Skip to main content
Erschienen in: Medical Microbiology and Immunology 4/2012

01.11.2012 | Review

Live or let die: manipulation of cellular suicide programs by murine cytomegalovirus

verfasst von: Wiebke Handke, Eva Krause, Wolfram Brune

Erschienen in: Medical Microbiology and Immunology | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

Cytomegaloviruses (CMVs) are large double-stranded DNA viruses that replicate slowly and cause life-long persisting infections in their hosts. To achieve this, the CMVs had to evolve numerous countermeasures against innate and adaptive immune responses. Induction of programmed cell death is one important host defense mechanism against intracellular pathogens such as viruses. For a multicellular organism, it is advantageous to let infected cells die in order to thwart viral replication and dissemination. For a virus, by contrast, it is better to inhibit cell death and keep infected cells alive until the viral replication cycle has been completed. As a matter of fact, the CMVs encode a number of proteins devoted to interfering with different forms of programmed cell death: apoptosis and necroptosis. In this review, we summarize the known functions of the four best characterized cell death inhibitors of murine cytomegalovirus (MCMV), which are encoded by open reading frames, M36, m38.5, m41.1, and M45. The viral proteins interact with key molecules within different cell death pathways, namely caspase-8, Bax, Bak, and RIP1/RIP3. In addition, we discuss which events during MCMV infection might trigger apoptosis or necrosis and how MCMV’s countermeasures compare to those of other herpesviruses. Since both, MCMV and its natural host, are amenable to genetic manipulation, the mouse model for CMV infection provides a particularly suitable system to study mechanisms of cell death induction and inhibition.
Literatur
1.
Zurück zum Zitat Cannon MJ, Schmid DS, Hyde TB (2010) Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 20(4):202–213PubMedCrossRef Cannon MJ, Schmid DS, Hyde TB (2010) Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 20(4):202–213PubMedCrossRef
2.
Zurück zum Zitat Cheung TW, Teich SA (1999) Cytomegalovirus infection in patients with HIV infection. Mt Sinai J Med 66(2):113–124PubMed Cheung TW, Teich SA (1999) Cytomegalovirus infection in patients with HIV infection. Mt Sinai J Med 66(2):113–124PubMed
3.
Zurück zum Zitat Steininger C (2007) Clinical relevance of cytomegalovirus infection in patients with disorders of the immune system. Clin Microbiol Infect 13(10):953–963PubMedCrossRef Steininger C (2007) Clinical relevance of cytomegalovirus infection in patients with disorders of the immune system. Clin Microbiol Infect 13(10):953–963PubMedCrossRef
4.
Zurück zum Zitat Grosse SD, Ross DS, Dollard SC (2008) Congenital cytomegalovirus (CMV) infection as a cause of permanent bilateral hearing loss: a quantitative assessment. J Clin Virol 41(2):57–62PubMedCrossRef Grosse SD, Ross DS, Dollard SC (2008) Congenital cytomegalovirus (CMV) infection as a cause of permanent bilateral hearing loss: a quantitative assessment. J Clin Virol 41(2):57–62PubMedCrossRef
5.
Zurück zum Zitat Sung H, Schleiss MR (2010) Update on the current status of cytomegalovirus vaccines. Expert Rev Vaccines 9(11):1303–1314PubMedCrossRef Sung H, Schleiss MR (2010) Update on the current status of cytomegalovirus vaccines. Expert Rev Vaccines 9(11):1303–1314PubMedCrossRef
6.
Zurück zum Zitat Lurain NS, Chou S (2010) Antiviral drug resistance of human cytomegalovirus. Clin Microbiol Rev 23(4):689–712PubMedCrossRef Lurain NS, Chou S (2010) Antiviral drug resistance of human cytomegalovirus. Clin Microbiol Rev 23(4):689–712PubMedCrossRef
7.
Zurück zum Zitat Hudson JB (1979) The murine cytomegalovirus as a model for the study of viral pathogenesis and persistent infections. Arch Virol 62(1):1–29PubMedCrossRef Hudson JB (1979) The murine cytomegalovirus as a model for the study of viral pathogenesis and persistent infections. Arch Virol 62(1):1–29PubMedCrossRef
8.
