Skip to main content
Erschienen in: BMC Endocrine Disorders 1/2020

Open Access 01.12.2020 | Research article

Lipid accumulation product (LAP) was independently associated with obstructive sleep apnea in patients with type 2 diabetes mellitus

verfasst von: Lianqin Dong, Mingzhu Lin, Wengui Wang, Danyan Ma, Yun Chen, Weijuan Su, Zheng Chen, Shunhua Wang, Xuejun Li, Zhibin Li, Changqin Liu

Erschienen in: BMC Endocrine Disorders | Ausgabe 1/2020

Abstract

Background

Lipid accumulation product (LAP) is a new index based on a combination of waist circumference (WC) and serum triglycerides (TG) reflecting lipid accumulation. In this cross-sectional study, we aimed to explore whether LAP was independently associated with obstructive sleep apnea (OSA) in Type 2 diabetes mellitus (T2DM) patients.

Methods

A cross-sectional study of 317 T2DM patients who underwent overnight polysomnography (PSG) tests was conducted. The clinical data between non-OSA group and OSA group were compared. Multivariable linear regression and multivariable logistic regression analyses were performed to determine associations of LAP, with apnea-hypopnea index (AHI) and OSA.

Results

Among 317 patients, 219 (69.1%) were men, and the mean ages (±SD) were 51.4 (±13.5) years for men and 54.6 (±15.1) years for women (p = 0.067). The prevalence rates of OSA were 63.0% for men and 68.4% for women (p = 0.357). LAP (log-transformed) was significantly correlated with AHI (log-transformed), with the Pearson’s correlation coefficient of 0.170 (p = 0.002). With adjustment for potential confounding factors, multivariate linear regression analyses showed the association of LAP with AHI was not statistically significant, with the adjusted linear regression coefficients (95% CI) of per SD increase of LAP for AHI (log-transformed) was 0.092 (− 0.011–0.194, p = 0.080). Multivariate logistic regression analyses showed LAP was significantly associated with increased risk of OSA, with the adjusted OR (95%CI) of per SD increase of LAP of 1.639 (1.032–2.604, p = 0.036). However, as constituents of LAP, neither TG nor WC was significantly associated with AHI and OSA.

Conclusion

LAP was independently associated with OSA and might be used as a potential OSA risk marker in T2DM patients, beyond the general index of obesity.
Hinweise
Lianqin Dong, Mingzhu Lin and Wengui Wang contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Obstructive sleep apnea (OSA) has gradually become a common sleep-disordered breathing in today’s society [1, 2]. OSA is characterized by the presence of repeated episodes of obstructive apnea and hypopnea during sleep [3]. Recent studied reported that the prevalence of moderate to severe OSA was 23.4% in women and 49.7% in men in the general population [4]. Patients with OSA often feel exhausted and sleepy during the daytime, which would result in the impairment in vigilance, concentration, cognitive function, social interactions and quality of life [5]. OSA usually develops in population who are overweight or obesity and is associated with hypertension and metabolic diseases [6]. Obesity is a prominent risk factor of OSA and increased visceral fat plays a role in the development of OSA [7], and weight control can effectively reduce the incidence of OSA in a longitudinal study [8]. In turns, sleep fragmentation and sleep restriction have been associated with increased food intake and consequent weight gain [9].
Type 2 diabetes mellitus (T2DM) is also a common disease around the world. Studies have shown that the prevalence rate of OSA is from 50 to 70% in diabetic patients [10]. Other studies also indicated a higher incidence rate of diabetes or insulin resistance in OSA patients [11]. OSA may induce diabetes through specific mechanisms such as glucose intolerance [1214]. Data from murine models and human studies indicated that intermittent hypoxia and sleep fragmentation could result in the alternation of insulin sensitivity and glucose disposal [14]. Mok et al. showed that more severe OSA was associated with the poorer glycaemic control in T2DM patients expressed by the glycated hemoglobin A1c (HbA1c) levels after adjustment for age, race, sex, body mass index (BMI) and the duration of diabetes mellitus [11]. According to a study conducted by Nagayoshi and colleagues, they found that subjects with severe OSA were at greater risk of incident diabetes compared to persons classified as normal and independent of adiposity [14]. OSA has established a link with obesity and diabetes by the above reasons [9].
Rising BMI, waist circumference (WC), and neck circumference (NC) are important risk factors for the development of OSA [15]. Lipid accumulation product (LAP) is a new index based on a combination of WC and serum triglycerides (TG) reflecting lipid accumulation, which has been used as a marker of obesity [16]. A study included 2524 non-diabetic patients from China suggested that LAP could better identify insulin resistance than BMI and WC [17]. In a cohort study included 4508 non-diabetic participants with a median age of 42 years, higher LAP trajectories were associated with an increased risk of diabetes [18]. In a 6-year follow-up prospective study, the researchers found that LAP was superior to BMI in predicting diabetes in young individuals [19]. In T2DM patients, LAP was a useful tool to predict the risk for chronic diabetic complications, such as diabetic retinopathy [20]. However, in a large cross-sectional study with a total of 5539 subjects, Zou and colleagues also found LAP was of moderate efficiency in screening for OSA, which indicate that LAP is a simple and practical screening tool for OSA [21].
Epidemiological evidence indicate obesity could result in OSA via several mechanism including the collapsibility of the pharyngeal airway through excessive fat deposition [22], oxidative stress, inflammation, and even mutual organ interactions among the respiratory system, adipose tissue and intestine [23]. Similarly, OSA and T2DM share mutual risk factors such as obesity and insulin resistance [11]. However, there are few studies focusing on association between separate LAP and OSA prevalence in T2DM patients. Therefore, the aim of the present study was to investigate whether LAP is independently associated with the presence of OSA in T2DM.

