Japanese Journal of Infectious Diseases
Online ISSN : 1884-2836
Print ISSN : 1344-6304
ISSN-L : 1344-6304
Original Article
Pentagalloylglucose Blocks the Nuclear Transport and the Process of Nucleocapsid Egress to Inhibit HSV-1 Infection
Fujun JinKaiqi MaMaoyun ChenMuping ZouYanting WuFeng LiYifei Wang
Author information
JOURNAL FREE ACCESS

2016 Volume 69 Issue 2 Pages 135-142

Details
Abstract

Herpes simplex virus type 1 (HSV-1), a widespread virus, causes a variety of human viral diseases worldwide. The serious threat of drug-resistance highlights the extreme urgency to develop novel antiviral drugs with different mechanisms of action. Pentagalloylglucose (PGG) is a natural polyphenolic compound with significant anti-HSV activity; however, the mechanisms underlying its antiviral activity need to be defined by further studies. In this study, we found that PGG treatment delays the nuclear transport process of HSV-1 particles by inhibiting the upregulation of dynein (a cellular major motor protein) induced by HSV-1 infection. Furthermore, PGG treatment affects the nucleocapsid egress of HSV-1 by inhibiting the expression and disrupting the cellular localization of pEGFP-UL31 and pEGFP-UL34, which are indispensable for HSV-1 nucleocapsid egress from the nucleus. However, the over-expression of pEGFP-UL31 and pEGFP-UL34 could decrease the antiviral effect of PGG. In this study, for the first time, the antiviral activity of PGG against acyclovir-resistant virus was demonstrated in vitro, and the possible mechanisms of its anti-HSV activities were identified based on the inhibition of nuclear transport and nucleocapsid egress in HSV-1. It was further confirmed that PGG could be a promising candidate for HSV therapy, especially for drug-resistant strains.

Content from these authors
© Authors
Previous article Next article
feedback
Top