Skip to main content
Erschienen in: Heart and Vessels 7/2020

01.07.2020 | Original Article

Lipocalin-2 exerts pro-atherosclerotic effects as evidenced by in vitro and in vivo experiments

verfasst von: Koichiro Shibata, Kengo Sato, Remina Shirai, Tomomi Seki, Taisuke Okano, Tomoyuki Yamashita, Ayaka Koide, Mutsumi Mitsuboshi, Yusaku Mori, Tsutomu Hirano, Takuya Watanabe

Erschienen in: Heart and Vessels | Ausgabe 7/2020

Einloggen, um Zugang zu erhalten

Abstract

Lipocalin-2 (LCN2), a multiple bioactive hormone particularly expressed in adipose tissue, neutrophils, and macrophages, is known to exhibit anti-microbial effect, increase inflammatory cytokine levels, and maintain glucose homeostasis. Serum LCN2 level is positively correlated with the severity of coronary artery disease. However, it still remains unknown whether LCN2 affects atherogenesis. We assessed the effects of LCN2 on the inflammatory response and monocyte adhesion in human umbilical vein endothelial cells (HUVECs), inflammatory phenotype and foam cell formation in THP1 monocyte-derived macrophages, and migration and proliferation of human aortic smooth muscle cells (HASMCs) in vitro and aortic lesions in Apoe−/− mice in vivo. LCN2 and its receptor, low-density lipoprotein (LDL)-related protein-2, were expressed in THP1 monocytes, macrophages, HASMCs, and HUVECs. LCN2 significantly enhanced THP1 monocyte adhesion to HUVECs accompanied with upregulation of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin associated with nuclear factor-κB (NF-κB) upregulation in HUVECs. LCN2 significantly increased HUVEC proliferation and oxidized LDL-induced foam cell formation in THP1 monocyte-derived macrophages. LCN2 significantly increased the inflammatory M1 phenotype associated with NF-κB upregulation during differentiation of THP1 monocytes into macrophages. In HASMCs, LCN2 significantly promoted the migration and collagen-1 expression without inducing proliferation, which are associated with increased protein expression of phosphoinositide 3-kinase and phosphorylation of Akt, extracellular signal-regulated kinase, c-jun-N-terminal kinase, and NF-κB. Chronic LCN2 infusion into Apoe−/− mice significantly accelerated the development of aortic atherosclerotic lesions, with increased intraplaque monocyte/macrophage infiltration and pentraxin-3 and collagen-1 expressions. Our results suggested that LCN2 accelerates the development of atherosclerosis. Thus, LCN2 could serve as a novel therapeutic target for atherosclerotic diseases.
Literatur
1.
Zurück zum Zitat Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6:508–519PubMed Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6:508–519PubMed
2.
Zurück zum Zitat Sato K, Yoshizawa H, Seki T, Shirai R, Okano T, Shibata K, Wakamatsu MJ, Mori Y, Morita T, Matsuyama T, Ishibashi-Ueda H, Hirano T, Watanabe T (2019) Chemerin-9, a potent agonist of chemerin receptor (ChemR23), prevents atherogenesis. Clin Sci 133:1779–1796PubMed Sato K, Yoshizawa H, Seki T, Shirai R, Okano T, Shibata K, Wakamatsu MJ, Mori Y, Morita T, Matsuyama T, Ishibashi-Ueda H, Hirano T, Watanabe T (2019) Chemerin-9, a potent agonist of chemerin receptor (ChemR23), prevents atherogenesis. Clin Sci 133:1779–1796PubMed
3.
Zurück zum Zitat Yu XH, Fu YC, Zhang DW, Yin K, Tang CK (2013) Foam cells in atherosclerosis. ClinChim Acta 424:245–252 Yu XH, Fu YC, Zhang DW, Yin K, Tang CK (2013) Foam cells in atherosclerosis. ClinChim Acta 424:245–252
4.
Zurück zum Zitat Ghattas A, Griffiths HR, Devitt A, Lip GY, Shantsila E (2013) Monocytes in coronary artery disease and atherosclerosis: where are we now? J Am Coll Cardiol 62:1541–1551PubMed Ghattas A, Griffiths HR, Devitt A, Lip GY, Shantsila E (2013) Monocytes in coronary artery disease and atherosclerosis: where are we now? J Am Coll Cardiol 62:1541–1551PubMed
5.
