CC BY-NC-ND 4.0 · Sleep Sci 2018; 11(04): 245-253
DOI: 10.5935/1984-0063.20180039
ORIGINAL ARTICLE

Rapid Eye Movement sleep deprivation of rat generates ROS in the hepatocytes and makes them more susceptible to oxidative stress

Atul Pandey
1   Jawaharlal Nehru University, School of Biotechnology - New Delhi - Delhi - India.
2   The Hebrew University of Jerusalem, Department of Ecology, Evolution and Behavior - Jerusalem - Jerusalem - Israel.
,
Santosh K Kar
1   Jawaharlal Nehru University, School of Biotechnology - New Delhi - Delhi - India.
3   Kallinga Institute of Industrial Technology, School of Biotechnology - Bhubaneshwar - Bhubneshwar - India.
› Author Affiliations

BACKGROUND Rapid Eye Movement sleep deprivation (REMSD) of rats causes inflammation of the liver and apoptotic cell death of neurons and hepatocytes. Studies also suggest that REM sleep deprivation can cause muscle as well as cardiac injury and neurodegenerative diseases.

Objective and methods The aim of this research was to determine whether REM sleep deprivation of rats would increase the levels of reactive oxygen species (ROS) in the hepatocytes and create oxidative stress in them. We selectively deprived the rats for REM sleep using the standard flower pot method.

Results We observed that when rats were subjected to REM sleep deprivation, the levels of ROS in their hepatocytes increased ~184.33% compared to large platform control (LPC) group by day 9 of deprivation, but it returned towards normal level (~49.27%) after recovery sleep for 5 days. Nitric oxide synthase (iNOS) gene expression and protein levels as determined by real-time PCR and western blot analysis respectively were found to be elevated in hepatocytes of REM sleep deprived rats as compared to the LPC group. The level of nitric oxide (NO) in the hepatocytes of REMSD rats also increased by ~404.40% as compared to the LPC group but sleep recovery for 5 days normalized the effect (~135.35% compared to LPC group). We used a large platform control group as a reference group to compare with the REM sleep deprived group as the effect on the hepatocytes of both LPC group and cage control groups were not significantly different.

Discussion We have analyzed the oxidative stress generated in the hepatocytes of rats due to REM sleep deprivation and further consequences of it. REMS deprivation not only increased the levels of ROS in the hepatocytes but also induced iNOS and NO in them. REM sleep deprived hepatocytes became more susceptible to oxidative stresses on further exposures. Furthermore, our study has great pathological and physiological.



Publication History

Received: 20 May 2018

Accepted: 29 October 2018

Article published online:
16 October 2023

© 2023. Brazilian Sleep Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • REFERENCES