Zurück zum Zitat Sinclair J, Sissons P (2006) Latency and reactivation of human cytomegalovirus. J Gen Virol 87(Pt 7):1763–1779PubMedCrossRef Sinclair J, Sissons P (2006) Latency and reactivation of human cytomegalovirus. J Gen Virol 87(Pt 7):1763–1779PubMedCrossRef
9.
Zurück zum Zitat Galluzzi L et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120PubMedCrossRef Galluzzi L et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120PubMedCrossRef
10.
Zurück zum Zitat Kroemer G et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11PubMedCrossRef Kroemer G et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11PubMedCrossRef
11.
Zurück zum Zitat Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15(3):185–193PubMedCrossRef Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15(3):185–193PubMedCrossRef
12.
13.
14.
Zurück zum Zitat Skaletskaya A et al (2001) A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci USA 98(14):7829–7834PubMedCrossRef Skaletskaya A et al (2001) A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci USA 98(14):7829–7834PubMedCrossRef
15.
Zurück zum Zitat Menard C et al (2003) Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J Virol 77(10):5557–5570PubMedCrossRef Menard C et al (2003) Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J Virol 77(10):5557–5570PubMedCrossRef
16.
Zurück zum Zitat McCormick AL et al (2003) Differential function and expression of the viral inhibitor of caspase 8-induced apoptosis (vICA) and the viral mitochondria-localized inhibitor of apoptosis (vMIA) cell death suppressors conserved in primate and rodent cytomegaloviruses. Virology 316(2):221–233PubMedCrossRef McCormick AL et al (2003) Differential function and expression of the viral inhibitor of caspase 8-induced apoptosis (vICA) and the viral mitochondria-localized inhibitor of apoptosis (vMIA) cell death suppressors conserved in primate and rodent cytomegaloviruses. Virology 316(2):221–233PubMedCrossRef
17.
Zurück zum Zitat Cicin-Sain L et al (2008) Dominant-negative FADD rescues the in vivo fitness of a cytomegalovirus lacking an antiapoptotic viral gene. J Virol 82(5):2056–2064PubMedCrossRef Cicin-Sain L et al (2008) Dominant-negative FADD rescues the in vivo fitness of a cytomegalovirus lacking an antiapoptotic viral gene. J Virol 82(5):2056–2064PubMedCrossRef
18.
Zurück zum Zitat Norris KL, Youle RJ (2008) Cytomegalovirus proteins vMIA and m38.5 link mitochondrial morphogenesis to Bcl-2 family proteins. J Virol 82(13):6232–6243PubMedCrossRef Norris KL, Youle RJ (2008) Cytomegalovirus proteins vMIA and m38.5 link mitochondrial morphogenesis to Bcl-2 family proteins. J Virol 82(13):6232–6243PubMedCrossRef
19.
Zurück zum Zitat Jurak I et al (2008) Murine cytomegalovirus m38.5 protein inhibits Bax-mediated cell death. J Virol 82(10):4812–4822PubMedCrossRef Jurak I et al (2008) Murine cytomegalovirus m38.5 protein inhibits Bax-mediated cell death. J Virol 82(10):4812–4822PubMedCrossRef
20.
Zurück zum Zitat Arnoult D et al (2008) The murine cytomegalovirus cell death suppressor m38.5 binds Bax and blocks Bax-mediated mitochondrial outer membrane permeabilization. Apoptosis 13(9):1100–1110PubMedCrossRef Arnoult D et al (2008) The murine cytomegalovirus cell death suppressor m38.5 binds Bax and blocks Bax-mediated mitochondrial outer membrane permeabilization. Apoptosis 13(9):1100–1110PubMedCrossRef
21.
Zurück zum Zitat Manzur M et al (2009) Virally mediated inhibition of Bax in leukocytes promotes dissemination of murine cytomegalovirus. Cell Death Differ 16(2):312–320PubMedCrossRef Manzur M et al (2009) Virally mediated inhibition of Bax in leukocytes promotes dissemination of murine cytomegalovirus. Cell Death Differ 16(2):312–320PubMedCrossRef
22.
Zurück zum Zitat Cam M et al (2010) Cytomegaloviruses inhibit Bak- and Bax-mediated apoptosis with two separate viral proteins. Cell Death Differ 17(4):655–665PubMedCrossRef Cam M et al (2010) Cytomegaloviruses inhibit Bak- and Bax-mediated apoptosis with two separate viral proteins. Cell Death Differ 17(4):655–665PubMedCrossRef
23.