Zurück zum Zitat Obikane H, Abiko Y, Ueno H, Kusumi Y, Esumi M, Mitsumata M (2010) Effect of endothelial cell proliferation on atherogenesis: a role of p21Sdi/Cip/Waf1in monocyte adhesion to endothelial cells. Atherosclerosis 212:116–122PubMed Obikane H, Abiko Y, Ueno H, Kusumi Y, Esumi M, Mitsumata M (2010) Effect of endothelial cell proliferation on atherogenesis: a role of p21Sdi/Cip/Waf1in monocyte adhesion to endothelial cells. Atherosclerosis 212:116–122PubMed
6.
Zurück zum Zitat Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J BiolChem 268:10425–10432 Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J BiolChem 268:10425–10432
7.
Zurück zum Zitat Chakraborty S, Kaur S, Guha S, Batra SK (2012) The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta 1826:129–169PubMedPubMedCentral Chakraborty S, Kaur S, Guha S, Batra SK (2012) The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta 1826:129–169PubMedPubMedCentral
8.
Zurück zum Zitat Devireddy LR, Gazin C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123:1293–1305PubMed Devireddy LR, Gazin C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123:1293–1305PubMed
9.
Zurück zum Zitat Bu DX, Hemdahl AL, Gabrielsen A, Fuxe J, Zhu C, Eriksson P, Yan ZQ (2006) Induction of neutrophil gelatinase-associated lipocalin in vascular injury via activation of nuclear factor-kappaB. Am J Pathol 169:2245–2254PubMedPubMedCentral Bu DX, Hemdahl AL, Gabrielsen A, Fuxe J, Zhu C, Eriksson P, Yan ZQ (2006) Induction of neutrophil gelatinase-associated lipocalin in vascular injury via activation of nuclear factor-kappaB. Am J Pathol 169:2245–2254PubMedPubMedCentral
10.
Zurück zum Zitat teBoekhorst BC, Bovens SM, Hellings WE, van der Kraak PH, van de Kolk KW, Vink A, Moll FL, van Oosterhout MF, de Vries JP, Doevendans PA, Goumans MJ, de Kleijn DP, van Echteld CJ, Pasterkamp G, Sluijter JP (2011) Molecular MRI of murine atherosclerotic plaque targeting NGAL: a protein associated with unstable human plaque characteristics. Cardiovasc Res 89:680–688 teBoekhorst BC, Bovens SM, Hellings WE, van der Kraak PH, van de Kolk KW, Vink A, Moll FL, van Oosterhout MF, de Vries JP, Doevendans PA, Goumans MJ, de Kleijn DP, van Echteld CJ, Pasterkamp G, Sluijter JP (2011) Molecular MRI of murine atherosclerotic plaque targeting NGAL: a protein associated with unstable human plaque characteristics. Cardiovasc Res 89:680–688
11.
Zurück zum Zitat Hemdahl AL, Gabrielsen A, Zhu C, Eriksson P, Hedin U, Kastrup J, Thorén P, Hansson GK (2006) Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction. ArteriosclerThrombVascBiol 26:136–142 Hemdahl AL, Gabrielsen A, Zhu C, Eriksson P, Hedin U, Kastrup J, Thorén P, Hansson GK (2006) Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction. ArteriosclerThrombVascBiol 26:136–142
12.
Zurück zum Zitat Llorente-Cortés V, Otero-Viñas M, Sánchez S, Rodríguez C, Badimon L (2002) Low-density lipoprotein upregulates low-density lipoprotein receptor-relatedproteinexpressionin vascular smooth muscle cells: possible involvement of sterol regulatory element binding protein-2-dependent mechanism. Circulation 106:3104–3110PubMed Llorente-Cortés V, Otero-Viñas M, Sánchez S, Rodríguez C, Badimon L (2002) Low-density lipoprotein upregulates low-density lipoprotein receptor-relatedproteinexpressionin vascular smooth muscle cells: possible involvement of sterol regulatory element binding protein-2-dependent mechanism. Circulation 106:3104–3110PubMed
13.
Zurück zum Zitat Zhang Y, Foncea R, Deis JA, Guo H, Bernlohr DA, Chen X (2014) Lipocalin 2 expression and secretion ishighly regulated by metabolic stress, cytokines, and nutrients in adipocytes. PLoS ONE 9:e96997PubMedPubMedCentral Zhang Y, Foncea R, Deis JA, Guo H, Bernlohr DA, Chen X (2014) Lipocalin 2 expression and secretion ishighly regulated by metabolic stress, cytokines, and nutrients in adipocytes. PLoS ONE 9:e96997PubMedPubMedCentral
14.