Methods

Study subjects

During the period from 2013 to 2017, a total of 346 T2DM patients underwent overnight polysomnography (PSG) test had been recruited. Exclusion criteria were described as our previous study [24]. Of 346 patients, 317 patients who had complete data on clinical, PSG, and LAP were left for the present analysis. This study was approved by the Human Research Ethics Committee of the First Affiliated Hospital of Xiamen University (Xiamen, China).

Demographic and biochemical measurements

Demographic data including body weight, standing height, WC, Hip circumference (HC), and arterial blood pressure were collected as described as our previous report [24]. HbA1c, TG, Total cholesterol (TC), HDL-cholesterol (HDL-c), and LDL-cholesterol (LDL-c) measurements have also been detailed described in the previous study [24]. BMI was calculated as follows: Body weight [kilograms] / (height [m])2. LAP was calculated as follows: (WC [cm] - 65) × (TG concentration [mmol/L]) for men, and (WC [cm] - 58) × (TG concentration [mmol/L]) for women, respectively [16].

Polysomnography assessments

Polysomnography (PSG) (PSG, Comp medics, Abbotsford, Australia) was recorded as same as described in the previous report [24] and was scored according to generally accepted scoring methods [25]. The apnea-hypopnea index (AHI) was defined as the total number of obstructive apnea and hypopnea per hour of sleep. OSA was defined as AHI ≥ 5 [5].

Statistical analyses

Data was presented as the mean ± standard deviation or as median (inter-quartile range, IQR) for continuous variable or number and percentage for categorical variable. Normality of all continuous variables were conducted. AHI and LAP did not follow normal distributions and therefore log-transformation on AHI and LAP were performed. Differences between OSA and non-OSA groups were analyzed on continuous variables using Student’s t test (t-test) for those with normal distribution and the Mann-Whitney U test for those with skewed distribution and on categorical variables using chi-square test. Pearson’s correlation analysis is used to analysis the correlation between LAP (log-transformed) and AHI (log-transformed).
Multivariable linear regression was used to explore the association of LAP with AHI (log-transformed). And multivariable logistic regression analysis was used to calculate the adjusted odds ratios (OR) and 95% confidence interval (CI) of LAP (per SD increase) for OSA in different models with adjustment for potential confounders. For both the multivariable linear regression and logistic regression analyses, no variables were adjusted for in model 1; age, sex, regular drinking, current smoking, T2DM duration, oral glucose-lowering agents (OGLA) and insulin use were adjusted for in model 2; systolic blood pressure (SBP), diastolic blood pressure (DBP), BMI, TC, LDL-c, and HbA1c were further adjusted for in model 3. To show if LAP was a better predictor than its two constitutes (TG and WC), additional regression analyses were further conducted for TG and WC separately and Akaike information criterions (AIC) were used to compare these consecutive models. A receiver operating characteristic (ROC) analysis was conducted for LAP to evaluate its ability to correctly detect moderate-severe OSA in T2DM patients. All p-values were two-sided and p-value< 0.05 was considered statistically significant. All statistical analyses were performed using SPSS version 21.0 software (IBM Corporation, Armonk, NY).

Results

Among 317 patients with T2DM, 219 (69.1%) were men, and the mean ages (±SD) were 51.4 (±13.5) years for menand 54.6 (±15.1) years for women (p = 0.067). The prevalence rates of OSAwere 63.0% for men and 68.4% for women (p = 0.357).

Demographic, lifestyle and clinical characteristics categorized by the severity of OSA

Table 1 showed the demographic, lifestyle and clinical characteristics between non-OSA group and OSA group. There were significant differences in ages (47.1 ± 14.8 vs. 55.3 ± 12.8, p < 0.001), statin use (71 (30.3%) vs. 163 (69.7%), p = 0.006), WC (95.3 ± 9.8 vs. 99.5 ± 9.6, p < 0.001), BMI (27.3 ± 4.2 vs. 28.2 ± 4.0, p = 0.039), HbA1c (10.1 ± 2.3 vs. 9.8 ± 2.2, p = 0.160), TG (median (IQR) 1.55 (1.15–2.20) vs. 1.76 (1.28–2.58), p = 0.041), LDL-c (3.3 ± 1.1 vs. 3.1 ± 1.0, p = 0.048), AHI (median (IQR) 2.0 (0.9–3.8) vs. 19.8 (9.7–34.6), p < 0.001) and LAP (median (IQR) 52.8 (31.2–84.3) vs 69.2 (42.1–98.2), p < 0.001) between two groups. And there were no significant differences between non-OSA and OSA in T2DM duration, gender, current smoking, regular drinking, OGLA use, statin use, insulin use, SBP, DBP, TC and LDL-c.
Table 1
Demographic, lifestyle and clinical characteristics of study subjects
 
