Skip to main content
Erschienen in: Diabetologia 3/2019

05.01.2019 | Article

lncRNA H19 prevents endothelial–mesenchymal transition in diabetic retinopathy

verfasst von: Anu A. Thomas, Saumik Biswas, Biao Feng, Shali Chen, John Gonder, Subrata Chakrabarti

Erschienen in: Diabetologia | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

The pathophysiology of diabetic retinopathy is linked to hyperglycaemia and its effect on retinal microvascular tissues. The resulting endothelial injury changes the endothelial cell phenotype to acquire mesenchymal properties (i.e. endothelial–mesenchymal transition [EndMT]). Such changes can be regulated by epigenetic mechanisms, including long non-coding RNAs (lncRNAs). lncRNA H19 may influence EndMT through TGF-β. We investigated the role of H19 in regulating EndMT during diabetic retinopathy.

Methods

H19 was overexpressed or silenced in human retinal endothelial cells exposed to various glucose levels. The cells were examined for H19, endothelial and mesenchymal markers. We then expanded the study to retinal tissues in a mouse model of diabetic retinopathy and also examined vitreous humour samples from individuals with proliferative diabetic retinopathy.

Results

Expression of H19 was downregulated in high glucose conditions (25 mmol/l). H19 overexpression prevented glucose-induced EndMT. Such changes appear to involve TGF-β through a Smad-independent mechanism. Diabetes caused downregulation of retinal H19. Using H19 knockout mice, we demonstrated similar EndMT in the retina. Examination of vitreous humour from individuals with proliferative diabetic retinopathy also reinforced the downregulation of H19 in diabetes.

Conclusions/interpretation

We therefore concluded that H19 regulates EndMT in diabetic retinopathy through specific mechanisms.

