung
cancer. Sci Rep 2018; 8:10545. [CrossRef]

Sled JG, Zijdenbos AP, Evans AC. A nonpara-
metric method for automatic correction of
intensity nonuniformity in MRI data. IEEE Trans
Med Imaging 1998; 17:87-97. [CrossRef]
Tustison NJ, Avants BB, Cook PA, et al. N4ITK:
improved N3 bias correction. IEEE Trans Med
Imaging 2010; 29:1310-1320. [CrossRef]
Collewet G, Strzelecki M, Mariette F. Influence
of MRI acquisition protocols and image inten-
sity normalization methods on texture classi-
fication. Magn Reson Imaging 2004; 22:81-91.
[CrossRef]

Parker J, Kenyon RV, Troxel DE. Comparison of in-
terpolating methods for image resampling. IEEE
Trans Med Imaging 1983; 2:31-39. [CrossRef]
Duron L, Balvay D, Perre SV, et al. Gray-lev-
el discretization impacts reproducible MRI
radiomics texture features. PLoS ONE 2019;
14:0213459. [CrossRef]

Kocak B, Durmaz ES, Kaya OK, Ates E, Kilickes-
mez O. Reliability of single-slice-based 2D CT
texture analysis of renal masses: influence of
intra- and interobserver manual segmentation
variability on radiomic feature reproducibility.
AJR Am J Roentgenol 2019; 1-7. [CrossRef]
Kass M, Witkin A, Terzopoulos D. Snakes: Active
contour models. Int J Comput Vis 1988; 1:321-
331. [CrossRef]

Suzuki K, Epstein ML, Kohlbrenner R, et al. CT
liver volumetry using geodesic active contour
segmentation with a level-set algorithm. SPIE
Medical Imaging, San Diego, CA, 2010 Con-
ference Proceedings 2010; 7624. https://doi.
org/10.1117/12.843950. [CrossRef]

Peng J, Hu P, Lu F, Peng Z, Kong D, Zhang H.
3D liver segmentation using multiple region
appearances and graph cuts. Med Phys 2015;
42:6840-6852. [CrossRef]

Wu W, Zhou Z, Wu S, Zhang Y. Automatic liver
segmentation on volumetric CT images using
supervoxel-based graph cuts. Comput Math
Methods Med 2016; 2016:9093721. [CrossRef]

Kogak et al.


https://doi.org/10.1002/jmri.26265
https://doi.org/10.1007/s00330-018-5876-2
https://doi.org/10.1007/s00234-019-02211-2
https://doi.org/10.1007/s00330-018-5770-y
https://doi.org/10.1016/j.ejrad.2019.02.037
https://doi.org/10.5152/dir.2018.17467
https://doi.org/10.2214/AJR.18.20742
https://doi.org/10.1016/j.ejrad.2018.08.014
https://doi.org/10.2214/AJR.18.20443
https://doi.org/10.1007/s00330-018-5698-2
https://doi.org/10.2214/AJR.18.20097
https://doi.org/10.1177/0284185119830292
https://doi.org/10.1016/j.ejrad.2019.03.010
https://doi.org/10.1016/j.jacr.2017.12.026
https://doi.org/10.1148/rg.2017170077
https://doi.org/10.1148/rg.2017160130
https://doi.org/10.1093/jrr/rry077
https://doi.org/10.1016/S0933-3657(01)00077-X
https://doi.org/10.2214/AJR.18.20771
https://doi.org/10.5152/dir.2019.19125
https://doi.org/10.1016/j.crad.2019.02.006
https://doi.org/10.3322/caac.21552
https://doi.org/10.1016/S1470-2045(09)70190-1
https://doi.org/10.1200/JCO.2006.06.6159
https://doi.org/10.1007/s00330-018-5674-x
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1038/s41568-018-0016-5
https://doi.org/10.1109/TMI.2016.2548501
https://doi.org/10.1016/j.cmpb.2008.08.005
https://doi.org/10.1158/0008-5472.CAN-18-0125
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1118/1.4908210
https://doi.org/10.32614/RJ-2009-016
https://doi.org/10.2214/AJR.18.20624
https://doi.org/10.1148/radiol.10100799
https://doi.org/10.1002/mp.12123
https://doi.org/10.1038/s41598-018-28895-9
https://doi.org/10.1109/42.668698
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1016/j.mri.2003.09.001
https://doi.org/10.1109/TMI.1983.4307610
https://doi.org/10.1371/journal.pone.0213459
https://doi.org/10.2214/AJR.19.21212
https://doi.org/10.1007/BF00133570
https://doi.org/10.1117/12.843950
https://doi.org/10.1118/1.4934834
https://doi.org/10.1155/2016/9093721

53.

54,

55.

56.

57.

58.

59.

60.

