Skip to main content
Erschienen in: Current Diabetes Reports 9/2022

11.07.2022 | Pathogenesis of Type 2 Diabetes and Insulin Resistance (M-E Patti, Section Editor)

Lipodystrophy for the Diabetologist—What to Look For

verfasst von: Nivedita Patni, Abhimanyu Garg

Erschienen in: Current Diabetes Reports | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Genetic or acquired lipodystrophies are characterized by selective loss of body fat along with predisposition towards metabolic complications of insulin resistance, such as diabetes mellitus, hypertriglyceridemia, hepatic steatosis, polycystic ovarian syndrome, and acanthosis nigricans. In this review, we discuss the various subtypes and when to suspect and how to diagnose lipodystrophy.

Recent Findings

The four major subtypes are autosomal recessive, congenital generalized lipodystrophy (CGL); acquired generalized lipodystrophy (AGL), mostly an autoimmune disorder; autosomal dominant or recessive familial partial lipodystrophy (FPLD); and acquired partial lipodystrophy (APL), an autoimmune disorder. Diagnosis of lipodystrophy is mainly based upon physical examination findings of loss of body fat and can be supported by body composition analysis by skinfold measurements, dual-energy x-ray absorptiometry, and whole-body magnetic resonance imaging. Confirmatory genetic testing is helpful in the proband and at-risk family members with suspected genetic lipodystrophies. The treatment is directed towards the specific comorbidities and metabolic complications, and there is no treatment to reverse body fat loss. Metreleptin should be considered as the first-line therapy for metabolic complications in patients with generalized lipodystrophy and for prevention of comorbidities in children. Metformin and insulin therapy are the best options for treating hyperglycemia and fibrates and/or fish oil for hypertriglyceridemia.