Zurück zum Zitat Cowland JB, Sørensen OE, Sehested M, Borregaard N (2003) Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1β, but not by TNF-α. J Immunol 171:6630–6639PubMed Cowland JB, Sørensen OE, Sehested M, Borregaard N (2003) Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1β, but not by TNF-α. J Immunol 171:6630–6639PubMed
15.
Zurück zum Zitat Oberoi R, Bogalle EP, Matthes LA, Schuett H, Koch AK, Grote K, Schieffer B, Schuett J, Luchtefeld M (2015) Lipocalin (LCN) 2 mediates pro-atherosclerotic processes and is elevated in patients with coronary artery disease. PLoS ONE 10:e0137924PubMedPubMedCentral Oberoi R, Bogalle EP, Matthes LA, Schuett H, Koch AK, Grote K, Schieffer B, Schuett J, Luchtefeld M (2015) Lipocalin (LCN) 2 mediates pro-atherosclerotic processes and is elevated in patients with coronary artery disease. PLoS ONE 10:e0137924PubMedPubMedCentral
16.
Zurück zum Zitat Katagiri M, Takahashi M, Doi K, Myojo M, Kiyosue A, Ando J, Hirata Y, Komuro I (2016) Serum neutrophil gelatinase-associated lipocalin concentration reflects severity of coronary artery disease in patients without heart failure and chronic kidney disease. Heart Vessels 31:1595–1602PubMed Katagiri M, Takahashi M, Doi K, Myojo M, Kiyosue A, Ando J, Hirata Y, Komuro I (2016) Serum neutrophil gelatinase-associated lipocalin concentration reflects severity of coronary artery disease in patients without heart failure and chronic kidney disease. Heart Vessels 31:1595–1602PubMed
17.
Zurück zum Zitat Eilenberg W, Stojkovic S, Piechota-Polanczyk A, Kaun C, Rauscher S, Gröger M, Klinger M, Wojta J, Neumayer C, Huk I, Demyanets S (2016) Neutrophil gelatinase-associated lipocalin (NGAL) is associated with symptomatic carotid atherosclerosis and drives pro-inflammatory state in vitro. Eur J VascEndovascSurg 51:623–631 Eilenberg W, Stojkovic S, Piechota-Polanczyk A, Kaun C, Rauscher S, Gröger M, Klinger M, Wojta J, Neumayer C, Huk I, Demyanets S (2016) Neutrophil gelatinase-associated lipocalin (NGAL) is associated with symptomatic carotid atherosclerosis and drives pro-inflammatory state in vitro. Eur J VascEndovascSurg 51:623–631
18.
Zurück zum Zitat Wang G, Ma N, Meng L, Wei Y, Gui J (2015) Activation of the phosphatidylinositol 3-kinase/Akt pathway is involved in lipocalin-2-promoted human pulmonary artery smooth muscle cell proliferation. Mol Cell Biochem 410:207–213PubMed Wang G, Ma N, Meng L, Wei Y, Gui J (2015) Activation of the phosphatidylinositol 3-kinase/Akt pathway is involved in lipocalin-2-promoted human pulmonary artery smooth muscle cell proliferation. Mol Cell Biochem 410:207–213PubMed
19.
Zurück zum Zitat Amersfoort J, Schaftenaar FH, Douna H, van Santbrink PJ, Kröner MJ, van Puijvelde GHM, Quax PHA, Kuiper J, Bot I (2018) Lipocalin-2 contributes to experimental atherosclerosis in a stage-dependent manner. Atherosclerosis 275:214–224PubMed Amersfoort J, Schaftenaar FH, Douna H, van Santbrink PJ, Kröner MJ, van Puijvelde GHM, Quax PHA, Kuiper J, Bot I (2018) Lipocalin-2 contributes to experimental atherosclerosis in a stage-dependent manner. Atherosclerosis 275:214–224PubMed
20.
Zurück zum Zitat Chen L, Zheng J, Xue Q, Zhao Y (2019) YKL-40 promotes the progress of atherosclerosis independent of lipid metabolism in apolipoprotein E−/− mice fed a high-fat diet. Heart Vessels 34:1874–1881PubMed Chen L, Zheng J, Xue Q, Zhao Y (2019) YKL-40 promotes the progress of atherosclerosis independent of lipid metabolism in apolipoprotein E−/− mice fed a high-fat diet. Heart Vessels 34:1874–1881PubMed
21.
