Skip to main content
Erschienen in: Clinical Neuroradiology 2/2018

23.01.2017 | Original Article

Localized N20 Component of Somatosensory Evoked Magnetic Fields in Frontoparietal Brain Tumor Patients Using Noise-Normalized Approaches

verfasst von: Nor Safira Elaina, Aamir Saeed Malik, Wafaa Khazaal Shams, Nasreen Badruddin, Jafri Malin Abdullah, Mohammad Faruque Reza

Erschienen in: Clinical Neuroradiology | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To localize sensorimotor cortical activation in 10 patients with frontoparietal tumors using quantitative magnetoencephalography (MEG) with noise-normalized approaches.

Material and Methods

Somatosensory evoked magnetic fields (SEFs) were elicited in 10 patients with somatosensory tumors and in 10 control participants using electrical stimulation of the median nerve via the right and left wrists. We localized the N20m component of the SEFs using dynamic statistical parametric mapping (dSPM) and standardized low-resolution brain electromagnetic tomography (sLORETA) combined with 3D magnetic resonance imaging (MRI). The obtained coordinates were compared between groups. Finally, we statistically evaluated the N20m parameters across hemispheres using non-parametric statistical tests.

Results

The N20m sources were accurately localized to Brodmann area 3b in all members of the control group and in seven of the patients; however, the sources were shifted in three patients relative to locations outside the primary somatosensory cortex (SI). Compared with the affected (tumor) hemispheres in the patient group, N20m amplitudes and the strengths of the current sources were significantly lower in the unaffected hemispheres and in both hemispheres of the control group. These results were consistent for both dSPM and sLORETA approaches.