Zurück zum Zitat McCormick AL et al (2005) Mitochondrial cell death suppressors carried by human and murine cytomegalovirus confer resistance to proteasome inhibitor-induced apoptosis. J Virol 79(19):12205–12217PubMedCrossRef McCormick AL et al (2005) Mitochondrial cell death suppressors carried by human and murine cytomegalovirus confer resistance to proteasome inhibitor-induced apoptosis. J Virol 79(19):12205–12217PubMedCrossRef
24.
Zurück zum Zitat Goldmacher VS et al (1999) A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci USA 96(22):12536–12541PubMedCrossRef Goldmacher VS et al (1999) A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci USA 96(22):12536–12541PubMedCrossRef
25.
26.
Zurück zum Zitat Arnoult D et al (2004) Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. Proc Nat Acad Sci USA 101(21):7988–7993PubMedCrossRef Arnoult D et al (2004) Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. Proc Nat Acad Sci USA 101(21):7988–7993PubMedCrossRef
27.
Zurück zum Zitat Poncet D et al (2004) An anti-apoptotic viral protein that recruits Bax to mitochondria. J Biol Chem 279(21):22605–22614PubMedCrossRef Poncet D et al (2004) An anti-apoptotic viral protein that recruits Bax to mitochondria. J Biol Chem 279(21):22605–22614PubMedCrossRef
28.
Zurück zum Zitat Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757(9–10):1371–1387PubMed Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757(9–10):1371–1387PubMed
29.
Zurück zum Zitat Vandenabeele P et al (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714PubMedCrossRef Vandenabeele P et al (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714PubMedCrossRef
30.
Zurück zum Zitat Vandenabeele P et al (2010) The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal 3(115):e4CrossRef Vandenabeele P et al (2010) The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal 3(115):e4CrossRef
31.
Zurück zum Zitat Goossens V et al (1999) Regulation of tumor necrosis factor-induced, mitochondria- and reactive oxygen species-dependent cell death by the electron flux through the electron transport chain complex I. Antioxid Redox Signal 1(3):285–295PubMedCrossRef Goossens V et al (1999) Regulation of tumor necrosis factor-induced, mitochondria- and reactive oxygen species-dependent cell death by the electron flux through the electron transport chain complex I. Antioxid Redox Signal 1(3):285–295PubMedCrossRef
32.
Zurück zum Zitat Zhang DW et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336PubMedCrossRef Zhang DW et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336PubMedCrossRef
33.
Zurück zum Zitat Feoktistova M et al (2011) cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43(3):449–463PubMedCrossRef Feoktistova M et al (2011) cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43(3):449–463PubMedCrossRef
34.
Zurück zum Zitat Kaiser WJ, Offermann MK (2005) Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J Immunol 174(8):4942–4952PubMed Kaiser WJ, Offermann MK (2005) Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J Immunol 174(8):4942–4952PubMed
35.
Zurück zum Zitat Rebsamen M et al (2009) DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep 10(8):916–922PubMedCrossRef Rebsamen M et al (2009) DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep 10(8):916–922PubMedCrossRef
36.
Zurück zum Zitat Upton J, K.W.a.M. E. (2012) DAI/ZBP1/DLM-1 Complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11(3) Upton J, K.W.a.M. E. (2012) DAI/ZBP1/DLM-1 Complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11(3)
37.
Zurück zum Zitat Brune W et al (2001) A ribonucleotide reductase homolog of cytomegalovirus and endothelial cell tropism. Science 291(5502):303–305PubMedCrossRef Brune W et al (2001) A ribonucleotide reductase homolog of cytomegalovirus and endothelial cell tropism. Science 291(5502):303–305PubMedCrossRef
38.
Zurück zum Zitat Lembo D et al (2004) The ribonucleotide reductase R1 homolog of murine cytomegalovirus is not a functional enzyme subunit but is required for pathogenesis. J Virol 78(8):4278–4288PubMedCrossRef Lembo D et al (2004) The ribonucleotide reductase R1 homolog of murine cytomegalovirus is not a functional enzyme subunit but is required for pathogenesis. J Virol 78(8):4278–4288PubMedCrossRef
39.
Zurück zum Zitat Mack C et al (2008) Inhibition of proinflammatory and innate immune signaling pathways by a cytomegalovirus RIP1-interacting protein. Proc Natl Acad Sci US A 105(8):3094–3099CrossRef Mack C et al (2008) Inhibition of proinflammatory and innate immune signaling pathways by a cytomegalovirus RIP1-interacting protein. Proc Natl Acad Sci US A 105(8):3094–3099CrossRef
40.