Total
None-OSA
OSA
p value
n (%)
317
112 (35.3%)
205 (64.7%)
 
Age (years)
52.4 ± 14.1
47.1 ± 14.8
55.3 ± 12.8
< 0.001#
Gender
   
0.357
 Female (n, %)
98 (30.9%)
31 (27.7%)
67 (32.7%)
 
 Male (n, %)
219 (69.1%)
81 (72.3%)
138 (67.3%)
 
T2DM duration (years)
4.0 (1.0–10.0)
3.0 (0.6–8.0)
4.0 (1.0–10.0)
0.056
Current smoking (%)
112 (35.3%)
40 (35.7%)
72 (35.1%)
0.916
Regular drinking (%)
100 (31.5%)
33 (29.5%)
67 (32.7%)
0.556
OGLA use (%)
249 (78.5%)
83 (74.1%)
166 (81.0%)
0.154
Stain use (%)
234 (73.8%)
71 (63.3%)
163 (79.5%)
0.001#
Insulin use (%)
208 (65.6%)
76 (67.9%)
132 (64.4%)
0.283
SBP (mmHg)
133 ± 18
131 ± 17
134 ± 18
0.058
DBP (mmHg)
81 ± 10
79 ± 10
81 ± 10
0.071
BMI (kg/m2)
27.9 ± 4.1
27.3 ± 4.2
28.2 ± 4.0
0.039*
WC (cm)
98.0 ± 9.9
95.3 ± 9.8
99.5 ± 9.6
< 0.001#
HbA1c (%)
9.9 ± 2.2
10.1 ± 2.3
9.8 ± 2.2
0.160
TG (mmol/L)
1.69 (1.20–2.51)
1.55 (1.15–2.20)
1.76 (1.28–2.58)
0.041*
TC (mmol/L)
5.2 ± 1.1
5.3 ± 1.2
5.1 ± 1.1
0.252
HDL-c (mmol/L)
1.1 ± 0.3
1.1 ± 0.2
1.1 ± 0.2
0.244
LDL-c (mmol/L)
3.1 ± 1.1
3.3 ± 1.1
3.1 ± 1.0
0.048*
AHI (events/h)
9.2 (3.4–25.5)
2.0 (0.9–3.8)
19.8 (9.7–34.6)
< 0.001#
LAP
60.8 (37.2–94.0)
52.8 (31.2–84.3)
69.2 (42.1–98.2)
0.001#
* p < 0.05; # p < 0.01
Data was presented as the mean ± standard deviation or as median (interquartile range) for continuous variable or number and percentage for categorical variable
Abbreviations: T2DM type 2 diabetes mellitus, OGLA oral glucose-lowering agents, WC Waist circumference, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, TG Triglyceride, TC total cholesterol, HDL-c high-density lipoprotein cholesterol, LDL-c low-density lipoprotein cholesterol, AHI apnea hypopnea index, OSA obstructive sleep apnea syndrome, LAP Lipid accumulation product

Correlation of LAP with AHI

Pearson’s correlation analysis was performed to explore the correlation of LAP (log-transformed) with AHI (log-transformed). Figure 1 showed that LAP was significantly and positively correlated with AHI, with the Pearson’s correlation coefficient of 0.170 (p = 0.002).

Association of LAP with AHI

Multivariate linear regression analyses were performed to show the independent association of LAP with AHI (Table 2). In model 1, model 2 and model 3 with adjustment for the same confounding factors as OSA, the adjusted linear regression coefficients (95% CI) of per SD increase of LAP for AHI (log-transformed) were 0.100 (0.032–0.169, p = 0.004), 0.121 (0.052–0.191, p = 0.001) and 0.092 (− 0.011–0.194, p = 0.080), respectively. Similar to logistic regression analyses on OSA, the full models (models 3) showed neither TG nor WC was significantly associated with AHI. Akaike information criterion (AIC) of multivariate linear regression analyses of TG, WC and LAP in model 3 were 543.5, 543.9 and 541.6, respectively.
Table 2
Associations of TG, WC and LAP with AHI and OSA in patients with T2DM
 