  • 1 Cirelli C, Tononi G. Is sleep essential? PLoS Biol. 2008;6(8):e216. DOI: 10.1371/journal.pbio.0060216
  • 2 Reutrakul S, Van Cauter E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism. 2018;84:56-66. DOI: 10.1016/j. metabol.2018.02.010
  • 3 Tobaldini E, Costantino G, Solbiati M, Cogliati C, Kara T, Nobili L, et al. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev. 2017;74(Pt B):321-9. DOI: 10.1016/j. neubiorev.2016.07.004
  • 4 Yang H, Haack M, Gautam S, Meier-Ewert HK, Mullington JM. Repetitive exposure to shortened sleep leads to blunted sleep-associated blood pressure dipping. J Hypertens. 2017;35(6):1187-94. DOI: 10.1097/ HJH.20180039201800391284
  • 5 Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435-9. DOI: 10.1016/ S0140-6736(99)01376-8
  • 6 Graves L, Heller E, Pack A, Abel T. Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn Mem. 2003;10(3):168-76. DOI: 10.1101/lm.48803.LEARNING
  • 7 Kumar T, Jha SK. Sleep deprivation impairs consolidation of cued fear memory in rats. PLoS One. 2012;7(10):e47042. DOI: 10.1371/journal. pone.0047042
  • 8 Youngblood BD, Zhou J, Smagin GN, Ryan DH, Harris RB. Sleep deprivation by the “flower pot” technique and spatial reference memory. Physiol Behav. 1997;61(2):249-56. DOI: 10.1016/S0031-9384(96)00363-0
  • 9 Mallick BN, Singh S, Pal D. Role of alpha and beta adrenoceptors in locus coeruleus stimulation-induced reduction in rapid eye movement sleep in freely moving rats. Behav Brain Res. 2005;158:9-21. DOI: 10.1016/j. bbr.2004.08.004
  • 10 Gómez-González B, Hurtado-Alvarado G, Esqueda-León E, Santana-Miranda R, Rojas-Zamorano JA, Velázquez-Moctezuma J. REM sleep loss and recovery regulates blood-brain barrier function. Curr Neurovasc Res. 2013;10(3):197-207. DOI: 10.2174/15672026113109990002
  • 11 Christos GA. Is Alzheimer’s disease related to a deficit or malfunction of rapid eye movement (REM) sleep? Med Hypotheses. 1993;41(5):435-9. DOI: 10.1016/0306-9877(93)90121-6
  • 12 Baumann C, Ferini-Strambi L, Waldvogel D, Werth E, Bassetti CL. Parkinsonism with excessive daytime sleepiness--a narcolepsy-like disorder? J Neurol. 2005;252(2):139-45. DOI: 10.1007/s00415-005-0614-5
  • 13 Maquet P. Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res. 2000;9(3):207-31.
  • 14 Everson CA, Smith CB, Sokoloff L. Effects of prolonged sleep deprivation on local rates of cerebral energy metabolism in freely moving rats. J Neurosci. 1994;14(11 Pt 2):6769-78.
  • 15 Somarajan BI, Khanday MA, Mallick BN. Rapid Eye Movement Sleep Deprivation Induces Neuronal Apoptosis by Noradrenaline Acting on Alpha1 Adrenoceptor and by Triggering Mitochondrial Intrinsic Pathway. Front Neurol. 2016;7:25. DOI: 10.3389/fneur.2016.00025
  • 16 Biswas S, Mishra P, Mallick BN. Increased apoptosis in rat brain after rapid eye movement sleep loss. Neuroscience. 2006;142(2):315-31. DOI: 10.1016/j.neuroscience.2006.06.026
  • 17 Mejri MA, Yousfi N, Hammouda O, Tayech A, Ben Rayana MC, Driss T, et al. One night of partial sleep deprivation increased biomarkers of muscle and cardiac injuries during acute intermittent exercise. J Sports Med Phys Fitness. 2017;57(5):643-51. DOI: 10.23736/S0022-4707.16.06159-4
  • 18 Mônico-Neto M, Dáttilo M, Ribeiro DA, Lee KS, de Mello MT, Tufik S, et al. REM sleep deprivation impairs muscle regeneration in rats. Growth Factors. 2017;35(1):12-8. DOI: 10.1080/08977194.2017.1314277
  • 19 Silva RH, Abílio VC, Takatsu AL, Kameda SR, Grassl C, Chehin AB, et al. Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology. 2004;46(6):895-903. DOI: 10.1016/j.neuropharm.2003.11.032
  • 20 Gopalakrishnan A, Ji LL, Cirelli C. Sleep deprivation and cellular responses to oxidative stress. Sleep. 2004;27(1):27-35. DOI: 10.1093/ sleep/27.1.27
  • 21 D’Almeida V, Lobo LL, Hipólide DC, de Oliveira AC, Nobrega JN, Tufik S. Sleep deprivation induces brain region-specific decreases in glutathione levels. Neuroreport. 1998;9(12):2853-6. DOI: 10.1097/00001756-199808240-00031
  • 22 Ramanathan L, Gulyani S, Nienhuis R, Siegel JM. Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem. Neuroreport. 2002;13(11):1387-90. DOI: 10.1097/00001756-200208070-00007