Zurück zum Zitat Kojima M, Ozawa N, Mori Y, Takahashi Y, Watanabe-Kominato K, Shirai R, Watanabe R, Sato K, Matsuyama T, Ishibashi-Ueda H, Koba S, Kobayashi Y, Hirano T, Watanabe T (2018) Catestatin prevents macrophage-driven atherosclerosis but not arterial injury-induced neointimal hyperplasia. ThrombHaemost 118:182–194 Kojima M, Ozawa N, Mori Y, Takahashi Y, Watanabe-Kominato K, Shirai R, Watanabe R, Sato K, Matsuyama T, Ishibashi-Ueda H, Koba S, Kobayashi Y, Hirano T, Watanabe T (2018) Catestatin prevents macrophage-driven atherosclerosis but not arterial injury-induced neointimal hyperplasia. ThrombHaemost 118:182–194
22.
Zurück zum Zitat Takahashi Y, Watanabe R, Sato Y, Ozawa N, Kojima M, Watanabe-Kominato K, Shirai R, Sato K, Hirano T, Watanabe T (2018) Novel phytopeptideosmotin mimics preventive effects of adiponectin on vascular inflammation and atherosclerosis. Metabolism 83:128–138PubMed Takahashi Y, Watanabe R, Sato Y, Ozawa N, Kojima M, Watanabe-Kominato K, Shirai R, Sato K, Hirano T, Watanabe T (2018) Novel phytopeptideosmotin mimics preventive effects of adiponectin on vascular inflammation and atherosclerosis. Metabolism 83:128–138PubMed
23.
Zurück zum Zitat Sato Y, Watanabe R, Uchiyama N, Ozawa N, Takahashi Y, Shirai R, Sato K, Mori Y, Matsuyama T, Ishibashi-Ueda H, Hirano T, Watanabe T (2018) Inhibitory effects of vasostatin-1 against atherogenesis. Clin Sci (Lond) 132:2493–2507 Sato Y, Watanabe R, Uchiyama N, Ozawa N, Takahashi Y, Shirai R, Sato K, Mori Y, Matsuyama T, Ishibashi-Ueda H, Hirano T, Watanabe T (2018) Inhibitory effects of vasostatin-1 against atherogenesis. Clin Sci (Lond) 132:2493–2507
24.
Zurück zum Zitat Sato K, Yamashita T, Shirai R, Shibata K, Okano T, Yamaguchi M, Mori Y, Hirano T, Watanabe T (2018) Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. Int J Mol Sci 19:E1293PubMed Sato K, Yamashita T, Shirai R, Shibata K, Okano T, Yamaguchi M, Mori Y, Hirano T, Watanabe T (2018) Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. Int J Mol Sci 19:E1293PubMed
25.
Zurück zum Zitat Sato K, Shirai R, Yamaguchi M, Yamashita T, Shibata K, Okano T, Mori Y, Matsuyama T, Ishibashi-Ueda H, Hirano T, Watanabe T (2018) Anti-atherogenic effects of vaspin on human aortic smooth muscle cell/macrophage responses and hyperlipidemic mouse plaque phenotype. Int J Mol Sci 19:E1732PubMed Sato K, Shirai R, Yamaguchi M, Yamashita T, Shibata K, Okano T, Mori Y, Matsuyama T, Ishibashi-Ueda H, Hirano T, Watanabe T (2018) Anti-atherogenic effects of vaspin on human aortic smooth muscle cell/macrophage responses and hyperlipidemic mouse plaque phenotype. Int J Mol Sci 19:E1732PubMed
26.
Zurück zum Zitat Sato K, Shirai R, Hontani M, Shinooka R, Hasegawa A, Kichise T, Yamashita T, Yoshizawa H, Watanabe R, Matsuyama T, Ishibashi-Ueda H, Koba S, Kobayashi Y, Hirano T, Watanabe T (2017) Potent vasoconstrictor kisspeptin-10 induces atherosclerotic plaque progression and instability: reversal by its receptor GPR54 antagonist. J Am Heart Assoc 6:e005790PubMedPubMedCentral Sato K, Shirai R, Hontani M, Shinooka R, Hasegawa A, Kichise T, Yamashita T, Yoshizawa H, Watanabe R, Matsuyama T, Ishibashi-Ueda H, Koba S, Kobayashi Y, Hirano T, Watanabe T (2017) Potent vasoconstrictor kisspeptin-10 induces atherosclerotic plaque progression and instability: reversal by its receptor GPR54 antagonist. J Am Heart Assoc 6:e005790PubMedPubMedCentral
27.