Linear regression on Log (AHI)
Logistic regression on OSA
Coefficient
95%CI
P value
ORs
95%CI
P value
TG
Model 1
0.029
−0.040 to 0.099
0.406
1.242
0.965 to 1.599
0.092
Model 2
0.043
−0.027 to 0.113
0.227
1.336
1.007 to 1.773
0.045
Model 3
0.060
−0.041 to 0.160
0.244
1.352
0.876 to 2.085
0.173
WC
Model 1
0.019
0.013 to 0.026
< 0.001
1.048
1.021 to 1.075
< 0.001
Model 2
0.022
0.016 to 0.029
< 0.001
1.067
1.036 to 1.099
< 0.001
Model 3
0.008
−0.004 to 0.019
0.186
1.038
0.989 to 1.090
0.133
LAP
Model 1
0.100
0.032 to 0.169
0.004
1.520
1.159 to 1.995
0.003
Model 2
0.121
0.052 to 0.191
0.001
1.752
1.273 to 2.413
0.001
Model 3
0.092
−0.011 to 0.194
0.080
1.639
1.032 to 2.604
0.036
AHI was log-transformed
Model 1 was not adjusted
Model 2 was adjusted for age, gender, T2DM duration, regular drinking, current smoking, OGLA, statin use, and insulin use
Model 3 was further adjusted for BMI, SBP, DBP, TC, LDL-c, HbA1c
Abbreviations: T2DM type 2 diabetes mellitus, OGLA oral glucose-lowering agents, WC Waist circumference, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, TG Triglyceride, TC total cholesterol, HDL-c high-density lipoprotein cholesterol, LDL-c low-density lipoprotein cholesterol, AHI apnea hypopnea index, OSA obstructive sleep apnea syndrome, LAP Lipid accumulation product

Association of LAP with OSA

Multivariate logistic regression analyses were performed to show the independent association of LAP with OSA (Table 2). In model 1 without any adjustment, the adjusted OR (95% CI) of per SD increase of LAP for OSA was1.520 (1.159–1.995, p = 0.003). In model 2 and model 3 with the same adjustments as those in multivariable linear regression analyses, the association of LAP with OSA was still statistically significant, with the adjusted OR (95%CI) of per SD increase of LAP of 1.752 (1.273–2.413, p = 0.001) and 1.639 (1.032–2.604, p = 0.036), respectively. Additional multivariate logistic regression analyses were also performed to show the independent associations of OSA with the two constitutes of LAP (TG and WC). In the full models (models 3) with adjustment for potential confounding factors, neither TG nor WC was significantly associated with OSA; and the adjusted ORs (95%CI) were 1.352 (0.876–2.085) and 1.038 (0.989–1.090) (both p-values > 0.05). AIC were 382.0, 381.1 and 379.7 for TG, WC and LAP in model 3, respectively.
Further, ROC analysis was used to determine the suggested cutoff values of LAP for moderate-severe OSA. The area under the ROC curve (AUROC) (95%CI) for LAP was 0.631 (0.569–0.693, p < 0.001). The best cut-off points of LAP to detect moderate-severe OSA was 40.77 (Youden’s index = 0.254) (Fig. 2).

Discussion

In the current study, we found that the prevalence rates of OSA were 63.0% for men, and 68.4% for women in this diabetic patient’scohort. LAP was significantly correlated with AHI. Furthermore, LAP was significantly associated with OSA after adjusting for potential confounding factors in both linear regression and logistic regression analyses. However, with adjustment for same confounding factors, as constituents of LAP, neither TG nor WC was significantly associated with AHI and OSA. Our results indicated that LAP was independently associated with the risk of OSA.
There is a bidirectional association between OSA and T2DM [4, 26]. OSA is characterized by the intermittent hypoxemia through repeated upper airway collapse. The repeated episodes of obstructive apnea and hypopnea would lead to metabolic disorders such as insulin resistance, impairment of glucose tolerance and development of T2DM [14], which eventually lead to diabetes and cardiovascular disease [27, 28]. A recent meta-analysis of nine longitudinal cohort studies included 64,101 participants from various geographic regions, with a follow-up duration between 2.7 and 16 years, revealed that OSA is associated with incident diabetes, with an adjusted pooled relative risk of 1.35 [4]. Conversely, individuals with diabetes also increase the risk of developing OSA. In a population-based study including three ongoing prospective U.S. cohorts, the researchers observed a 43% higher OSA risk among individuals with diabetes after adjusting for adiposity [26]. In another study, T2DM have an almost 50% increase in risk of developing OSA compared with patients without T2DM, independent of potential confounders and traditional OSA risk factors [29]. Overweight / obesity is one of important causative factors of both OSA and T2DM, and shared the risk factors for both OSA and T2DM [30].
In terms of AHI and insulin resistance, the severity of OSA is both associated with visceral obesity rather than BMI [31]. Similarly, visceral fat has been associated with increased risk of OSA in those with T2DM [32]. In type 2 diabetic patients with poor diabetic control, OSA is highly prevalent and related to abdominal obesity [33]. A recent cross-sectional study indicated that high value of either WC or waist-to-height ratio is associated with the presence and severity of OSA [34]. Magnetic resonance imaging (MRI) and computed tomography (CT) are the gold standards we know for measuring visceral fat. It is difficult to be widely used because of its high cost [35]. LAP is a simple indicator thatrequires only the serum triglycerides level and an anthropometric factor (WC), which can accurately differentiate between visceral adiposity and subcutaneousadiposity by describing over accumulation of fat mass [36]. Previous studies reveal LAP is often used to predict and identify diseases such as diabetes, metabolism syndrome, polycystic ovary syndrome and CVD [16, 19, 3739]. A recent large cross-sectional study shows that LAP has a modest effect in screening OSA [21]. BMI is extensively used as the generally marker of global adiposity. However, in the current study after adjusting for potential confounding factors, even BMI, we found that LAP was still independently associated the risk of OSA in patients with T2DM. There may be several potential mechanisms for LAP in association with the risk of OSA. Firstly, comparing with the other surrogates such as TG/HDL-C ratio, visceral adiposity index (VAI), TG, fasting glucose (TyG) index, LAP had better association with insulin-stimulated glucose disposal and higher ability to detect insulin resistance with insulin sensitivity assessed by hyperinsulinemic euglycemic clamp [40]; Secondly, longitudinal trajectories of LAP, which reflect the efficacy of patients’ lipid-lowering treatment and lifestyle improvement, has an independent effect on 5-year T2DM incidence beyond LAP measured at baseline [18].
There are some limitations in the present study. First, this is a cross-sectionalstudyand no causal relationship can be drawn. Further prospectivecohort studies are needed to confirm the precise relationship between LAP and OSA in T2DM patients. Second, the sample size of studywas relatively smalland we might not have sufficient power. Third, the participants of our study come from the hospitalized patients with poor controlled glycemia, which cannot represent the general population.