Conclusion

Tumors in the sensorimotor cortex lead to cortical functional reorganization and an increase in N20m amplitude and current-source strengths. Noise-normalized approaches for MEG analysis that are integrated with MRI show accurate and reliable localization of sensorimotor function.
Literatur
1.
Zurück zum Zitat Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V. Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci. 1993;5(6):724–34. Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V. Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci. 1993;5(6):724–34.
2.
Zurück zum Zitat Wikström H, Roine RO, Salonen O, Aronen HJ, Virtanen J, Ilmoniemi RJ, Huttunen J. Somatosensory evoked magnetic fields to median nerve stimulation: interhemispheric differences in a normal population. Electroencephalogr Clin Neurophysiol. 1997;104(6):480–7. Wikström H, Roine RO, Salonen O, Aronen HJ, Virtanen J, Ilmoniemi RJ, Huttunen J. Somatosensory evoked magnetic fields to median nerve stimulation: interhemispheric differences in a normal population. Electroencephalogr Clin Neurophysiol. 1997;104(6):480–7.
3.
Zurück zum Zitat Kakigi R, Shibasaki H, Hashizume A, Kuroiwa Y. Short latency somatosensory evoked spinal and scalp-recorded potentials following posterior tibial nerve stimulation in man. Electroencephalogr Clin Neurophysiol. 1982;53(6):602–11. Kakigi R, Shibasaki H, Hashizume A, Kuroiwa Y. Short latency somatosensory evoked spinal and scalp-recorded potentials following posterior tibial nerve stimulation in man. Electroencephalogr Clin Neurophysiol. 1982;53(6):602–11.
4.
Zurück zum Zitat Kakigi R, Shibasaki H. Effects of age, gender, and stimulus side on the scalp topography of somatosensory evoked potentials following posterior tibial nerve stimulation. J Clin Neurophysiol. 1992;9(3):431–40.CrossRefPubMed Kakigi R, Shibasaki H. Effects of age, gender, and stimulus side on the scalp topography of somatosensory evoked potentials following posterior tibial nerve stimulation. J Clin Neurophysiol. 1992;9(3):431–40.CrossRefPubMed
5.
Zurück zum Zitat Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, Nagarajan SS. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg. 2012;117(2):354-62. Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, Nagarajan SS. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg. 2012;117(2):354-62.
6.
Zurück zum Zitat Backes WH, Mess WH, van Kranen-Mastenbroek V, Reulen JP. Somatosensory cortex responses to median nerve stimulation: fMRI effects of current amplitude and selective attention. Clin Neurophysiol. 2000;111(10):1738–44. Backes WH, Mess WH, van Kranen-Mastenbroek V, Reulen JP. Somatosensory cortex responses to median nerve stimulation: fMRI effects of current amplitude and selective attention. Clin Neurophysiol. 2000;111(10):1738–44.
7.
Zurück zum Zitat Gelnar PA, Krauss BR, Szeverenyi NM, Apkarian AV. Fingertip representation in the human somatosensory cortex: an fMRI study. Neuroimage. 1998;7(4):261–83.CrossRefPubMed Gelnar PA, Krauss BR, Szeverenyi NM, Apkarian AV. Fingertip representation in the human somatosensory cortex: an fMRI study. Neuroimage. 1998;7(4):261–83.CrossRefPubMed
8.
Zurück zum Zitat Frot M, Magnin M, Mauguière F, Garcia-Larrea L. Cortical representation of pain in primary sensory-motor areas (S1/M1) – a study using intracortical recordings in humans. Hum Brain Mapp. 2013;34(10):2655–68. Frot M, Magnin M, Mauguière F, Garcia-Larrea L. Cortical representation of pain in primary sensory-motor areas (S1/M1) – a study using intracortical recordings in humans. Hum Brain Mapp. 2013;34(10):2655–68.
9.
Zurück zum Zitat Papadelis C, Eickhoff SB, Zilles K, Ioannides AA. BA3b and BA1 activate in a serial fashion after median nerve stimulation: direct evidence from combining source analysis of evoked fields and cytoarchitectonic probabilistic maps. Neuroimage. 2011;54(1):60–73.CrossRefPubMed Papadelis C, Eickhoff SB, Zilles K, Ioannides AA. BA3b and BA1 activate in a serial fashion after median nerve stimulation: direct evidence from combining source analysis of evoked fields and cytoarchitectonic probabilistic maps. Neuroimage. 2011;54(1):60–73.CrossRefPubMed
10.
Zurück zum Zitat Lin YY, Chen WT, Liao KK, Yeh TC, Wu ZA, Ho LT, Lee LS. Differential generators for N20m and P35m responses to median nerve stimulation. Neuroimage. 2005;25(4):1090–9. Lin YY, Chen WT, Liao KK, Yeh TC, Wu ZA, Ho LT, Lee LS. Differential generators for N20m and P35m responses to median nerve stimulation. Neuroimage. 2005;25(4):1090–9.
11.
Zurück zum Zitat Pihko E, Lauronen L, Wikström H, Parkkonen L, Okada Y. Somatosensory evoked magnetic fields to median nerve stimulation in newborns. Int Congr Ser. 2005;1278:211–4.CrossRef Pihko E, Lauronen L, Wikström H, Parkkonen L, Okada Y. Somatosensory evoked magnetic fields to median nerve stimulation in newborns. Int Congr Ser. 2005;1278:211–4.CrossRef
12.