Zurück zum Zitat Upton JW, Kaiser WJ, Mocarski ES (2008) Cytomegalovirus M45 cell death suppression requires receptor-interacting protein (RIP) homotypic interaction motif (RHIM)-dependent interaction with RIP1. J Biol Chem 283(25):16966–16970PubMedCrossRef Upton JW, Kaiser WJ, Mocarski ES (2008) Cytomegalovirus M45 cell death suppression requires receptor-interacting protein (RIP) homotypic interaction motif (RHIM)-dependent interaction with RIP1. J Biol Chem 283(25):16966–16970PubMedCrossRef
41.
Zurück zum Zitat Upton JW, Kaiser WJ, Mocarski ES (2010) Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7(4):302–313PubMedCrossRef Upton JW, Kaiser WJ, Mocarski ES (2010) Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7(4):302–313PubMedCrossRef
42.
Zurück zum Zitat Fliss PM et al (2012) Viral mediated redirection of NEMO/IKKgamma to autophagosomes curtails the inflammatory cascade. PLoS Pathog 8(2):e1002517PubMedCrossRef Fliss PM et al (2012) Viral mediated redirection of NEMO/IKKgamma to autophagosomes curtails the inflammatory cascade. PLoS Pathog 8(2):e1002517PubMedCrossRef
43.
Zurück zum Zitat Dutta J et al (2006) Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene 25(51):6800–6816PubMedCrossRef Dutta J et al (2006) Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene 25(51):6800–6816PubMedCrossRef
44.
45.
Zurück zum Zitat Maher SG et al (2007) Interferon: cellular executioner or white knight? Curr Med Chem 14(12):1279–1289PubMedCrossRef Maher SG et al (2007) Interferon: cellular executioner or white knight? Curr Med Chem 14(12):1279–1289PubMedCrossRef
46.
Zurück zum Zitat Brandstadter JD, Yang Y (2011) Natural killer cell responses to viral infection. J Innate Immun 3(3):274–279PubMedCrossRef Brandstadter JD, Yang Y (2011) Natural killer cell responses to viral infection. J Innate Immun 3(3):274–279PubMedCrossRef
47.
Zurück zum Zitat Zahringer U et al (2008) TLR2—promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology 213(3–4):205–224PubMedCrossRef Zahringer U et al (2008) TLR2—promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology 213(3–4):205–224PubMedCrossRef
48.
Zurück zum Zitat Boehme KW, Guerrero M, Compton T (2006) Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J Immunol 177(10):7094–7102PubMed Boehme KW, Guerrero M, Compton T (2006) Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J Immunol 177(10):7094–7102PubMed
49.
Zurück zum Zitat Szomolanyi-Tsuda E et al (2006) Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo. J Virol 80(9):4286–4291PubMedCrossRef Szomolanyi-Tsuda E et al (2006) Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo. J Virol 80(9):4286–4291PubMedCrossRef
50.
Zurück zum Zitat Aliprantis AO et al (2000) The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J 19(13):3325–3336PubMedCrossRef Aliprantis AO et al (2000) The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J 19(13):3325–3336PubMedCrossRef
51.
Zurück zum Zitat Aravalli RN, Hu S, Lokensgard JR (2007) Toll-like receptor 2 signaling is a mediator of apoptosis in herpes simplex virus-infected microglia. J Neuroinflammation 4:11PubMedCrossRef Aravalli RN, Hu S, Lokensgard JR (2007) Toll-like receptor 2 signaling is a mediator of apoptosis in herpes simplex virus-infected microglia. J Neuroinflammation 4:11PubMedCrossRef
52.
Zurück zum Zitat He S et al (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci USA 108(50):20054–20059PubMedCrossRef He S et al (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci USA 108(50):20054–20059PubMedCrossRef
53.
Zurück zum Zitat Tabeta K et al (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 101(10):3516–3521PubMedCrossRef Tabeta K et al (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 101(10):3516–3521PubMedCrossRef
54.
Zurück zum Zitat Edelmann KH et al (2004) Does Toll-like receptor 3 play a biological role in virus infections? Virology 322(2):231–238PubMedCrossRef Edelmann KH et al (2004) Does Toll-like receptor 3 play a biological role in virus infections? Virology 322(2):231–238PubMedCrossRef
55.