Zurück zum Zitat Shirai R, Sato K, Yamashita T, Yamaguchi M, Okano T, Watanabe-Kominato K, Watanabe R, Matsuyama T, Ishibashi-Ueda H, Koba S, Kobayashi Y, Hirano T, Watanabe T (2018) Neopterin counters vascular inflammation and atherosclerosis. J Am Heart Assoc 7:e007359PubMedPubMedCentral Shirai R, Sato K, Yamashita T, Yamaguchi M, Okano T, Watanabe-Kominato K, Watanabe R, Matsuyama T, Ishibashi-Ueda H, Koba S, Kobayashi Y, Hirano T, Watanabe T (2018) Neopterin counters vascular inflammation and atherosclerosis. J Am Heart Assoc 7:e007359PubMedPubMedCentral
28.
Zurück zum Zitat Watanabe R, Watanabe H, Takahashi Y, Kojima M, Konii H, Watanabe K, Shirai R, Sato K, Matsuyama T, Ishibashi-Ueda H, Iso Y, Koba S, Kobayashi Y, Hirano T, Watanabe T (2016) Atheroprotective effects of tumor necrosis factor-stimulated gene-6. JACC Basic Transl Sci 1:494–509PubMedPubMedCentral Watanabe R, Watanabe H, Takahashi Y, Kojima M, Konii H, Watanabe K, Shirai R, Sato K, Matsuyama T, Ishibashi-Ueda H, Iso Y, Koba S, Kobayashi Y, Hirano T, Watanabe T (2016) Atheroprotective effects of tumor necrosis factor-stimulated gene-6. JACC Basic Transl Sci 1:494–509PubMedPubMedCentral
29.
Zurück zum Zitat Watanabe K, Watanabe R, Konii H, Shirai R, Sato K, Matsuyama T, Ishibashi-Ueda H, Koba S, Kobayashi Y, Hirano T, Watanabe T (2016) Counteractive effects of omentin-1 against atherogenesis. Cardiovasc Res 110:118–128PubMed Watanabe K, Watanabe R, Konii H, Shirai R, Sato K, Matsuyama T, Ishibashi-Ueda H, Koba S, Kobayashi Y, Hirano T, Watanabe T (2016) Counteractive effects of omentin-1 against atherogenesis. Cardiovasc Res 110:118–128PubMed
30.
Zurück zum Zitat Konii H, Sato K, Kikuchi S, Okiyama H, Watanabe R, Hasegawa A, Yamamoto K, Itoh F, Hirano T, Watanabe T (2013) Stimulatory effects of cardiotrophin 1 on atherosclerosis. Hypertension 62:942–950PubMed Konii H, Sato K, Kikuchi S, Okiyama H, Watanabe R, Hasegawa A, Yamamoto K, Itoh F, Hirano T, Watanabe T (2013) Stimulatory effects of cardiotrophin 1 on atherosclerosis. Hypertension 62:942–950PubMed
31.
Zurück zum Zitat Lee KP, Kim JE, Kim H, Chang HR, Lee DW, Park WH (2016) Bo–Gan–Whan regulates proliferation and migration of vascular smooth muscle cells. BMC Complement Altern Med 16:306PubMedPubMedCentral Lee KP, Kim JE, Kim H, Chang HR, Lee DW, Park WH (2016) Bo–Gan–Whan regulates proliferation and migration of vascular smooth muscle cells. BMC Complement Altern Med 16:306PubMedPubMedCentral
32.
Zurück zum Zitat Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, Barasch J, Devarajan P (2004) Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 15:3073–3082PubMed Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, Barasch J, Devarajan P (2004) Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 15:3073–3082PubMed
33.
Zurück zum Zitat Miharada K, Hiroyama T, Sudo K, Nagasawa T, Nakamura Y (2005) Lipocalin 2 functions as a negative regulator of red blood cell production in an autocrine fashion. FASEB J19:1881–1883 Miharada K, Hiroyama T, Sudo K, Nagasawa T, Nakamura Y (2005) Lipocalin 2 functions as a negative regulator of red blood cell production in an autocrine fashion. FASEB J19:1881–1883
34.
Zurück zum Zitat Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D’Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115:610–621PubMedPubMedCentral Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D’Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115:610–621PubMedPubMedCentral
35.
Zurück zum Zitat Yan QW, Yang Q, Mody N, Graham TE, Hsu CH, Xu Z, Houstis NE, Kahn BB, Rosen ED (2007) The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56:2533–2540PubMed Yan QW, Yang Q, Mody N, Graham TE, Hsu CH, Xu Z, Houstis NE, Kahn BB, Rosen ED (2007) The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56:2533–2540PubMed
36.