Zurück zum Zitat Kakigi R. Somatosensory evoked magnetic fields following median nerve stimulation. Neurosci Res. 1994;20(2):165–74.CrossRefPubMed Kakigi R. Somatosensory evoked magnetic fields following median nerve stimulation. Neurosci Res. 1994;20(2):165–74.CrossRefPubMed
13.
Zurück zum Zitat Allison T, McCarthy G, Wood CC, Darcey TM, Spencer DD, Williamson PD. Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol. 1989;62(3):694–710.CrossRefPubMed Allison T, McCarthy G, Wood CC, Darcey TM, Spencer DD, Williamson PD. Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol. 1989;62(3):694–710.CrossRefPubMed
14.
Zurück zum Zitat Roberts TP, Poeppel D, Rowley HA. Magnetoencephalography and magnetic source imaging. Neuropsychiatry Neuropsychol Behav Neurol. 1998;11(2):49–64. Roberts TP, Poeppel D, Rowley HA. Magnetoencephalography and magnetic source imaging. Neuropsychiatry Neuropsychol Behav Neurol. 1998;11(2):49–64.
15.
Zurück zum Zitat Kamada K, Takeuchi F, Kuriki S, Oshiro O, Houkin K, Abe H. Functional neurosurgical simulation with brain surface magnetic resonance images and magnetoencephalography. Neurosurgery. 1993;33(2):269–73.CrossRefPubMed Kamada K, Takeuchi F, Kuriki S, Oshiro O, Houkin K, Abe H. Functional neurosurgical simulation with brain surface magnetic resonance images and magnetoencephalography. Neurosurgery. 1993;33(2):269–73.CrossRefPubMed
16.
Zurück zum Zitat Mäkelä JP, Forss N, Jääskeläinen J, Kirveskari E, Korvenoja A, Paetau R. Magnetoencephalography in neurosurgery. Neurosurgery. 2006;59(3):493-510; discussion 510-1. Mäkelä JP, Forss N, Jääskeläinen J, Kirveskari E, Korvenoja A, Paetau R. Magnetoencephalography in neurosurgery. Neurosurgery. 2006;59(3):493-510; discussion 510-1.
17.
Zurück zum Zitat Alberstone CD, Skirboll SL, Benzel EC, Sanders JA, Hart BL, Baldwin NG, Tessman CL, Davis JT, Lee RR. Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. J Neurosurg. 2000;92(1):79–90. Alberstone CD, Skirboll SL, Benzel EC, Sanders JA, Hart BL, Baldwin NG, Tessman CL, Davis JT, Lee RR. Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. J Neurosurg. 2000;92(1):79–90.
18.
Zurück zum Zitat Romstöck J, Fahlbusch R, Ganslandt O, Nimsky C, Strauss C. Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry. 2002;72(2):221–9.CrossRefPubMedPubMedCentral Romstöck J, Fahlbusch R, Ganslandt O, Nimsky C, Strauss C. Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry. 2002;72(2):221–9.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Cedzich C, Taniguchi M, Schäfer S, Schramm J. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery. 1996;38(5):962–70.CrossRefPubMed Cedzich C, Taniguchi M, Schäfer S, Schramm J. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery. 1996;38(5):962–70.CrossRefPubMed
20.
Zurück zum Zitat Cao D, Terada K, Baba K, Araki K, Sakura Y, Usui N, Usui K, Kondo A, Matsuda K, Tottori T, Liao J, Zhai Q, Inoue Y. Characteristics of very high frequency oscillations of somatosensory evoked potentials in humans with epilepsy. Neurol Asia. 2014;19(2):137–48. Cao D, Terada K, Baba K, Araki K, Sakura Y, Usui N, Usui K, Kondo A, Matsuda K, Tottori T, Liao J, Zhai Q, Inoue Y. Characteristics of very high frequency oscillations of somatosensory evoked potentials in humans with epilepsy. Neurol Asia. 2014;19(2):137–48.
21.
Zurück zum Zitat Gerloff C, Braun C, Staudt M, Hegner YL, Dichgans J, Krägeloh-Mann I. Coherent corticomuscular oscillations originate from primary motor cortex: evidence from patients with early brain lesions. Hum Brain Mapp. 2006;27(10):789–98.CrossRefPubMed Gerloff C, Braun C, Staudt M, Hegner YL, Dichgans J, Krägeloh-Mann I. Coherent corticomuscular oscillations originate from primary motor cortex: evidence from patients with early brain lesions. Hum Brain Mapp. 2006;27(10):789–98.CrossRefPubMed
22.
Zurück zum Zitat Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol. 1987;32(1):11–22. Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol. 1987;32(1):11–22.
23.
Zurück zum Zitat Hoshiyama M, Kakigi R. Correspondence between short-latency somatosensory evoked brain potentials and cortical magnetic fields following median nerve stimulation. Brain Res. 2001;908(2):140–8.CrossRefPubMed Hoshiyama M, Kakigi R. Correspondence between short-latency somatosensory evoked brain potentials and cortical magnetic fields following median nerve stimulation. Brain Res. 2001;908(2):140–8.CrossRefPubMed
24.
Zurück zum Zitat Hämäläinen MS, Ilmoniemi RJ. Interpreting measured magnetic fields of the brain: estimates of current distributions. Helsinki: Helsinki University of Technology, Department of Technical Physics; 1984. Hämäläinen MS, Ilmoniemi RJ. Interpreting measured magnetic fields of the brain: estimates of current distributions. Helsinki: Helsinki University of Technology, Department of Technical Physics; 1984.
25.
Zurück zum Zitat Hämäläinen MS, Sarvas J. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng. 1989;36(2):165–71. Hämäläinen MS, Sarvas J. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng. 1989;36(2):165–71.