Data availability

The results from our previous microarray can be found online using the GEO accession number GSE122189.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
4.
Zurück zum Zitat Wong TY, Cheung CM, Larsen M, Sharma S, Simó R (2016) Diabetic retinopathy. Nat Rev Dis Primers 2:1–16CrossRef Wong TY, Cheung CM, Larsen M, Sharma S, Simó R (2016) Diabetic retinopathy. Nat Rev Dis Primers 2:1–16CrossRef
5.
Zurück zum Zitat Balakumar P, Jindal S, Shah DI, Singh M (2007) Experimental models for vascular endothelial dysfunction. Trends Med Res 2:12–20CrossRef Balakumar P, Jindal S, Shah DI, Singh M (2007) Experimental models for vascular endothelial dysfunction. Trends Med Res 2:12–20CrossRef
7.
22.
Zurück zum Zitat Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 long non-coding RNA in cancer intiation, progression and metastasis-a proposed unifying theory. Mol Cancer 14:1–14CrossRef Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 long non-coding RNA in cancer intiation, progression and metastasis-a proposed unifying theory. Mol Cancer 14:1–14CrossRef
27.
Zurück zum Zitat Feng B, Cao Y, Chen S et al (2016) miR-200b mediates endothelial-to- mesenchymal transition in diabetic cardiomyopathy. Diabetes 65:1–12CrossRef Feng B, Cao Y, Chen S et al (2016) miR-200b mediates endothelial-to- mesenchymal transition in diabetic cardiomyopathy. Diabetes 65:1–12CrossRef
28.
Zurück zum Zitat Zhu GH, Li R, Zeng Y, Zhou T, Xiong F, Zhu M (2018) MicroRNA-142-3p inhibits high-glucose-induced endothelial-to-mesenchymal transition through targeting TGF-β1/Smad pathway in primary human aortic endothelial cells. Int J Clin Exp Pathol 11:1208–1217PubMedPubMedCentral Zhu GH, Li R, Zeng Y, Zhou T, Xiong F, Zhu M (2018) MicroRNA-142-3p inhibits high-glucose-induced endothelial-to-mesenchymal transition through targeting TGF-β1/Smad pathway in primary human aortic endothelial cells. Int J Clin Exp Pathol 11:1208–1217PubMedPubMedCentral
32.
Zurück zum Zitat Biswas S, Thomas AA, Chen S et al (2018) MALAT1: an epigenetic regulator of inflammation in diabetic retinopathy. Sci Rep 8:1–15CrossRef Biswas S, Thomas AA, Chen S et al (2018) MALAT1: an epigenetic regulator of inflammation in diabetic retinopathy. Sci Rep 8:1–15CrossRef
35.
Zurück zum Zitat Gordon AD, Biswas SS, Feng B, Chakrabarti S (2018) MALAT1: a regulator of inflammatory cytokines in diabetic retinopathy. Endocrinol Diabetes Metab 1:1–11CrossRef Gordon AD, Biswas SS, Feng B, Chakrabarti S (2018) MALAT1: a regulator of inflammatory cytokines in diabetic retinopathy. Endocrinol Diabetes Metab 1:1–11CrossRef
36.
Zurück zum Zitat Wu Y, Zuo Y, Chakrabarti R, Feng B, Chen S, Chakrbarti S (2010) ERK5 contributes to VEGF alteration in diabetic retinopathy. J Ophthalmol 2010:1–11 Wu Y, Zuo Y, Chakrabarti R, Feng B, Chen S, Chakrbarti S (2010) ERK5 contributes to VEGF alteration in diabetic retinopathy. J Ophthalmol 2010:1–11
38.
Zurück zum Zitat Tang R, Li Q, Lv L et al (2010) Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells. Cardiovasc Diabetol 9:1–7 Tang R, Li Q, Lv L et al (2010) Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells. Cardiovasc Diabetol 9:1–7
40.
Zurück zum Zitat Xu Q, Deng F, Qin Y et al (2016) Long non-coding RNA regulation of epithelial–mesenchymal transition in cancer metastasis. Cell Death Dis 7:1–10 Xu Q, Deng F, Qin Y et al (2016) Long non-coding RNA regulation of epithelial–mesenchymal transition in cancer metastasis. Cell Death Dis 7:1–10
42.
Zurück zum Zitat Neumann P, Jae N, Knau A et al (2018) The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nat Commun 9:1–12CrossRef Neumann P, Jae N, Knau A et al (2018) The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nat Commun 9:1–12CrossRef
45.
Zurück zum Zitat Popov D (2020) Endothelial cell dysfunction in hyperglycemia: phenotypic change, intracellular signaling modification, ultrastructural alteration, and potential clinical outcomes. In J Diabetes Mellitus 2:189–195CrossRef Popov D (2020) Endothelial cell dysfunction in hyperglycemia: phenotypic change, intracellular signaling modification, ultrastructural alteration, and potential clinical outcomes. In J Diabetes Mellitus 2:189–195CrossRef
46.
Zurück zum Zitat Biswas S, Chakrabarti S (2017) Pathogenetic mechanisms in diabetic retinopathy: from molecules to cells to tissues. In: Kartha CC, Ramachandran S, Pillai RM (eds) Mechanisms of Vascular Defects in Diabetes Mellitus, Advances in Biochemistry in Health and Disease, 1st edn. Springer, Cham, pp 209–247 Biswas S, Chakrabarti S (2017) Pathogenetic mechanisms in diabetic retinopathy: from molecules to cells to tissues. In: Kartha CC, Ramachandran S, Pillai RM (eds) Mechanisms of Vascular Defects in Diabetes Mellitus, Advances in Biochemistry in Health and Disease, 1st edn. Springer, Cham, pp 209–247
49.
Zurück zum Zitat Abu El-Asrar AM, Struyf S, Kangave D, Van Damme J (2006) Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Eur Cytokine Netw 17(3):155–165PubMed Abu El-Asrar AM, Struyf S, Kangave D, Van Damme J (2006) Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Eur Cytokine Netw 17(3):155–165PubMed
50.
Zurück zum Zitat Peng H, Li Y, Wang C et al (2016) ROCK1 induces endothelial-to-mesenchymal transition in glomeruli to aggravate albuminuria in diabetic nephropathy. Sci Rep 6:1–10CrossRef Peng H, Li Y, Wang C et al (2016) ROCK1 induces endothelial-to-mesenchymal transition in glomeruli to aggravate albuminuria in diabetic nephropathy. Sci Rep 6:1–10CrossRef
52.
Zurück zum Zitat Yan XC, Cao J, Liang L et al (2016) miR-342-5p Is a Notch downstream molecule and regulates multiple angiogenic pathways including Notch, vascular endothelial growth factor and transforming growth factor signaling. J Am Heart Assoc 5:1–15 Yan XC, Cao J, Liang L et al (2016) miR-342-5p Is a Notch downstream molecule and regulates multiple angiogenic pathways including Notch, vascular endothelial growth factor and transforming growth factor signaling. J Am Heart Assoc 5:1–15
53.
Zurück zum Zitat Pardali E, Sanchez-Duffhues G, Gomez-Puerto MC, Dijke P (2017) TGF-induced endothelial-mesenchymal transition in fibrotic diseases. Int J Mol Sci 18:1–22CrossRef Pardali E, Sanchez-Duffhues G, Gomez-Puerto MC, Dijke P (2017) TGF-induced endothelial-mesenchymal transition in fibrotic diseases. Int J Mol Sci 18:1–22CrossRef
54.
Zurück zum Zitat Biswas S, Thomas AA, Chakrabarti S (2018) LncRNAs: proverbial genomic junk or key epigenetic regulators during cardiac fibrosis in diabetes? Front Cardiovasc Med 2018:1–13 Biswas S, Thomas AA, Chakrabarti S (2018) LncRNAs: proverbial genomic junk or key epigenetic regulators during cardiac fibrosis in diabetes? Front Cardiovasc Med 2018:1–13
59.
Zurück zum Zitat Cruz-Solbes AS (2017) Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): role and implications in kidney fibrosis. Kidney Dev Disease 60:345–372CrossRef Cruz-Solbes AS (2017) Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): role and implications in kidney fibrosis. Kidney Dev Disease 60:345–372CrossRef
Metadaten
Titel
lncRNA H19 prevents endothelial–mesenchymal transition in diabetic retinopathy
verfasst von
Anu A. Thomas
Saumik Biswas
Biao Feng
Shali Chen
John Gonder
Subrata Chakrabarti
Publikationsdatum
05.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 3/2019
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4797-6

Weitere Artikel der Ausgabe 3/2019

Diabetologia 3/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.