Summary

Lipodystrophy should be suspected in lean and muscular subjects presenting with diabetes mellitus, hypertriglyceridemia, non-alcoholic fatty liver disease, polycystic ovarian syndrome, or amenorrhea. Diabetologists should be aware of lipodystrophies and consider genetic varieties as an important subtype of monogenic diabetes.
Literatur
1.
2.
Zurück zum Zitat Chiquette E, et al. Estimating the prevalence of generalized and partial lipodystrophy: findings and challenges. Diabetes Metab Syndr Obes. 2017;10:375–83.PubMedPubMedCentralCrossRef Chiquette E, et al. Estimating the prevalence of generalized and partial lipodystrophy: findings and challenges. Diabetes Metab Syndr Obes. 2017;10:375–83.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Andre P, et al. Metabolic and cardiac phenotype characterization in 37 atypical Dunnigan patients with nonfarnesylated mutated prelamin A. Am Heart J. 2015;169(4):587–93.PubMedCrossRef Andre P, et al. Metabolic and cardiac phenotype characterization in 37 atypical Dunnigan patients with nonfarnesylated mutated prelamin A. Am Heart J. 2015;169(4):587–93.PubMedCrossRef
4.
Zurück zum Zitat Gonzaga-Jauregui C, et al. Clinical and Molecular prevalence of lipodystrophy in an unascertained large clinical care cohort. Diabetes. 2020;69(2):249–58.PubMedCrossRef Gonzaga-Jauregui C, et al. Clinical and Molecular prevalence of lipodystrophy in an unascertained large clinical care cohort. Diabetes. 2020;69(2):249–58.PubMedCrossRef
5.
Zurück zum Zitat Udler MS, et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Med. 2018;15(9):e1002654.PubMedPubMedCentralCrossRef Udler MS, et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Med. 2018;15(9):e1002654.PubMedPubMedCentralCrossRef
6.
7.
Zurück zum Zitat Misra A, Garg A. Clinical features and metabolic derangements in acquired generalized lipodystrophy: case reports and review of the literature. Medicine (Baltimore). 2003;82(2):129–46.CrossRef Misra A, Garg A. Clinical features and metabolic derangements in acquired generalized lipodystrophy: case reports and review of the literature. Medicine (Baltimore). 2003;82(2):129–46.CrossRef
8.
Zurück zum Zitat Dunnigan MG, et al. Familial lipoatrophic diabetes with dominant transmission. A new syndrome Q J Med. 1974;43(169):33–48.PubMed Dunnigan MG, et al. Familial lipoatrophic diabetes with dominant transmission. A new syndrome Q J Med. 1974;43(169):33–48.PubMed
9.
Zurück zum Zitat Misra A, Peethambaram A, Garg A. Clinical features and metabolic and autoimmune derangements in acquired partial lipodystrophy: report of 35 cases and review of the literature. Medicine (Baltimore). 2004;83(1):18–34.CrossRef Misra A, Peethambaram A, Garg A. Clinical features and metabolic and autoimmune derangements in acquired partial lipodystrophy: report of 35 cases and review of the literature. Medicine (Baltimore). 2004;83(1):18–34.CrossRef
10.
Zurück zum Zitat Agarwal AK, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31(1):21–3.PubMedCrossRef Agarwal AK, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31(1):21–3.PubMedCrossRef
11.
Zurück zum Zitat Magre J, et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet. 2001;28(4):365–70.PubMedCrossRef Magre J, et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet. 2001;28(4):365–70.PubMedCrossRef
12.
Zurück zum Zitat Kim CA, et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab. 2008;93(4):1129–34.PubMedCrossRef Kim CA, et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab. 2008;93(4):1129–34.PubMedCrossRef
13.