Zurück zum Zitat Takaoka A et al (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448(7152):501–505PubMedCrossRef Takaoka A et al (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448(7152):501–505PubMedCrossRef
56.
Zurück zum Zitat Kaiser WJ, Upton JW, Mocarski ES (2008) Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J Immunol 181(9):6427–6434PubMed Kaiser WJ, Upton JW, Mocarski ES (2008) Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J Immunol 181(9):6427–6434PubMed
57.
Zurück zum Zitat Wu J, Fernandes-Alnemri T, Alnemri ES (2010) Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J Clin Immunol 30(5):693–702PubMedCrossRef Wu J, Fernandes-Alnemri T, Alnemri ES (2010) Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J Clin Immunol 30(5):693–702PubMedCrossRef
58.
Zurück zum Zitat Miao EA, Rajan JV, Aderem A (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev 243(1):206–214PubMedCrossRef Miao EA, Rajan JV, Aderem A (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev 243(1):206–214PubMedCrossRef
59.
Zurück zum Zitat Fernandes-Alnemri T et al (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458(7237):509–513PubMedCrossRef Fernandes-Alnemri T et al (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458(7237):509–513PubMedCrossRef
60.
Zurück zum Zitat Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109PubMedCrossRef Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109PubMedCrossRef
61.
Zurück zum Zitat Rathinam VA et al (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11(5):395–402PubMedCrossRef Rathinam VA et al (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11(5):395–402PubMedCrossRef
62.
Zurück zum Zitat Clemens MJ, Elia A (1997) The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res 17(9):503–524PubMedCrossRef Clemens MJ, Elia A (1997) The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res 17(9):503–524PubMedCrossRef
63.
Zurück zum Zitat Gil J, Esteban M (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5(2):107–114PubMedCrossRef Gil J, Esteban M (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5(2):107–114PubMedCrossRef
64.
Zurück zum Zitat Valchanova RS et al (2006) Murine cytomegalovirus m142 and m143 are both required to block protein kinase R-mediated shutdown of protein synthesis. J Virol 80(20):10181–10190PubMedCrossRef Valchanova RS et al (2006) Murine cytomegalovirus m142 and m143 are both required to block protein kinase R-mediated shutdown of protein synthesis. J Virol 80(20):10181–10190PubMedCrossRef
65.
Zurück zum Zitat Budt M et al (2009) Specific inhibition of the PKR-mediated antiviral response by the murine cytomegalovirus proteins m142 and m143. J Virol 83(3):1260–1270PubMedCrossRef Budt M et al (2009) Specific inhibition of the PKR-mediated antiviral response by the murine cytomegalovirus proteins m142 and m143. J Virol 83(3):1260–1270PubMedCrossRef
66.
Zurück zum Zitat Child SJ, Geballe AP (2009) Binding and relocalization of protein kinase R by murine cytomegalovirus. J Virol 83(4):1790–1799PubMedCrossRef Child SJ, Geballe AP (2009) Binding and relocalization of protein kinase R by murine cytomegalovirus. J Virol 83(4):1790–1799PubMedCrossRef
67.
Zurück zum Zitat Szegezdi E et al (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885PubMedCrossRef Szegezdi E et al (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885PubMedCrossRef
68.
Zurück zum Zitat Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34(Pt 1):7–11PubMed Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34(Pt 1):7–11PubMed
69.
Zurück zum Zitat Isler JA, Skalet AH, Alwine JC (2005) Human cytomegalovirus infection activates and regulates the unfolded protein response. J Virol 79(11):6890–6899PubMedCrossRef Isler JA, Skalet AH, Alwine JC (2005) Human cytomegalovirus infection activates and regulates the unfolded protein response. J Virol 79(11):6890–6899PubMedCrossRef
70.
Zurück zum Zitat Xuan B et al (2009) Human cytomegalovirus protein pUL38 induces ATF4 expression, inhibits persistent JNK phosphorylation, and suppresses endoplasmic reticulum stress-induced cell death. J Virol 83(8):3463–3474PubMedCrossRef Xuan B et al (2009) Human cytomegalovirus protein pUL38 induces ATF4 expression, inhibits persistent JNK phosphorylation, and suppresses endoplasmic reticulum stress-induced cell death. J Virol 83(8):3463–3474PubMedCrossRef
71.