Zurück zum Zitat Song E, Fan P, Huang B, Deng HB, Cheung BM, Félétou M, Vilaine JP, Villeneuve N, Xu A, Vanhoutte PM, Wang Y (2014) Deamidated lipocalin-2 induces endothelial dysfunction and hypertension in dietary obese mice. J Am Heart Assoc 3:e000837PubMedPubMedCentral Song E, Fan P, Huang B, Deng HB, Cheung BM, Félétou M, Vilaine JP, Villeneuve N, Xu A, Vanhoutte PM, Wang Y (2014) Deamidated lipocalin-2 induces endothelial dysfunction and hypertension in dietary obese mice. J Am Heart Assoc 3:e000837PubMedPubMedCentral
37.
Zurück zum Zitat Law IK, Xu A, Lam KS, Berger T, Mak TW, Vanhoutte PM, Liu JT, Sweeney G, Zhou M, Yang B, Wang Y (2010) Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes 59:872–882PubMedPubMedCentral Law IK, Xu A, Lam KS, Berger T, Mak TW, Vanhoutte PM, Liu JT, Sweeney G, Zhou M, Yang B, Wang Y (2010) Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes 59:872–882PubMedPubMedCentral
38.
Zurück zum Zitat Liu JT, Song E, Xu A, Berger T, Mak TW, Tse HF, Law IK, Huang B, Liang Y, Vanhoutte PM, Wang Y (2012) Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition. Br J Pharmacol 165:520–531PubMedPubMedCentral Liu JT, Song E, Xu A, Berger T, Mak TW, Tse HF, Law IK, Huang B, Liang Y, Vanhoutte PM, Wang Y (2012) Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition. Br J Pharmacol 165:520–531PubMedPubMedCentral
39.
Zurück zum Zitat Marques FZ, Prestes PR, Byars SG, Ritchie SC, Würtz P, Patel SK, Booth SA, Rana I, Minoda Y, Berzins SP, Curl CL, Bell JR, Wai B, Srivastava PM, Kangas AJ, Soininen P, Ruohonen S, Kähönen M, Lehtimäki T, Raitoharju E, Havulinna A, Perola M, Raitakari O, Salomaa V, Ala-Korpela M, Kettunen J, McGlynn M, Kelly J, Wlodek ME, Lewandowski PA, Delbridge LM, Burrell LM, Inouye M, Harrap SB, Charchar FJ (2017) Experimental and human evidence for lipocalin-2 (neutrophil gelatinase-associated lipocalin [NGAL]) in the development of cardiac hypertrophy and heart failure. J Am Heart Assoc 6:e005971PubMedPubMedCentral Marques FZ, Prestes PR, Byars SG, Ritchie SC, Würtz P, Patel SK, Booth SA, Rana I, Minoda Y, Berzins SP, Curl CL, Bell JR, Wai B, Srivastava PM, Kangas AJ, Soininen P, Ruohonen S, Kähönen M, Lehtimäki T, Raitoharju E, Havulinna A, Perola M, Raitakari O, Salomaa V, Ala-Korpela M, Kettunen J, McGlynn M, Kelly J, Wlodek ME, Lewandowski PA, Delbridge LM, Burrell LM, Inouye M, Harrap SB, Charchar FJ (2017) Experimental and human evidence for lipocalin-2 (neutrophil gelatinase-associated lipocalin [NGAL]) in the development of cardiac hypertrophy and heart failure. J Am Heart Assoc 6:e005971PubMedPubMedCentral
40.
Zurück zum Zitat Tarín C, Fernandez-Garcia CE, Burillo E, Pastor-Vargas C, Llamas-Granda P, Castejón B, Ramos-Mozo P, Torres-Fonseca MM, Berger T, Mak TW, Egido J, Blanco-Colio LM, Martín-Ventura JL (2016) Lipocalin-2 deficiency or blockade protects against aortic abdominal aneurysm development in mice. Cardiovasc Res 111:262–273PubMed Tarín C, Fernandez-Garcia CE, Burillo E, Pastor-Vargas C, Llamas-Granda P, Castejón B, Ramos-Mozo P, Torres-Fonseca MM, Berger T, Mak TW, Egido J, Blanco-Colio LM, Martín-Ventura JL (2016) Lipocalin-2 deficiency or blockade protects against aortic abdominal aneurysm development in mice. Cardiovasc Res 111:262–273PubMed
41.
Zurück zum Zitat Koya T, Miyazaki T, Watanabe T, Shichiri M, Atsumi T, Kim-Kaneyama JR, Miyazaki A (2012) Salusin-β accelerates inflammatory responses in vascular endothelial cells via NF-κB signaling in LDL receptor-deficient mice in vivo and HUVECs in vitro. Am J Physiol Heart CircPhysiol 303:H96–H105 Koya T, Miyazaki T, Watanabe T, Shichiri M, Atsumi T, Kim-Kaneyama JR, Miyazaki A (2012) Salusin-β accelerates inflammatory responses in vascular endothelial cells via NF-κB signaling in LDL receptor-deficient mice in vivo and HUVECs in vitro. Am J Physiol Heart CircPhysiol 303:H96–H105
42.