Conclusion

In conclusion, we found that LAP, a combination index of waist circumference and triglycerides, is independently associated with OSA, even with adjustment for BMI and other potential confounding factors, and therefore could be used as a potential OSA risk marker in T2DM patients, beyond the general index of obesity.

Acknowledgements

We are grateful to all the patients for their participation.
The study was approved by the institutional review board in accordance with the ethical standards established by ethics committee of the First Affiliated Hospital of Xiamen University. Written informed consent was obtained from all participants.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Lee W, Nagubadi S, Kryger MH, Mokhlesi B. Epidemiology of obstructive sleep apnea: a population-based perspective. Expert Rev Respir Med. 2008;2(3):349–64 PMID: 19690624.CrossRef Lee W, Nagubadi S, Kryger MH, Mokhlesi B. Epidemiology of obstructive sleep apnea: a population-based perspective. Expert Rev Respir Med. 2008;2(3):349–64 PMID: 19690624.CrossRef
2.
Zurück zum Zitat Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328:1230–5 PMID: 8464434.CrossRef Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328:1230–5 PMID: 8464434.CrossRef
4.
Zurück zum Zitat Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, Mooser V, Preisig M, Malhotra A, Waeber G, Vollenweider P, Tafti M, Haba-Rubio J. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med. 2015;3(4):310–8 PMID: 25682233.CrossRef Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, Mooser V, Preisig M, Malhotra A, Waeber G, Vollenweider P, Tafti M, Haba-Rubio J. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med. 2015;3(4):310–8 PMID: 25682233.CrossRef
5.
Zurück zum Zitat Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, Harrod CG. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017;13(3):479–504 PMID: 28162150.CrossRef Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, Harrod CG. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017;13(3):479–504 PMID: 28162150.CrossRef
7.
Zurück zum Zitat Çetin N, Güneş Tatar İ, Yüceege M, Ergun O, Hekimoğlu B. Ultrasonographic evaluation of abdominal wall fat index, carotid intima-media thickness and plaque score in obstructive sleep apnea syndrome. Med Ultrason. Med Ultrason. 2019;21(4):422–6 PMID: 31765450.CrossRef Çetin N, Güneş Tatar İ, Yüceege M, Ergun O, Hekimoğlu B. Ultrasonographic evaluation of abdominal wall fat index, carotid intima-media thickness and plaque score in obstructive sleep apnea syndrome. Med Ultrason. Med Ultrason. 2019;21(4):422–6 PMID: 31765450.CrossRef
8.
Zurück zum Zitat Peppard PE, Young T, Palta M, et al. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000;284:3015–21 PMID: 11122588.CrossRef Peppard PE, Young T, Palta M, et al. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000;284:3015–21 PMID: 11122588.CrossRef
9.
Zurück zum Zitat Singh P, Somers VK. Obstructive sleep apnea, diabetes, and obesity: partners in crime? Sleep Med. 2016;25:162–3 PMID: 27567164.CrossRef Singh P, Somers VK. Obstructive sleep apnea, diabetes, and obesity: partners in crime? Sleep Med. 2016;25:162–3 PMID: 27567164.CrossRef
10.
Zurück zum Zitat Keskin A, Unalacak M, Bilge U, Yildiz P, Guler S, Selcuk EB, Bilgin M. Effects of Sleep Disorders on Hemoglobin A1c Levels in Type 2 Diabetic Patients. Chin Med J (Engl). 2015;128(24):3292–7 PMID: 26668142.CrossRef Keskin A, Unalacak M, Bilge U, Yildiz P, Guler S, Selcuk EB, Bilgin M. Effects of Sleep Disorders on Hemoglobin A1c Levels in Type 2 Diabetic Patients. Chin Med J (Engl). 2015;128(24):3292–7 PMID: 26668142.CrossRef
11.
Zurück zum Zitat Mok Y, Tan CW, Wong HS, How CH, Tan KL, Hsu PP. Obstructive sleep apnoea and Type 2 diabetes mellitus: are they connected? Singapore Med J. 2017;58(4):179–83 PMID: 28429032.CrossRef Mok Y, Tan CW, Wong HS, How CH, Tan KL, Hsu PP. Obstructive sleep apnoea and Type 2 diabetes mellitus: are they connected? Singapore Med J. 2017;58(4):179–83 PMID: 28429032.CrossRef