Zurück zum Zitat Qian Z et al (2012) Murine cytomegalovirus targets transcription factor ATF4 to exploit the unfolded-protein response. J Virol 86(12):6712–6723PubMedCrossRef Qian Z et al (2012) Murine cytomegalovirus targets transcription factor ATF4 to exploit the unfolded-protein response. J Virol 86(12):6712–6723PubMedCrossRef
72.
Zurück zum Zitat Shiloh Y (2006) The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31(7):402–410PubMedCrossRef Shiloh Y (2006) The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31(7):402–410PubMedCrossRef
73.
Zurück zum Zitat Shieh SY et al (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14(3):289–300PubMed Shieh SY et al (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14(3):289–300PubMed
74.
Zurück zum Zitat Canman CE et al (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281(5383):1677–1679PubMedCrossRef Canman CE et al (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281(5383):1677–1679PubMedCrossRef
75.
Zurück zum Zitat Yang Y et al (2011) A cytosolic ATM/NEMO/RIP1 complex recruits TAK1 to mediate the NF-kappaB and p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein 2 responses to DNA damage. Mol Cell Biol 31(14):2774–2786PubMedCrossRef Yang Y et al (2011) A cytosolic ATM/NEMO/RIP1 complex recruits TAK1 to mediate the NF-kappaB and p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein 2 responses to DNA damage. Mol Cell Biol 31(14):2774–2786PubMedCrossRef
76.
Zurück zum Zitat Bock FJ et al (2012) P53-induced protein with a death domain (PIDD): master of puppets? Oncogene Bock FJ et al (2012) P53-induced protein with a death domain (PIDD): master of puppets? Oncogene
77.
Zurück zum Zitat Janssens S, Tinel A (2012) The PIDDosome, DNA-damage-induced apoptosis and beyond. Cell Death Differ 19(1):13–20PubMedCrossRef Janssens S, Tinel A (2012) The PIDDosome, DNA-damage-induced apoptosis and beyond. Cell Death Differ 19(1):13–20PubMedCrossRef
78.
Zurück zum Zitat Gaspar M, Shenk T (2006) Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins. Proc Natl Acad Sci USA 103(8):2821–2826PubMedCrossRef Gaspar M, Shenk T (2006) Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins. Proc Natl Acad Sci USA 103(8):2821–2826PubMedCrossRef
79.
Zurück zum Zitat Shen YH et al (2004) Human cytomegalovirus causes endothelial injury through the ataxia telangiectasia mutant and p53 DNA damage signaling pathways. Circ Res 94(10):1310–1317PubMedCrossRef Shen YH et al (2004) Human cytomegalovirus causes endothelial injury through the ataxia telangiectasia mutant and p53 DNA damage signaling pathways. Circ Res 94(10):1310–1317PubMedCrossRef
80.
Zurück zum Zitat Dufour F et al (2011) The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNFalpha- and FasL-induced apoptosis by interacting with caspase-8. Apoptosis 16(3):256–271PubMedCrossRef Dufour F et al (2011) The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNFalpha- and FasL-induced apoptosis by interacting with caspase-8. Apoptosis 16(3):256–271PubMedCrossRef
81.
Zurück zum Zitat Dufour F et al (2011) The ribonucleotide reductase R1 subunits of herpes simplex virus 1 and 2 protect cells against poly(I. C)-induced apoptosis. J Virol 85(17):8689–8701PubMedCrossRef Dufour F et al (2011) The ribonucleotide reductase R1 subunits of herpes simplex virus 1 and 2 protect cells against poly(I. C)-induced apoptosis. J Virol 85(17):8689–8701PubMedCrossRef
82.
Zurück zum Zitat Thome M et al (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386(6624):517–521PubMedCrossRef Thome M et al (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386(6624):517–521PubMedCrossRef
83.
Zurück zum Zitat Brooks C et al (2007) Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc Natl Acad Sci USA 104(28):11649–11654PubMedCrossRef Brooks C et al (2007) Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc Natl Acad Sci USA 104(28):11649–11654PubMedCrossRef
84.
Zurück zum Zitat Cartron PF et al (2003) Nonredundant role of Bax and Bak in Bid-mediated apoptosis. Mol Cell Biol 23(13):4701–4712PubMedCrossRef Cartron PF et al (2003) Nonredundant role of Bax and Bak in Bid-mediated apoptosis. Mol Cell Biol 23(13):4701–4712PubMedCrossRef
85.