Zurück zum Zitat Hayashi YK, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009;119(9):2623–33.PubMedPubMedCentralCrossRef Hayashi YK, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009;119(9):2623–33.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Payne F, et al. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc Natl Acad Sci U S A. 2014;111(24):8901–6.PubMedPubMedCentralCrossRef Payne F, et al. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc Natl Acad Sci U S A. 2014;111(24):8901–6.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Rubio-Cabezas O, et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med. 2009;1(5):280–7.PubMedPubMedCentralCrossRef Rubio-Cabezas O, et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med. 2009;1(5):280–7.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Farhan SM, et al. A novel LIPE nonsense mutation found using exome sequencing in siblings with late-onset familial partial lipodystrophy. Can J Cardiol. 2014;30(12):1649–54.PubMedCrossRef Farhan SM, et al. A novel LIPE nonsense mutation found using exome sequencing in siblings with late-onset familial partial lipodystrophy. Can J Cardiol. 2014;30(12):1649–54.PubMedCrossRef
18.
19.
Zurück zum Zitat Herbst KL, et al. Kobberling type of familial partial lipodystrophy: an underrecognized syndrome. Diabetes Care. 2003;26(6):1819–24.PubMedCrossRef Herbst KL, et al. Kobberling type of familial partial lipodystrophy: an underrecognized syndrome. Diabetes Care. 2003;26(6):1819–24.PubMedCrossRef
20.
Zurück zum Zitat Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet. 2000;9(1):109–12.PubMedCrossRef Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet. 2000;9(1):109–12.PubMedCrossRef
21.
Zurück zum Zitat Shackleton S, et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet. 2000;24(2):153–6.PubMedCrossRef Shackleton S, et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet. 2000;24(2):153–6.PubMedCrossRef
22.
Zurück zum Zitat Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab. 2002;87(1):408–11.PubMed Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab. 2002;87(1):408–11.PubMed
25.
Zurück zum Zitat Dyment DA, et al. Biallelic mutations at PPARG cause a congenital, generalized lipodystrophy similar to the Berardinelli-Seip syndrome. Eur J Med Genet. 2014;57(9):524–6.PubMedCrossRef Dyment DA, et al. Biallelic mutations at PPARG cause a congenital, generalized lipodystrophy similar to the Berardinelli-Seip syndrome. Eur J Med Genet. 2014;57(9):524–6.PubMedCrossRef
27.
Zurück zum Zitat Agarwal AK, et al. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet. 2003;12(16):1995–2001.PubMedCrossRef Agarwal AK, et al. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet. 2003;12(16):1995–2001.PubMedCrossRef
28.
Zurück zum Zitat Lessel D, et al. Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat Genet. 2014;46(11):1239–44.PubMedPubMedCentralCrossRef Lessel D, et al. Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat Genet. 2014;46(11):1239–44.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Cabanillas R, et al. Nestor-Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am J Med Genet A. 2011;155A(11):2617–25.PubMedCrossRef Cabanillas R, et al. Nestor-Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am J Med Genet A. 2011;155A(11):2617–25.PubMedCrossRef
30.
Zurück zum Zitat Eriksson M, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423(6937):293–8.PubMedCrossRef Eriksson M, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423(6937):293–8.PubMedCrossRef
31.
Zurück zum Zitat De Sandre-Giovannoli A, et al. Lamin a truncation in Hutchinson-Gilford progeria. Science. 2003;300(5628):2055.PubMedCrossRef De Sandre-Giovannoli A, et al. Lamin a truncation in Hutchinson-Gilford progeria. Science. 2003;300(5628):2055.PubMedCrossRef
32.
Zurück zum Zitat Graul-Neumann LM, et al. Marfan syndrome with neonatal progeroid syndrome-like lipodystrophy associated with a novel frameshift mutation at the 3' terminus of the FBN1-gene. Am J Med Genet A. 2010;152A(11):2749–55.PubMedCrossRef Graul-Neumann LM, et al. Marfan syndrome with neonatal progeroid syndrome-like lipodystrophy associated with a novel frameshift mutation at the 3' terminus of the FBN1-gene. Am J Med Genet A. 2010;152A(11):2749–55.PubMedCrossRef
33.