12.
Zurück zum Zitat Katsumata K, Okada T, Miyao M, Katsumata Y. High incidence of sleep apnea syndrome in a male diabetic population. Diabetes Res Clin Pract. 1991;13:45–52 PMID: 1773713.CrossRef Katsumata K, Okada T, Miyao M, Katsumata Y. High incidence of sleep apnea syndrome in a male diabetic population. Diabetes Res Clin Pract. 1991;13:45–52 PMID: 1773713.CrossRef
13.
Zurück zum Zitat Rajan P, Greenberg H. Obstructive sleep apnea as a risk factor for type 2 diabetes mellitus. Nat Sci Sleep. 2015;7:113–25 PMID: 26491377.PubMedPubMedCentral Rajan P, Greenberg H. Obstructive sleep apnea as a risk factor for type 2 diabetes mellitus. Nat Sci Sleep. 2015;7:113–25 PMID: 26491377.PubMedPubMedCentral
14.
Zurück zum Zitat Nagayoshi M, Punjabi NM, Selvin E, Pankow JS, Shahar E, Iso H, Folsom AR, Lutsey PL. Obstructive sleep apnea and incident type 2 diabetes. Sleep Med. 2016;25:156–61 PMID: 27810258.CrossRef Nagayoshi M, Punjabi NM, Selvin E, Pankow JS, Shahar E, Iso H, Folsom AR, Lutsey PL. Obstructive sleep apnea and incident type 2 diabetes. Sleep Med. 2016;25:156–61 PMID: 27810258.CrossRef
15.
Zurück zum Zitat Soylu AC, Levent E, Sariman N, Yurtlu S, Alparslan S, Saygi A. Obstructive sleep apnea syndrome and anthropometric obesity indexes. Sleep Breath. 2012;16(4):1151–8 PMID: 22139137.CrossRef Soylu AC, Levent E, Sariman N, Yurtlu S, Alparslan S, Saygi A. Obstructive sleep apnea syndrome and anthropometric obesity indexes. Sleep Breath. 2012;16(4):1151–8 PMID: 22139137.CrossRef
17.
Zurück zum Zitat Xia C, Li R, Zhang S, Gong L, Ren W, Wang Z, Li Q. Lipid accumulation product is a powerful index for recognizing insulin resistance in non-diabetic individuals. Eur J Clin Nutr. 2012;66(9):1035–8 PMID: 22781025.CrossRef Xia C, Li R, Zhang S, Gong L, Ren W, Wang Z, Li Q. Lipid accumulation product is a powerful index for recognizing insulin resistance in non-diabetic individuals. Eur J Clin Nutr. 2012;66(9):1035–8 PMID: 22781025.CrossRef
20.
Zurück zum Zitat Wu J, Zhong Y, Yue S, Guan P, Zhang G, Liu L, Chen L. Association between lipid accumulation product and diabetic retinopathy based on a community-based survey in Chinese with type 2 diabetes. Diabetes Metab Syndr Obes. 2019;12:513–8 PMID: 31114279.CrossRef Wu J, Zhong Y, Yue S, Guan P, Zhang G, Liu L, Chen L. Association between lipid accumulation product and diabetic retinopathy based on a community-based survey in Chinese with type 2 diabetes. Diabetes Metab Syndr Obes. 2019;12:513–8 PMID: 31114279.CrossRef
21.
Zurück zum Zitat Zou J, Wang Y, Xu H, Xia Y, Qian Y, Zou J, Guan J, Chen B, Yi H, Yin S. The use of visceral adiposity variables in the prediction of obstructive sleep apnea: evidence from a large cross-sectional study. Sleep Breath. 2019. https://doi.org/10.1007/s11325-019-01980-7 PMID: 31832983. Zou J, Wang Y, Xu H, Xia Y, Qian Y, Zou J, Guan J, Chen B, Yi H, Yin S. The use of visceral adiposity variables in the prediction of obstructive sleep apnea: evidence from a large cross-sectional study. Sleep Breath. 2019. https://​doi.​org/​10.​1007/​s11325-019-01980-7 PMID: 31832983.
22.
Zurück zum Zitat Isono S. Obesity and obstructive sleep apnoea: mechanisms for increased collapsibility of the passive pharyngeal airway. Respirology. 2012;17(1):32–42 PMID: 22023094.CrossRef Isono S. Obesity and obstructive sleep apnoea: mechanisms for increased collapsibility of the passive pharyngeal airway. Respirology. 2012;17(1):32–42 PMID: 22023094.CrossRef
23.
Zurück zum Zitat Kuvat N, Tanriverdi H, Armutcu F. The relationship between obstructive sleep apnea syndrome and obesity: a new perspective on the pathogenesis in terms of organ crosstalk. Clin Respir J. 2020;14(7):595–604 PMID: 32112481.CrossRef Kuvat N, Tanriverdi H, Armutcu F. The relationship between obstructive sleep apnea syndrome and obesity: a new perspective on the pathogenesis in terms of organ crosstalk. Clin Respir J. 2020;14(7):595–604 PMID: 32112481.CrossRef
24.