  • 23 D’Almeida V, Hipólide DC, Azzalis LA, Lobo LL, Junqueira VB, Tufik S. Absence of oxidative stress following paradoxical sleep deprivation in rats. Neurosci Lett. 1997;235(1-2):25-8.
  • 24 Brown MK, Naidoo N. The UPR and the anti-oxidant response: relevance to sleep and sleep loss. Mol Neurobiol. 2010;42(2):103-13. DOI: 10.1007/s12035-010-8114-8
  • 25 Chang HM, Mai FD, Chen BJ, Wu UI, Huang YL, Lan CT, et al. Sleep deprivation predisposes liver to oxidative stress and phospholipid damage: a quantitative molecular imaging study. J Anat. 2008;212(3):295-305. DOI: 10.1111/j.1469-7580.2008.00860.x
  • 26 Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4(1):177-97. DOI: 10.1002/cphy.c130024
  • 27 Ménochet K, Kenworthy KE, Houston JB, Galetin A. Simultaneous assessment of uptake and metabolism in rat hepatocytes: a comprehensive mechanistic model. J Pharmacol Exp Ther. 2012;341(1):2-15. DOI: 10.1124/jpet.111.187112
  • 28 Rogiers V, Vandenberghe Y, Callaerts A, Verleye G, Cornet M, Mertens K, et al. Phase I and phase II xenobiotic biotransformation in cultures and co-cultures of adult rat hepatocytes. Biochem Pharmacol. 1990;40(8):1701-6. DOI: 10.1016/0006-2952(90)90345-L
  • 29 Hutson SM, Stinson-Fisher C, Shiman R, Jefferson LS. Regulation of albumin synthesis by hormones and amino acids in primary cultures of rat hepatocytes. Am J Physiol. 1987;252(3 Pt 1):E291-8. DOI: 10.1152/ ajpendo.1987.252.3.E291
  • 30 Pandey AK, Kar SK. REM sleep deprivation of rats induces acute phase response in liver. Biochem Biophys Res Commun. Biochem Biophys Res Commun. 2011;410(2):242-6. DOI: 10.1016/j.bbrc.2011.05.123
  • 31 Hicks RA, Okuda A, Thomsen D. Depriving rats of REM sleep: the identification of a methodological problem. Am J Psychol. 1977;90(1):95-102. DOI: 10.2307/1421644
  • 32 van Hulzen ZJ, Coenen AM. Paradoxical sleep deprivation and locomotor activity in rats. Physiol Behav. 1981;27(4):741-4. DOI: 10.1016/0031-9384(81)90250-X
  • 33 Shen L, Hillebrand A, Wang DQ, Liu M. Isolation and primary culture of rat hepatic cells. J Vis Exp. 2012;(64):pii:3917. DOI: 10.3791/3917
  • 34 Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, et al. Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem. 2005;280(17):17497-506. DOI: 10.1074/jbc.M409332200
  • 35 Massaad CA, Portier BP, Taglialatela G. Inhibition of transcription factor activity by nuclear compartment-associated Bcl-2. J Biol Chem. 2004;279(52):54470-8. DOI: 10.1074/jbc.M407659200
  • 36 Pandey A, Kumar D, Ray G, Kar S. Rapid eye movement sleep deprivation causes apoptotic cell-death of the hepatocytes in rat. Biorxiv. 2018. DOI: https://doi.org/10.1101/375717
  • 37 Mathangi DC, Shyamala R, Subhashini AS. Effect of REM sleep deprivation on the antioxidant status in the brain of Wistar rats. Ann Neurosci. 2012;19(4):161-4. DOI: 10.5214/ans.0972.7531.190405
  • 38 Villafuerte G, Miguel-Puga A, Rodríguez EM, Machado S, Manjarrez E, Arias-Carrión O. Sleep deprivation and oxidative stress in animal models: a systematic review. Oxid Med Cell Longev. 2015;2015:234952. DOI: 10.1155/2015/234952
  • 39 Eisele HJ, Markart P, Schulz R. Obstructive Sleep Apnea, Oxidative Stress, and Cardiovascular Disease: Evidence from Human Studies. Oxid Med Cell Longev. 2015;2015:608438. DOI: 10.1155/2015/608438
  • 40 Wang Y, Zhang SX, Gozal D. Reactive oxygen species and the brain in sleep apnea. Respir Physiol Neurobiol. 2010;174(3):307-16. DOI: 10.1016/j.resp.2010.09.001
  • 41 Morén C, González-Casacuberta, Navarro-Otano J, Juárez-Flores D, Vilas D, Garrabou G, et al. Colonic Oxidative and Mitochondrial Function in Parkinson’s Disease and Idiopathic REM Sleep Behavior Disorder. Parkinsons Dis. 2017;2017:9816095. DOI: 10.1155/2017/9816095
  • 42 Zhang L, Guo HL, Zhang HQ, Xu TQ, He B, Wang ZH, et al. Melatonin prevents sleep deprivation-associated anxiety-like behavior in rats: role of oxidative stress and balance between GABAergic and glutamatergic transmission. Am J Transl Res. 2017;9(2):2231-42.
  • 43 Taylor BS, Alarcon LH, Billiar TR. Inducible nitric oxide synthase in the liver: regulation and function. Biochemistry (Mosc). 1998;63(7):766-81.