Zurück zum Zitat Garg A, et al. Whole exome sequencing identifies de novo heterozygous CAV1 mutations associated with a novel neonatal onset lipodystrophy syndrome. Am J Med Genet A. 2015;167A(8):1796–806.PubMedPubMedCentralCrossRef Garg A, et al. Whole exome sequencing identifies de novo heterozygous CAV1 mutations associated with a novel neonatal onset lipodystrophy syndrome. Am J Med Genet A. 2015;167A(8):1796–806.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Weedon MN, et al. An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat Genet. 2013;45(8):947–50.PubMedPubMedCentralCrossRef Weedon MN, et al. An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat Genet. 2013;45(8):947–50.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Masotti A, et al. Keppen-Lubinsky syndrome is caused by mutations in the inwardly rectifying K+ channel encoded by KCNJ6. Am J Hum Genet. 2015;96(2):295–300.PubMedPubMedCentralCrossRef Masotti A, et al. Keppen-Lubinsky syndrome is caused by mutations in the inwardly rectifying K+ channel encoded by KCNJ6. Am J Hum Genet. 2015;96(2):295–300.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Agarwal AK, et al. PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet. 2010;87(6):866–72.PubMedPubMedCentralCrossRef Agarwal AK, et al. PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet. 2010;87(6):866–72.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Nolis T. Exploring the pathophysiology behind the more common genetic and acquired lipodystrophies. J Hum Genet. 2014;59(1):16–23.PubMedCrossRef Nolis T. Exploring the pathophysiology behind the more common genetic and acquired lipodystrophies. J Hum Genet. 2014;59(1):16–23.PubMedCrossRef
42.
Zurück zum Zitat Hussain I, Patni N, Garg A. Lipodystrophies, dyslipidaemias and atherosclerotic cardiovascular disease. Pathology. 2019;51(2):202–12.PubMedCrossRef Hussain I, Patni N, Garg A. Lipodystrophies, dyslipidaemias and atherosclerotic cardiovascular disease. Pathology. 2019;51(2):202–12.PubMedCrossRef
43.
Zurück zum Zitat Pardini VC, et al. Leptin levels, beta-cell function, and insulin sensitivity in families with congenital and acquired generalized lipoatrophic diabetes. J Clin Endocrinol Metab. 1998;83:503–8.PubMed Pardini VC, et al. Leptin levels, beta-cell function, and insulin sensitivity in families with congenital and acquired generalized lipoatrophic diabetes. J Clin Endocrinol Metab. 1998;83:503–8.PubMed
44.
Zurück zum Zitat Seip M, Trygstad O. Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatr Suppl. 1996;413:2–28.PubMedCrossRef Seip M, Trygstad O. Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatr Suppl. 1996;413:2–28.PubMedCrossRef
45.
Zurück zum Zitat Westvik J. Radiological features in generalized lipodystrophy. Acta Paediatr Suppl. 1996;413:44–51.PubMedCrossRef Westvik J. Radiological features in generalized lipodystrophy. Acta Paediatr Suppl. 1996;413:44–51.PubMedCrossRef
46.
Zurück zum Zitat Brunzell JD, Shankle SW, Bethune JE. Congenital generalized lipodystrophy accompanied by cystic angiomatosis. Ann Intern Med. 1968;69(3):501–16.PubMedCrossRef Brunzell JD, Shankle SW, Bethune JE. Congenital generalized lipodystrophy accompanied by cystic angiomatosis. Ann Intern Med. 1968;69(3):501–16.PubMedCrossRef
47.
Zurück zum Zitat Fleckenstein JL, et al. The skeleton in congenital, generalized lipodystrophy: evaluation using whole-body radiographic surveys, magnetic resonance imaging and technetium-99m bone scintigraphy. Skelet Radiol. 1992;21(6):381–6.CrossRef Fleckenstein JL, et al. The skeleton in congenital, generalized lipodystrophy: evaluation using whole-body radiographic surveys, magnetic resonance imaging and technetium-99m bone scintigraphy. Skelet Radiol. 1992;21(6):381–6.CrossRef
48.
Zurück zum Zitat Chandalia M, et al. Postmortem findings in congenital generalized lipodystrophy. J Clin Endocrinol Metab. 1995;80(10):3077–81.PubMed Chandalia M, et al. Postmortem findings in congenital generalized lipodystrophy. J Clin Endocrinol Metab. 1995;80(10):3077–81.PubMed
49.
Zurück zum Zitat Anonymous. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 1-1975. N Engl J Med. 1975;292(1):35–41.CrossRef Anonymous. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 1-1975. N Engl J Med. 1975;292(1):35–41.CrossRef
50.
Zurück zum Zitat Garg A, et al. Peculiar distribution of adipose tissue in patients with congenital generalized lipodystrophy. J Clin Endocrinol Metab. 1992;75(2):358–61.PubMed Garg A, et al. Peculiar distribution of adipose tissue in patients with congenital generalized lipodystrophy. J Clin Endocrinol Metab. 1992;75(2):358–61.PubMed