Zurück zum Zitat Du C, He C, Dong L, Zheng S, Wang W, Zheng C, Wang S, Lin M, Yang S, Li X, et al. Associations of apnea hypopnea index and educational attainments with microvascular complications in patients with T2DM. Endocrine. 2020;67(2):363–73 PMID: 31927752.CrossRef Du C, He C, Dong L, Zheng S, Wang W, Zheng C, Wang S, Lin M, Yang S, Li X, et al. Associations of apnea hypopnea index and educational attainments with microvascular complications in patients with T2DM. Endocrine. 2020;67(2):363–73 PMID: 31927752.CrossRef
25.
Zurück zum Zitat Ikeda Y, Kasai T, Kawana F, Kasagi S, Takaya H, Ishiwata S, Narui K. Comparison between the apnea-hypopnea indices determined by the REMstar Auto M series and those determined by standard in-laboratory polysomnography in patients with obstructive sleep apnea. Intern Med. 2012;51((20):2877–85 PMID: 23064561.CrossRef Ikeda Y, Kasai T, Kawana F, Kasagi S, Takaya H, Ishiwata S, Narui K. Comparison between the apnea-hypopnea indices determined by the REMstar Auto M series and those determined by standard in-laboratory polysomnography in patients with obstructive sleep apnea. Intern Med. 2012;51((20):2877–85 PMID: 23064561.CrossRef
26.
Zurück zum Zitat Huang T, Lin BM, Stampfer MJ, Tworoger SS, Hu FB, Redline S. A Population-Based Study of the Bidirectional Association Between Obstructive Sleep Apnea and Type 2 Diabetes in Three Prospective U.S. Cohorts. Diabetes Care. 2018;41(10):2111–9 PMID: 30072403.CrossRef Huang T, Lin BM, Stampfer MJ, Tworoger SS, Hu FB, Redline S. A Population-Based Study of the Bidirectional Association Between Obstructive Sleep Apnea and Type 2 Diabetes in Three Prospective U.S. Cohorts. Diabetes Care. 2018;41(10):2111–9 PMID: 30072403.CrossRef
27.
Zurück zum Zitat Shaw JE, Punjabi NM, Wilding JP, Alberti KG, Zimmet PZ, International Diabetes Federation Taskforce on Epidemiology and Prevention. Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res Clin Pract. 2008;81(1):2–12 PMID: 18544448.CrossRef Shaw JE, Punjabi NM, Wilding JP, Alberti KG, Zimmet PZ, International Diabetes Federation Taskforce on Epidemiology and Prevention. Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res Clin Pract. 2008;81(1):2–12 PMID: 18544448.CrossRef
28.
Zurück zum Zitat McArdle N, Hillman D, Beilin L, Watts G. Metabolic risk factors for vascular disease in obstructive sleep apnea: a matched controlled study. Am J Respir Crit Care Med. 2007;175(2):190–5 PMID: 17068329.CrossRef McArdle N, Hillman D, Beilin L, Watts G. Metabolic risk factors for vascular disease in obstructive sleep apnea: a matched controlled study. Am J Respir Crit Care Med. 2007;175(2):190–5 PMID: 17068329.CrossRef
29.
Zurück zum Zitat Subramanian A, Adderley NJ, Tracy A, Taverner T, Hanif W, Toulis KA, Thomas GN, Tahrani AA, Nirantharakumar K. Risk of Incident Obstructive Sleep Apnea Among Patients With Type 2 Diabetes. Diabetes Care. 2019;42(5):954–63 PMID: 30862657.CrossRef Subramanian A, Adderley NJ, Tracy A, Taverner T, Hanif W, Toulis KA, Thomas GN, Tahrani AA, Nirantharakumar K. Risk of Incident Obstructive Sleep Apnea Among Patients With Type 2 Diabetes. Diabetes Care. 2019;42(5):954–63 PMID: 30862657.CrossRef
30.
Zurück zum Zitat Jehan S, Myers AK, Zizi F, Pandi-Perumal SR, Jean-Louis G, McFarlane SI. Obesity, obstructive sleep apnea and type 2 diabetes mellitus: Epidemiology and pathophysiologic insights. Sleep Med Disord. 2018;2(3):52–8 PMID: 30167574.PubMedPubMedCentral Jehan S, Myers AK, Zizi F, Pandi-Perumal SR, Jean-Louis G, McFarlane SI. Obesity, obstructive sleep apnea and type 2 diabetes mellitus: Epidemiology and pathophysiologic insights. Sleep Med Disord. 2018;2(3):52–8 PMID: 30167574.PubMedPubMedCentral
31.
Zurück zum Zitat Bozkurt NC, Beysel S, Karbek B, Unsal IO, Cakir E, Delibasi T. Visceral obesity mediates the association between metabolic syndrome and obstructive sleep apnea syndrome. Metab Syndr Relat Disord. 2016;14(4):217–21 PMID: 27003688.CrossRef Bozkurt NC, Beysel S, Karbek B, Unsal IO, Cakir E, Delibasi T. Visceral obesity mediates the association between metabolic syndrome and obstructive sleep apnea syndrome. Metab Syndr Relat Disord. 2016;14(4):217–21 PMID: 27003688.CrossRef