Zurück zum Zitat Guo H, Jin D, Chen X (2014) Lipocalin 2 is a regulator of macrophage polarization and NF-kB/STAT3 pathway activation. Mol Endocrinol 28:1616–1628PubMedPubMedCentral Guo H, Jin D, Chen X (2014) Lipocalin 2 is a regulator of macrophage polarization and NF-kB/STAT3 pathway activation. Mol Endocrinol 28:1616–1628PubMedPubMedCentral
43.
Zurück zum Zitat Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH, Mori K, Nakao K, Suk K (2013) Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J27:1176–1190 Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH, Mori K, Nakao K, Suk K (2013) Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J27:1176–1190
44.
Zurück zum Zitat Imamura T, Poulsen O (1985) Haddad GG (2016) Intermittent hypoxia induces murine macrophage foam cell formation by IKK-β-dependent NF-κB pathway activation. J Appl Physiol 121:670–677 Imamura T, Poulsen O (1985) Haddad GG (2016) Intermittent hypoxia induces murine macrophage foam cell formation by IKK-β-dependent NF-κB pathway activation. J Appl Physiol 121:670–677
45.
Zurück zum Zitat Wang Y, Wang X, Sun M, Zhang Z, Cao H, Chen X (2011) NF-κB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell. Biochem Biophys Res Commun 411:543–548PubMed Wang Y, Wang X, Sun M, Zhang Z, Cao H, Chen X (2011) NF-κB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell. Biochem Biophys Res Commun 411:543–548PubMed
46.
Zurück zum Zitat Plotkin JD, Elias MG, Dellinger AL, Kepley CL (2017) NF-κB inhibitors that prevent foam cell formation and atherosclerotic plaque accumulation. Nanomedicine 13:2037–2048PubMed Plotkin JD, Elias MG, Dellinger AL, Kepley CL (2017) NF-κB inhibitors that prevent foam cell formation and atherosclerotic plaque accumulation. Nanomedicine 13:2037–2048PubMed
47.
Zurück zum Zitat Gao JH, Zeng MY, Yu XH, Zeng GF, He LH, Zheng XL, Zhang DW, Ouyang XP, Tang CK (2018) Visceral adipose tissue-derived serine protease inhibitor accelerates cholesterol efflux by up-regulating ABCA1 expression via the NF-κB/miR-33a pathway in THP-1 macropahge-derived foam cells. Biochem Biophys Res Commun 500:318–324PubMed Gao JH, Zeng MY, Yu XH, Zeng GF, He LH, Zheng XL, Zhang DW, Ouyang XP, Tang CK (2018) Visceral adipose tissue-derived serine protease inhibitor accelerates cholesterol efflux by up-regulating ABCA1 expression via the NF-κB/miR-33a pathway in THP-1 macropahge-derived foam cells. Biochem Biophys Res Commun 500:318–324PubMed
48.
Zurück zum Zitat Sun HJ, Zhao MX, Liu TY, Ren XS, Chen Q, Li YH, Kang YM, Zhu GQ (2016) Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway. Sci Rep 6:23596PubMedPubMedCentral Sun HJ, Zhao MX, Liu TY, Ren XS, Chen Q, Li YH, Kang YM, Zhu GQ (2016) Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway. Sci Rep 6:23596PubMedPubMedCentral
49.
Zurück zum Zitat Li W, Zhi W, Zhao J, Yao Q, Liu F, Niu X (2018) Cinnamalde hydeprotects VSMC sagainstox-LDL-inducedproliferation and migration through S arrest and inhibition of p38, JNK/MAPKs and NF-κB. Vascul Pharmacol 108:57–66PubMed Li W, Zhi W, Zhao J, Yao Q, Liu F, Niu X (2018) Cinnamalde hydeprotects VSMC sagainstox-LDL-inducedproliferation and migration through S arrest and inhibition of p38, JNK/MAPKs and NF-κB. Vascul Pharmacol 108:57–66PubMed
50.
Zurück zum Zitat Pinelli A, Trivulzio S, Rossoni G, Redaelli R, Brenna S (2012) Factors involved in sudden coagulation observed in patients with acute myocardial infarction. Vivo 26:1021–1025 Pinelli A, Trivulzio S, Rossoni G, Redaelli R, Brenna S (2012) Factors involved in sudden coagulation observed in patients with acute myocardial infarction. Vivo 26:1021–1025
51.