51.
Zurück zum Zitat Haque WA, et al. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab. 2002;87(5):2395–8.PubMedCrossRef Haque WA, et al. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab. 2002;87(5):2395–8.PubMedCrossRef
52.
Zurück zum Zitat Antuna-Puente B, et al. Higher adiponectin levels in patients with Berardinelli-Seip congenital lipodystrophy due to seipin as compared with 1-acylglycerol-3-phosphate-o-acyltransferase-2 deficiency. J Clin Endocrinol Metab. 2010;95(3):1463–8.PubMedCrossRef Antuna-Puente B, et al. Higher adiponectin levels in patients with Berardinelli-Seip congenital lipodystrophy due to seipin as compared with 1-acylglycerol-3-phosphate-o-acyltransferase-2 deficiency. J Clin Endocrinol Metab. 2010;95(3):1463–8.PubMedCrossRef
53.
54.
Zurück zum Zitat Agarwal AK, et al. Phenotypic and genetic heterogeneity in congenital generalized lipodystrophy. J Clin Endocrinol Metab. 2003;88(10):4840–7.PubMedCrossRef Agarwal AK, et al. Phenotypic and genetic heterogeneity in congenital generalized lipodystrophy. J Clin Endocrinol Metab. 2003;88(10):4840–7.PubMedCrossRef
55.
Zurück zum Zitat Upreti V, et al. An unusual cause of delayed puberty: Berardinelli- Seip syndrome. J Pediatr Endocrinol Metab. 2012;25(11-12):1157–60.PubMedCrossRef Upreti V, et al. An unusual cause of delayed puberty: Berardinelli- Seip syndrome. J Pediatr Endocrinol Metab. 2012;25(11-12):1157–60.PubMedCrossRef
56.
Zurück zum Zitat Maguire M, et al. Pregnancy in a woman with congenital generalized lipodystrophy: leptin's vital role in reproduction. Obstet Gynecol. 2012;119(2 Pt 2):452–5.PubMedPubMedCentralCrossRef Maguire M, et al. Pregnancy in a woman with congenital generalized lipodystrophy: leptin's vital role in reproduction. Obstet Gynecol. 2012;119(2 Pt 2):452–5.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Ebihara C, et al. Seipin is necessary for normal brain development and spermatogenesis in addition to adipogenesis. Hum Mol Genet. 2015;24(15):4238–49.PubMedCrossRef Ebihara C, et al. Seipin is necessary for normal brain development and spermatogenesis in addition to adipogenesis. Hum Mol Genet. 2015;24(15):4238–49.PubMedCrossRef
59.
Zurück zum Zitat Karhan AN, et al. Biallelic CAV1 null variants induce congenital generalized lipodystrophy with achalasia. Eur J Endocrinol. 2021;185(6):841–54.PubMedCrossRef Karhan AN, et al. Biallelic CAV1 null variants induce congenital generalized lipodystrophy with achalasia. Eur J Endocrinol. 2021;185(6):841–54.PubMedCrossRef
60.
Zurück zum Zitat Cao H, et al. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 2008;7:3.PubMedPubMedCentralCrossRef Cao H, et al. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 2008;7:3.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Patni N, Hegele RA, Garg A. Caveolar dysfunction and lipodystrophies. Eur J Endocrinol. 2022;186(3):C1–4.PubMedCrossRef Patni N, Hegele RA, Garg A. Caveolar dysfunction and lipodystrophies. Eur J Endocrinol. 2022;186(3):C1–4.PubMedCrossRef
62.
Zurück zum Zitat Garg A. Gender differences in the prevalence of metabolic complications in familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metab. 2000;85(5):1776–82.PubMed Garg A. Gender differences in the prevalence of metabolic complications in familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metab. 2000;85(5):1776–82.PubMed
63.
Zurück zum Zitat Patni N, et al. Regional body fat changes and metabolic complications in children with Dunnigan lipodystrophy-causing LMNA Variants. J Clin Endocrinol Metab. 2018;104(4):1099–108.PubMedCentralCrossRef Patni N, et al. Regional body fat changes and metabolic complications in children with Dunnigan lipodystrophy-causing LMNA Variants. J Clin Endocrinol Metab. 2018;104(4):1099–108.PubMedCentralCrossRef
64.
Zurück zum Zitat Garg A, Peshock RM, Fleckenstein JL. Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metab. 1999;84(1):170–4.PubMed Garg A, Peshock RM, Fleckenstein JL. Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metab. 1999;84(1):170–4.PubMed