Pereira S, Pinto A, Alves V, Silva CA. Brain tumor
segmentation using convolutional neural net-
works in MRI images. IEEE Trans Med Imaging
2016; 35:1240-1251. [CrossRef]

Ypsilantis P-P, Siddique M, Sohn H-M, et al.
Predicting response to neoadjuvant chemo-
therapy with PET imaging using convolutional
neural networks. PLoS ONE 2015; 10:e0137036.
[CrossRef]

Li Z, Wang Y, Yu J, Guo Y, Cao W. Deep learning
based radiomics (DLR) and its usage in nonin-
vasive IDH1 prediction for low grade glioma.
Sci Rep 2017; 7:5467. [CrossRef]

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer
WP. SMOTE: synthetic minority over-sampling
technique. J Artif Intell Res 2002; 16:321-357.
[CrossRef]

Mwangi B, Tian TS, Soares JC. A review of feature
reduction techniques in neuroimaging. Neu-
roinformatics 2014; 12:229-244. [CrossRef]
Kocak B, Ates E, Durmaz ES, Ulusan MB, Kilick-
esmez O. Influence of segmentation margin
on machine learning-based high-dimensional
quantitative CT texture analysis: a reproduc-
ibility study on renal clear cell carcinomas. Eur
Radiol 2019. [CrossRef]

Hall MA. Correlation-based feature selection
for machine learning. PhD Thesis. University of
Waikato Hamilton, 1999.

Ahn SJ, Kim JH, Lee SM, Park SJ, Han JK. CT re-
construction algorithms affect histogram and
texture analysis: evidence for liver parenchy-
ma, focal solid liver lesions, and renal cysts. Eur
Radiol 2018. [CrossRef]

61.

62.

63.

64.

65.

66.

Hodgdon T, Mclnnes MDF, Schieda N, Flood TA,
Lamb L, Thornhill RE. Can quantitative CT tex-
ture analysis be used to differentiate fat-poor
renal angiomyolipoma from renal cell carci-
noma on unenhanced CT images? Radiology
2015; 276:787-796. [CrossRef]

Leng S, Takahashi N, Gomez Cardona D, et al.
Subjective and objective heterogeneity scores
for differentiating small renal masses using
contrast-enhanced CT. Abdom Radiol (NY)
2017; 42:1485-1492. [CrossRef]

Koo TK, Li MY. A guideline of selecting and
reporting intraclass correlation coefficients
for reliability research. J Chiropr Med 2016;
15:155-163. [CrossRef]

Dormann CF, Elith J, Bacher S, et al. Collinear-
ity: a review of methods to deal with it and a
simulation study evaluating their performance.
Ecography 2013; 36:27-46. [CrossRef]
Tibshirani R. Regression shrinkage and selec-
tion via the lasso: a retrospective. J R Stat Soc B
2011; 73:273-282. [CrossRef]

Kononenko |I. Estimating attributes: Analysis
and extensions of RELIEF. In: Bergadano F,
De Raedt L, eds. Machine Learning: ECML-94.
Berlin Heidelberg: Springer, 1994; 171-182.
[CrossRef]

Langs G, Menze BH, Lashkari D, Golland P. De-
tecting stable distributed patterns of brain ac-
tivation using Gini contrast. Neuroimage 2011;
56:497-507. [CrossRef]

68.

69.

70.

71.

72.

73.

74.

75.

Shayesteh SP, Alikhassi A, Fard Esfahani A, et
al. Neo-adjuvant chemoradiotherapy response
prediction using MRI based ensemble learning
method in rectal cancer patients. Phys Med
2019;62:111-119. [CrossRef]

Hayes DF. Biomarker validation and testing.
Mol Oncol 2015; 9:960-966. [CrossRef]

Varma S, Simon R. Bias in error estimation
when using cross-validation for model selec-
tion. BMC Bioinformatics 2006; 7:91. [CrossRef]
Demsar J. Statistical comparisons of classifiers over
multiple data sets. J Mach Learn Res 2006; 7:1-30.
Akin O, EInajjar P, Heller M, et al. Radiology data
from the cancer genome atlas kidney renal
clear cell carcinoma [TCGA-KIRC] collection.
The Cancer Imaging Archive 2016. https://wiki.
cancerimagingarchive.net/x/woFY.  Accessed
June 18, 2019.

Clark K, Vendt B, Smith K, et al. The Cancer Im-
aging Archive (TCIA): maintaining and oper-
ating a public information repository. J Digit
Imaging 2013; 26:1045-1057. [CrossRef]
Erickson B, Akkus Z, Sedlar J, Korfiatis P. Data
from LGG-1p19q deletion. The Cancer Imaging
Archive 2017. https://wiki.cancerimagingar-
chive.net/x/coKJAQ. Accessed April 6,2019.
Akkus Z, Ali 1, Sedlaf J, et al. Predicting deletion of
chromosomal arms 1p/19q in low-grade gliomas
from MR images using machine intelligence. J
Digit Imaging 2017; 30:469-476. [CrossRef]

Radiomics with artificial intelligence « 495


https://doi.org/10.1109/TMI.2016.2538465
https://doi.org/10.1371/journal.pone.0137036
https://doi.org/10.1038/s41598-017-05848-2
https://doi.org/10.1613/jair.953
https://doi.org/10.1007/s12021-013-9204-3
https://doi.org/10.1007/s00330-019-6003-8
https://doi.org/10.1007/s00330-018-5829-9
https://doi.org/10.1148/radiol.2015142215
https://doi.org/10.1007/s00261-016-1014-2
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1007/3-540-57868-4_57
https://doi.org/10.1016/j.neuroimage.2010.07.074
https://doi.org/10.1016/j.neuroimage.2010.07.074
https://doi.org/10.1016/j.neuroimage.2010.07.074
https://doi.org/10.1016/j.neuroimage.2010.07.074
https://doi.org/10.1016/j.ejmp.2019.03.013
https://doi.org/10.1016/j.molonc.2014.10.004
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1007/s10278-013-9622-7
https://doi.org/10.1007/s10278-017-9984-3