Zurück zum Zitat Neise D et al (2008) Activation of the mitochondrial death pathway is commonly mediated by a preferential engagement of Bak. Oncogene 27(10):1387–1396PubMedCrossRef Neise D et al (2008) Activation of the mitochondrial death pathway is commonly mediated by a preferential engagement of Bak. Oncogene 27(10):1387–1396PubMedCrossRef
86.
Zurück zum Zitat Karbowski M et al (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443(7112):658–662PubMedCrossRef Karbowski M et al (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443(7112):658–662PubMedCrossRef
87.
Zurück zum Zitat Cheng EH et al (1997) A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci USA 94(2):690–694PubMedCrossRef Cheng EH et al (1997) A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci USA 94(2):690–694PubMedCrossRef
88.
Zurück zum Zitat Cheng G, Feng Z, He B (2005) Herpes simplex virus 1 infection activates the endoplasmic reticulum resident kinase PERK and mediates eIF-2alpha dephosphorylation by the gamma(1)34.5 protein. J Virol 79(3):1379–1388PubMedCrossRef Cheng G, Feng Z, He B (2005) Herpes simplex virus 1 infection activates the endoplasmic reticulum resident kinase PERK and mediates eIF-2alpha dephosphorylation by the gamma(1)34.5 protein. J Virol 79(3):1379–1388PubMedCrossRef
89.
Zurück zum Zitat Carpenter JE et al (2011) Autophagosome formation during varicella-zoster virus infection following endoplasmic reticulum stress and the unfolded protein response. J Virol 85(18):9414–9424PubMedCrossRef Carpenter JE et al (2011) Autophagosome formation during varicella-zoster virus infection following endoplasmic reticulum stress and the unfolded protein response. J Virol 85(18):9414–9424PubMedCrossRef
90.
Zurück zum Zitat Qian Z et al (2011) The human cytomegalovirus protein pUL38 suppresses endoplasmic reticulum stress-mediated cell death independently of its ability to induce mTORC1 activation. J Virol 85(17):9103–9113PubMedCrossRef Qian Z et al (2011) The human cytomegalovirus protein pUL38 suppresses endoplasmic reticulum stress-mediated cell death independently of its ability to induce mTORC1 activation. J Virol 85(17):9103–9113PubMedCrossRef
91.
Zurück zum Zitat Brune W (2011) Inhibition of programmed cell death by cytomegaloviruses. Virus Res 157(2):144–150PubMedCrossRef Brune W (2011) Inhibition of programmed cell death by cytomegaloviruses. Virus Res 157(2):144–150PubMedCrossRef
92.
Zurück zum Zitat Hicks SW, Machamer CE (2005) Golgi structure in stress sensing and apoptosis. Biochim Biophys Acta 1744(3):406–414PubMedCrossRef Hicks SW, Machamer CE (2005) Golgi structure in stress sensing and apoptosis. Biochim Biophys Acta 1744(3):406–414PubMedCrossRef
93.
Zurück zum Zitat Lane JD et al (2002) Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol 156(3):495–509PubMedCrossRef Lane JD et al (2002) Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol 156(3):495–509PubMedCrossRef
94.
Zurück zum Zitat Walker A et al (2004) Golgi fragmentation during Fas-mediated apoptosis is associated with the rapid loss of GM130. Biochem Biophys Res Commun 316(1):6–11PubMedCrossRef Walker A et al (2004) Golgi fragmentation during Fas-mediated apoptosis is associated with the rapid loss of GM130. Biochem Biophys Res Commun 316(1):6–11PubMedCrossRef
95.
Zurück zum Zitat Mancini M et al (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 149(3):603–612PubMedCrossRef Mancini M et al (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 149(3):603–612PubMedCrossRef
96.
Zurück zum Zitat Brune W, Nevels M, Shenk T (2003) Murine cytomegalovirus m41 open reading frame encodes a Golgi-localized antiapoptotic protein. J Virol 77(21):11633–11643PubMedCrossRef Brune W, Nevels M, Shenk T (2003) Murine cytomegalovirus m41 open reading frame encodes a Golgi-localized antiapoptotic protein. J Virol 77(21):11633–11643PubMedCrossRef
97.