32.
Zurück zum Zitat Vgontzas AN, Papanicolaou DA, Bixler EO, Hopper K, Lotsikas A, Lin HM, Kales A, Chrousos GP. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab. 2000;85(3):1151–8 PMID: 10720054.CrossRef Vgontzas AN, Papanicolaou DA, Bixler EO, Hopper K, Lotsikas A, Lin HM, Kales A, Chrousos GP. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab. 2000;85(3):1151–8 PMID: 10720054.CrossRef
33.
Zurück zum Zitat Laaban JP, Daenen S, Leger D, Pascal S, Bayon V, Slama G, Elgrably F. Prevalence and predictive factors of sleep apnoea syndrome in type 2 diabetic patients. Diabetes Metab. 2009;35(5):372–7 PMID: 19683953.CrossRef Laaban JP, Daenen S, Leger D, Pascal S, Bayon V, Slama G, Elgrably F. Prevalence and predictive factors of sleep apnoea syndrome in type 2 diabetic patients. Diabetes Metab. 2009;35(5):372–7 PMID: 19683953.CrossRef
34.
Zurück zum Zitat Unal Y, Ozturk DA, Tosun K, Kutlu G. Association between obstructive sleep apnea syndrome and waist-to-height ratio. Sleep Breath. 2019;23(2):523–9 PMID: 30238284.CrossRef Unal Y, Ozturk DA, Tosun K, Kutlu G. Association between obstructive sleep apnea syndrome and waist-to-height ratio. Sleep Breath. 2019;23(2):523–9 PMID: 30238284.CrossRef
35.
Zurück zum Zitat Wang H, Sun Y, Wang S, Qian H, Jia P, Chen Y, Li Z, Zhang L. Body adiposity index, lipid accumulation product, and cardiometabolic index reveal the contribution of adiposity phenotypes in the risk of hyperuricemia among Chinese rural population. Clin Rheumatol. 2018;37(8):2221–31 PMID: 29770928.CrossRef Wang H, Sun Y, Wang S, Qian H, Jia P, Chen Y, Li Z, Zhang L. Body adiposity index, lipid accumulation product, and cardiometabolic index reveal the contribution of adiposity phenotypes in the risk of hyperuricemia among Chinese rural population. Clin Rheumatol. 2018;37(8):2221–31 PMID: 29770928.CrossRef
37.
Zurück zum Zitat Kahn HS. The Lipid Accumulation Product Is Better Than BMI for Identifying Diabetes:A population-based comparison. Diabetes Care. 2006;29:151–3 PMID: 16373916.CrossRef Kahn HS. The Lipid Accumulation Product Is Better Than BMI for Identifying Diabetes:A population-based comparison. Diabetes Care. 2006;29:151–3 PMID: 16373916.CrossRef
38.
Zurück zum Zitat Ioachimescu AG, Brennan DM, Hoar BM, Hoogwerf BJ. The lipid accumulation product and all-cause mortality in patients at high cardiovascular risk: a PreCIS database study. Obesity (Silver Spring). 2010;18(9):1836–44 PMID: 20035284.CrossRef Ioachimescu AG, Brennan DM, Hoar BM, Hoogwerf BJ. The lipid accumulation product and all-cause mortality in patients at high cardiovascular risk: a PreCIS database study. Obesity (Silver Spring). 2010;18(9):1836–44 PMID: 20035284.CrossRef
39.
Zurück zum Zitat Tola EN, Yalcin SE, Dugan N. The predictive effect of inflammatory markers and lipid accumulation product index on clinical symptoms associated with polycystic ovary syndrome in nonobese adolescents and younger aged women. Eur J Obstet Gynecol Reprod Biol. 2017;214:168–72 PMID: 28535403.CrossRef Tola EN, Yalcin SE, Dugan N. The predictive effect of inflammatory markers and lipid accumulation product index on clinical symptoms associated with polycystic ovary syndrome in nonobese adolescents and younger aged women. Eur J Obstet Gynecol Reprod Biol. 2017;214:168–72 PMID: 28535403.CrossRef
Metadaten
Titel
Lipid accumulation product (LAP) was independently associated with obstructive sleep apnea in patients with type 2 diabetes mellitus
verfasst von
Lianqin Dong
Mingzhu Lin
Wengui Wang
Danyan Ma
Yun Chen
Weijuan Su
Zheng Chen
Shunhua Wang
Xuejun Li
Zhibin Li
Changqin Liu
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Endocrine Disorders / Ausgabe 1/2020
Elektronische ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-020-00661-x

Weitere Artikel der Ausgabe 1/2020

BMC Endocrine Disorders 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.