65.
Zurück zum Zitat Haque WA, et al. Risk factors for diabetes in familial partial lipodystrophy, Dunnigan variety. Diabetes Care. 2003;26(5):1350–5.PubMedCrossRef Haque WA, et al. Risk factors for diabetes in familial partial lipodystrophy, Dunnigan variety. Diabetes Care. 2003;26(5):1350–5.PubMedCrossRef
66.
Zurück zum Zitat Hegele RA. Premature atherosclerosis associated with monogenic insulin resistance. Circulation. 2001;103(18):2225–9.PubMedCrossRef Hegele RA. Premature atherosclerosis associated with monogenic insulin resistance. Circulation. 2001;103(18):2225–9.PubMedCrossRef
67.
Zurück zum Zitat Patni N, et al. A novel syndrome of generalized lipodystrophy associated with pilocytic astrocytoma. J Clin Endocrinol Metab. 2015;100(10):3603–6.PubMedPubMedCentralCrossRef Patni N, et al. A novel syndrome of generalized lipodystrophy associated with pilocytic astrocytoma. J Clin Endocrinol Metab. 2015;100(10):3603–6.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Haddad N, et al. Acquired generalized lipodystrophy under immune checkpoint inhibition. Br J Dermatol. 2020;182(2):477–80.PubMedCrossRef Haddad N, et al. Acquired generalized lipodystrophy under immune checkpoint inhibition. Br J Dermatol. 2020;182(2):477–80.PubMedCrossRef
69.
Zurück zum Zitat Jehl A, et al. Acquired generalized lipodystrophy: a new cause of anti-PD-1 immune-related diabetes. Diabetes Care. 2019;42(10):2008–10.PubMedCrossRef Jehl A, et al. Acquired generalized lipodystrophy: a new cause of anti-PD-1 immune-related diabetes. Diabetes Care. 2019;42(10):2008–10.PubMedCrossRef
70.
Zurück zum Zitat Savage DB, et al. Complement abnormalities in acquired lipodystrophy revisited. J Clin Endocrinol Metab. 2009;94(1):10–6.PubMedCrossRef Savage DB, et al. Complement abnormalities in acquired lipodystrophy revisited. J Clin Endocrinol Metab. 2009;94(1):10–6.PubMedCrossRef
71.
Zurück zum Zitat Park JY, et al. Type 1 diabetes associated with acquired generalized lipodystrophy and insulin resistance: the effect of long-term leptin therapy. J Clin Endocrinol Metab. 2008;93(1):26–31.PubMedCrossRef Park JY, et al. Type 1 diabetes associated with acquired generalized lipodystrophy and insulin resistance: the effect of long-term leptin therapy. J Clin Endocrinol Metab. 2008;93(1):26–31.PubMedCrossRef
72.
Zurück zum Zitat Kumar R, et al. Acquired generalised lipodystrophy and type 1 diabetes mellitus in a child: a rare and implacable association. BMJ Case Rep. 2018;2018:bcr-2018. Kumar R, et al. Acquired generalised lipodystrophy and type 1 diabetes mellitus in a child: a rare and implacable association. BMJ Case Rep. 2018;2018:bcr-2018.
73.
Zurück zum Zitat Srinivasan S, et al. A polygenic lipodystrophy genetic risk score characterizes risk independent of BMI in the diabetes prevention program. J Endocr Soc. 2019;3(9):1663–77.PubMedPubMedCentralCrossRef Srinivasan S, et al. A polygenic lipodystrophy genetic risk score characterizes risk independent of BMI in the diabetes prevention program. J Endocr Soc. 2019;3(9):1663–77.PubMedPubMedCentralCrossRef
74.
75.
Zurück zum Zitat Brown RJ, et al. The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline. J Clin Endocrinol Metab. 2016;101(12):4500–11.PubMedPubMedCentralCrossRef Brown RJ, et al. The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline. J Clin Endocrinol Metab. 2016;101(12):4500–11.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497–504.PubMedCrossRef Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497–504.PubMedCrossRef
77.
Zurück zum Zitat Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc. 1980;12(3):175–81.PubMedCrossRef Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc. 1980;12(3):175–81.PubMedCrossRef
78.
Zurück zum Zitat Dezenberg CV, et al. Predicting body composition from anthropometry in pre-adolescent children. Int J Obes Relat Metab Disord. 1999;23(3):253–9.PubMedCrossRef Dezenberg CV, et al. Predicting body composition from anthropometry in pre-adolescent children. Int J Obes Relat Metab Disord. 1999;23(3):253–9.PubMedCrossRef
79.