Zurück zum Zitat de Mattia F et al (2009) Human Golgi antiapoptotic protein modulates intracellular calcium fluxes. Mol Biol Cell 20(16):3638–3645PubMedCrossRef de Mattia F et al (2009) Human Golgi antiapoptotic protein modulates intracellular calcium fluxes. Mol Biol Cell 20(16):3638–3645PubMedCrossRef
98.
Zurück zum Zitat Gubser C et al (2007) A new inhibitor of apoptosis from vaccinia virus and eukaryotes. PLoS Pathog 3(2):e17PubMedCrossRef Gubser C et al (2007) A new inhibitor of apoptosis from vaccinia virus and eukaryotes. PLoS Pathog 3(2):e17PubMedCrossRef
99.
Zurück zum Zitat Nikitin PA et al (2010) An ATM/Chk2-mediated DNA damage-responsive signaling pathway suppresses Epstein-Barr virus transformation of primary human B cells. Cell Host Microbe 8(6):510–522PubMedCrossRef Nikitin PA et al (2010) An ATM/Chk2-mediated DNA damage-responsive signaling pathway suppresses Epstein-Barr virus transformation of primary human B cells. Cell Host Microbe 8(6):510–522PubMedCrossRef
100.
Zurück zum Zitat Wilkinson DE, Weller SK (2004) Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response. J Virol 78(9):4783–4796PubMedCrossRef Wilkinson DE, Weller SK (2004) Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response. J Virol 78(9):4783–4796PubMedCrossRef
101.
Zurück zum Zitat Luo MH et al (2007) Human cytomegalovirus disrupts both ataxia telangiectasia mutated protein (ATM)- and ATM-Rad3-related kinase-mediated DNA damage responses during lytic infection. J Virol 81(4):1934–1950PubMedCrossRef Luo MH et al (2007) Human cytomegalovirus disrupts both ataxia telangiectasia mutated protein (ATM)- and ATM-Rad3-related kinase-mediated DNA damage responses during lytic infection. J Virol 81(4):1934–1950PubMedCrossRef
102.
Zurück zum Zitat Tuddenham L, Pfeffer S (2011) Roles and regulation of microRNAs in cytomegalovirus infection. Biochim Biophys Acta 1809(11–12):613–622PubMed Tuddenham L, Pfeffer S (2011) Roles and regulation of microRNAs in cytomegalovirus infection. Biochim Biophys Acta 1809(11–12):613–622PubMed
103.
Zurück zum Zitat Suffert G et al (2011) Kaposi’s sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis. PLoS Pathog 7(12):e1002405PubMedCrossRef Suffert G et al (2011) Kaposi’s sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis. PLoS Pathog 7(12):e1002405PubMedCrossRef
104.
Zurück zum Zitat Reeves MB et al (2007) Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316(5829):1345–1348PubMedCrossRef Reeves MB et al (2007) Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316(5829):1345–1348PubMedCrossRef
105.
Zurück zum Zitat Brune W, Hengel H, Koszinowski UH (2001) A mouse model for cytomegalovirus infection. Curr Protoc Immunol Chapter 19, Unit 19 7 Brune W, Hengel H, Koszinowski UH (2001) A mouse model for cytomegalovirus infection. Curr Protoc Immunol Chapter 19, Unit 19 7
106.
Zurück zum Zitat Guan C et al (2010) A review of current large-scale mouse knockout efforts. Genesis 48(2):73–85PubMed Guan C et al (2010) A review of current large-scale mouse knockout efforts. Genesis 48(2):73–85PubMed
107.
Zurück zum Zitat Ruzsics Z, Koszinowski UH (2008) Mutagenesis of the cytomegalovirus genome. Curr Top Microbiol Immunol 325:41–61 Ruzsics Z, Koszinowski UH (2008) Mutagenesis of the cytomegalovirus genome. Curr Top Microbiol Immunol 325:41–61
Metadaten
Titel
Live or let die: manipulation of cellular suicide programs by murine cytomegalovirus
verfasst von
Wiebke Handke
Eva Krause
Wolfram Brune
Publikationsdatum
01.11.2012
Verlag
Springer-Verlag
Erschienen in
Medical Microbiology and Immunology / Ausgabe 4/2012
Print ISSN: 0300-8584
Elektronische ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-012-0264-z

Weitere Artikel der Ausgabe 4/2012

Medical Microbiology and Immunology 4/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.