Zurück zum Zitat Ashton JH, Benedict CR, Fitzgerald C, Raheja S, Taylor A, Campbell WB, Buja LM, Willerson JT (1986) Serotonin as a mediator of cyclic flow variations in stenosed canine coronary arteries. Circulation 73:572–578PubMed Ashton JH, Benedict CR, Fitzgerald C, Raheja S, Taylor A, Campbell WB, Buja LM, Willerson JT (1986) Serotonin as a mediator of cyclic flow variations in stenosed canine coronary arteries. Circulation 73:572–578PubMed
52.
Zurück zum Zitat Eilenberg W, Stojkovic S, Kaider A, Piechota-Polanczyk A, Nanobachvili J, Domenig CM, Wojta J, Huk I, Demyanets S, Neumayer C (2019) Neutrophil gelatinase associated lipocalin (NGAL) for identification of unstable plaques in patients with asymptomatic carotid stenosis. Eur J Vasc Endovasc Surg 57:768–777PubMed Eilenberg W, Stojkovic S, Kaider A, Piechota-Polanczyk A, Nanobachvili J, Domenig CM, Wojta J, Huk I, Demyanets S, Neumayer C (2019) Neutrophil gelatinase associated lipocalin (NGAL) for identification of unstable plaques in patients with asymptomatic carotid stenosis. Eur J Vasc Endovasc Surg 57:768–777PubMed
53.
Zurück zum Zitat Eilenberg W, Stojkovic S, Piechota-Polanczyk A, Kaider A, Kozakowski N, Weninger WJ, Nanobachvili J, Wojta J, Huk I, Demyanets S, Neumayer C (2017) Neutrophil gelatinase associated lipocalin (NGAL) is elevated in type 2 diabetics with carotid artery stenosis and reduced under metformin treatment. Cardiovasc Diabetol 16:98PubMedPubMedCentral Eilenberg W, Stojkovic S, Piechota-Polanczyk A, Kaider A, Kozakowski N, Weninger WJ, Nanobachvili J, Wojta J, Huk I, Demyanets S, Neumayer C (2017) Neutrophil gelatinase associated lipocalin (NGAL) is elevated in type 2 diabetics with carotid artery stenosis and reduced under metformin treatment. Cardiovasc Diabetol 16:98PubMedPubMedCentral
54.
Zurück zum Zitat Eilenberg W, Stojkovic S, Kaider A, Kozakowski N, Domenig CM, Burghuber C, Nanobachvili J, Huber K, Klinger M, Neumayer C, Huk I, Wojta J, Demyanets S (2017) NGAL and MMP-9/NGAL as biomarkers of plaque vulnerability and targets of statins in patients with carotid atherosclerosis. Clin Chem Lab Med 56:147–156PubMed Eilenberg W, Stojkovic S, Kaider A, Kozakowski N, Domenig CM, Burghuber C, Nanobachvili J, Huber K, Klinger M, Neumayer C, Huk I, Wojta J, Demyanets S (2017) NGAL and MMP-9/NGAL as biomarkers of plaque vulnerability and targets of statins in patients with carotid atherosclerosis. Clin Chem Lab Med 56:147–156PubMed
55.
Zurück zum Zitat Wan Q, Liu ZY, Yang YP, Liu SM (2016) Effect of curcumin on inhibiting atherogenesis by down-regulating lipocalin-2 expression in apolipoprotein E knockout mice. Biomed Mater Eng 27:577–587PubMed Wan Q, Liu ZY, Yang YP, Liu SM (2016) Effect of curcumin on inhibiting atherogenesis by down-regulating lipocalin-2 expression in apolipoprotein E knockout mice. Biomed Mater Eng 27:577–587PubMed
Metadaten
Titel
Lipocalin-2 exerts pro-atherosclerotic effects as evidenced by in vitro and in vivo experiments
verfasst von
Koichiro Shibata
Kengo Sato
Remina Shirai
Tomomi Seki
Taisuke Okano
Tomoyuki Yamashita
Ayaka Koide
Mutsumi Mitsuboshi
Yusaku Mori
Tsutomu Hirano
Takuya Watanabe
Publikationsdatum
01.07.2020
Verlag
Springer Japan
Erschienen in
Heart and Vessels / Ausgabe 7/2020
Print ISSN: 0910-8327
Elektronische ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-020-01556-6

Weitere Artikel der Ausgabe 7/2020

Heart and Vessels 7/2020 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.