Zurück zum Zitat Vasandani C, et al. Diagnostic value of anthropometric measurements for familial partial lipodystrophy, Dunnigan Variety. J Clin Endocrinol Metab. 2020;105(7)2132-2141.PubMedCentralCrossRef Vasandani C, et al. Diagnostic value of anthropometric measurements for familial partial lipodystrophy, Dunnigan Variety. J Clin Endocrinol Metab. 2020;105(7)2132-2141.PubMedCentralCrossRef
80.
Zurück zum Zitat Javor ED, et al. Proteinuric nephropathy in acquired and congenital generalized lipodystrophy: baseline characteristics and course during recombinant leptin therapy. J Clin Endocrinol Metab. 2004;89(7):3199–207.PubMedCrossRef Javor ED, et al. Proteinuric nephropathy in acquired and congenital generalized lipodystrophy: baseline characteristics and course during recombinant leptin therapy. J Clin Endocrinol Metab. 2004;89(7):3199–207.PubMedCrossRef
81.
Zurück zum Zitat Akinci B, et al. Renal complications of lipodystrophy: a closer look at the natural history of kidney disease. Clin Endocrinol. 2018;89(1):65–75.CrossRef Akinci B, et al. Renal complications of lipodystrophy: a closer look at the natural history of kidney disease. Clin Endocrinol. 2018;89(1):65–75.CrossRef
82.
Zurück zum Zitat Musso C, et al. Spectrum of renal diseases associated with extreme forms of insulin resistance. Clin J Am Soc Nephrol. 2006;1(4):616–22.PubMedCrossRef Musso C, et al. Spectrum of renal diseases associated with extreme forms of insulin resistance. Clin J Am Soc Nephrol. 2006;1(4):616–22.PubMedCrossRef
83.
Zurück zum Zitat Oral EA, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346(8):570–8.PubMedCrossRef Oral EA, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346(8):570–8.PubMedCrossRef
84.
Zurück zum Zitat Beltrand J, et al. Metabolic correction induced by leptin replacement treatment in young children with Berardinelli-Seip congenital lipoatrophy. Pediatrics. 2007;120(2):e291–6.PubMedCrossRef Beltrand J, et al. Metabolic correction induced by leptin replacement treatment in young children with Berardinelli-Seip congenital lipoatrophy. Pediatrics. 2007;120(2):e291–6.PubMedCrossRef
85.
Zurück zum Zitat Simha V, et al. Comparison of efficacy and safety of leptin replacement therapy in moderately and severely hypoleptinemic patients with familial partial lipodystrophy of the Dunnigan variety. J Clin Endocrinol Metab. 2012;97(3):785–92.PubMedCrossRef Simha V, et al. Comparison of efficacy and safety of leptin replacement therapy in moderately and severely hypoleptinemic patients with familial partial lipodystrophy of the Dunnigan variety. J Clin Endocrinol Metab. 2012;97(3):785–92.PubMedCrossRef
86.
Zurück zum Zitat Diker-Cohen T, et al. Partial and generalized lipodystrophy: comparison of baseline characteristics and response to metreleptin. J Clin Endocrinol Metab. 2015;100(5):1802–10.PubMedPubMedCentralCrossRef Diker-Cohen T, et al. Partial and generalized lipodystrophy: comparison of baseline characteristics and response to metreleptin. J Clin Endocrinol Metab. 2015;100(5):1802–10.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Luedtke A, et al. Thiazolidinedione response in familial lipodystrophy patients with LMNA mutations: a case series. Horm Metab Res. 2012;44(4):306–11.PubMedCrossRef Luedtke A, et al. Thiazolidinedione response in familial lipodystrophy patients with LMNA mutations: a case series. Horm Metab Res. 2012;44(4):306–11.PubMedCrossRef
88.
Zurück zum Zitat Simha V, Rao S, Garg A. Prolonged thiazolidinedione therapy does not reverse fat loss in patients with familial partial lipodystrophy, Dunnigan variety. Diabetes Obes Metab. 2008;10(12):1275–6.PubMedCrossRef Simha V, Rao S, Garg A. Prolonged thiazolidinedione therapy does not reverse fat loss in patients with familial partial lipodystrophy, Dunnigan variety. Diabetes Obes Metab. 2008;10(12):1275–6.PubMedCrossRef
89.
Zurück zum Zitat Banning F, et al. Insulin secretory defect in familial partial lipodystrophy Type 2 and successful long-term treatment with a glucagon-like peptide 1 receptor agonist. Diabet Med. 2017;34(12):1792–4.PubMedCrossRef Banning F, et al. Insulin secretory defect in familial partial lipodystrophy Type 2 and successful long-term treatment with a glucagon-like peptide 1 receptor agonist. Diabet Med. 2017;34(12):1792–4.PubMedCrossRef
90.
Zurück zum Zitat Oliveira J, et al. Glucagon-like peptide-1 analogues - an efficient therapeutic option for the severe insulin resistance of lipodystrophic syndromes: two case reports. J Med Case Rep. 2017;11(1):12.PubMedPubMedCentralCrossRef Oliveira J, et al. Glucagon-like peptide-1 analogues - an efficient therapeutic option for the severe insulin resistance of lipodystrophic syndromes: two case reports. J Med Case Rep. 2017;11(1):12.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Melvin A, et al. Roux-en-Y gastric bypass surgery in the management of familial partial lipodystrophy type 1. J Clin Endocrinol Metab. 2017;102(10):3616–20.PubMedPubMedCentralCrossRef Melvin A, et al. Roux-en-Y gastric bypass surgery in the management of familial partial lipodystrophy type 1. J Clin Endocrinol Metab. 2017;102(10):3616–20.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Grundfest-Broniatowski S, et al. Successful treatment of an unusual case of FPLD2: The role of Roux-en-Y gastric bypass-case report and literature review. J Gastrointest Surg. 2017;21(4):739–43.PubMedCrossRef Grundfest-Broniatowski S, et al. Successful treatment of an unusual case of FPLD2: The role of Roux-en-Y gastric bypass-case report and literature review. J Gastrointest Surg. 2017;21(4):739–43.PubMedCrossRef
93.
Zurück zum Zitat Kozusko K, et al. Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy. Diabetes. 2015;64(1):299–310.PubMedCrossRef Kozusko K, et al. Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy. Diabetes. 2015;64(1):299–310.PubMedCrossRef
94.
Zurück zum Zitat Ciudin A, et al. Successful treatment for the Dunnigan-type familial partial lipodystrophy with Roux-en-Y gastric bypass. Clin Endocrinol. 2011;75(3):403–4.CrossRef Ciudin A, et al. Successful treatment for the Dunnigan-type familial partial lipodystrophy with Roux-en-Y gastric bypass. Clin Endocrinol. 2011;75(3):403–4.CrossRef
95.
Zurück zum Zitat McGrath NM, Krishna G. Gastric bypass for insulin resistance due to lipodystrophy. Obes Surg. 2006;16(11):1542–4.PubMedCrossRef McGrath NM, Krishna G. Gastric bypass for insulin resistance due to lipodystrophy. Obes Surg. 2006;16(11):1542–4.PubMedCrossRef
96.
Zurück zum Zitat Utzschneider KM, Trence DL. Effectiveness of gastric bypass surgery in a patient with familial partial lipodystrophy. Diabetes Care. 2006;29(6):1380–2.PubMedCrossRef Utzschneider KM, Trence DL. Effectiveness of gastric bypass surgery in a patient with familial partial lipodystrophy. Diabetes Care. 2006;29(6):1380–2.PubMedCrossRef
97.
Zurück zum Zitat Mandel-Brehm C, et al. Autoantibodies to perilipin-1 define a subset of acquired generalized lipodystrophy. Diabetes. 2022; db211172 (online ahead of print). Mandel-Brehm C, et al. Autoantibodies to perilipin-1 define a subset of acquired generalized lipodystrophy. Diabetes. 2022; db211172 (online ahead of print).
Metadaten
Titel
Lipodystrophy for the Diabetologist—What to Look For
verfasst von
Nivedita Patni
Abhimanyu Garg
Publikationsdatum
11.07.2022
Verlag
Springer US
Erschienen in
Current Diabetes Reports / Ausgabe 9/2022
Print ISSN: 1534-4827
Elektronische ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-022-01485-w

Weitere Artikel der Ausgabe 9/2022

Current Diabetes Reports 9/2022 Zur Ausgabe

Hospital Management of Diabetes (A Wallia and JJ Seley, Section Editors)

CGM in the Hospital: Is It Ready for Prime Time?

Pediatric Type 2 and Monogenic Diabetes (O Pinhas-Hamiel , Section Editor)

Diabetes Out-of-the-Box: Diabetes Mellitus and Impairment in Hearing and Vision

Health Care Delivery Systems and Implementation in Diabetes (ME McDonnell and AR Sadhu, Section Editor)

Electronic Health Record–Based Decision-Making Support in Inpatient Diabetes Management

Hospital Management of Diabetes (A Wallia and J Jeffrie Seley, Section Editors)

Pharmacist Role in Providing Inpatient Diabetes Management

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.