26.
Zurück zum Zitat Lin F‑H, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hämäläinen MS. Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. Neuroimage. 2006;31(1):160–71.CrossRefPubMed Lin F‑H, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hämäläinen MS. Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. Neuroimage. 2006;31(1):160–71.CrossRefPubMed
27.
Zurück zum Zitat Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113.CrossRefPubMed Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113.CrossRefPubMed
28.
Zurück zum Zitat Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:879716. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:879716.
29.
Zurück zum Zitat Shattuck DW, Leahy RM. BrainSuite: an automated cortical surface identification tool. Med Image Anal. 2002;6(2):129–42.CrossRefPubMed Shattuck DW, Leahy RM. BrainSuite: an automated cortical surface identification tool. Med Image Anal. 2002;6(2):129–42.CrossRefPubMed
30.
Zurück zum Zitat Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron. 2000;26(1):55–67. Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron. 2000;26(1):55–67.
31.
Zurück zum Zitat Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;24(Suppl D):5–12.PubMed Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;24(Suppl D):5–12.PubMed
32.
Zurück zum Zitat Kakigi R, Hoshiyama M, Shimojo M, Naka D, Yamasaki H, Watanabe S, Xiang J, Maeda K, Lam K, Itomi K, Nakamura A. The somatosensory evoked magnetic fields. Prog Neurobiol. 2000;61(5):495–523. Kakigi R, Hoshiyama M, Shimojo M, Naka D, Yamasaki H, Watanabe S, Xiang J, Maeda K, Lam K, Itomi K, Nakamura A. The somatosensory evoked magnetic fields. Prog Neurobiol. 2000;61(5):495–523.
33.
Zurück zum Zitat Mideksa KG, Hellriegel H, Hoogenboom N, Krause H, Schnitzler A, Deuschl G, Raethjen J, Heute U, Muthuraman M. Source analysis of median nerve stimulated somatosensory evoked potentials and fields using simultaneously measured EEG and MEG signals. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4903–6. Mideksa KG, Hellriegel H, Hoogenboom N, Krause H, Schnitzler A, Deuschl G, Raethjen J, Heute U, Muthuraman M. Source analysis of median nerve stimulated somatosensory evoked potentials and fields using simultaneously measured EEG and MEG signals. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4903–6.
34.
Zurück zum Zitat Nakasato N, Seki K, Fujita S, Hatanaka K, Kawamura T, Ohtomo S, Kanno A, Ikeda H, Yoshimoto T. Clinical application of visual evoked fields using an MRI-linked whole head MEG system. Front Med Biol Eng. 1995;7(4):275–83. Nakasato N, Seki K, Fujita S, Hatanaka K, Kawamura T, Ohtomo S, Kanno A, Ikeda H, Yoshimoto T. Clinical application of visual evoked fields using an MRI-linked whole head MEG system. Front Med Biol Eng. 1995;7(4):275–83.
35.
Zurück zum Zitat Ahrens H, Argin F, Klinkenbusch L. A comparison of minimum norm and MUSIC for a combined MEG/EEG sensor array. Adv Radio Sci. 2012;10:99–104. Ahrens H, Argin F, Klinkenbusch L. A comparison of minimum norm and MUSIC for a combined MEG/EEG sensor array. Adv Radio Sci. 2012;10:99–104.
36.
Zurück zum Zitat Roberts TP, Tran Q, Ferrari P, Berger MS. Increased somatosensory neuromagnetic fields ipsilateral to lesions in neurosurgical patients. Neuroreport. 2002;13(5):699–702.CrossRefPubMed Roberts TP, Tran Q, Ferrari P, Berger MS. Increased somatosensory neuromagnetic fields ipsilateral to lesions in neurosurgical patients. Neuroreport. 2002;13(5):699–702.CrossRefPubMed
37.
Zurück zum Zitat Willemse RB, de Munck JC, van’t Ent D, Ris P, Baayen JC, Stam CJ, Vandertop WP. Magnetoencephalographic study of posterior tibial nerve stimulation in patients with intracranial lesions around the central sulcus. Neurosurgery. 2007;61(6):1209–18. Willemse RB, de Munck JC, van’t Ent D, Ris P, Baayen JC, Stam CJ, Vandertop WP. Magnetoencephalographic study of posterior tibial nerve stimulation in patients with intracranial lesions around the central sulcus. Neurosurgery. 2007;61(6):1209–18.
38.
Zurück zum Zitat Ossenblok P, Leijten F, De Munck J, Huiskamp G, Barkhof F, Boon P. Magnetic source imaging contributes to the presurgical identification of sensorimotor cortex in patients with frontal lobe epilepsy. Clin Neurophysiol. 2003;114(2):221–32.CrossRefPubMed Ossenblok P, Leijten F, De Munck J, Huiskamp G, Barkhof F, Boon P. Magnetic source imaging contributes to the presurgical identification of sensorimotor cortex in patients with frontal lobe epilepsy. Clin Neurophysiol. 2003;114(2):221–32.CrossRefPubMed
39.
Zurück zum Zitat Buchner H, Adams L, Knepper A, Rüger R, Laborde G, Gilsbach JM, Ludwig I, Reul J, Scherg M. Preoperative localization of the central sulcus by dipole source analysis of early somatosensory evoked potentials and three-dimensional magnetic resonance imaging. J Neurosurg. 1994;80(5):849–56. Buchner H, Adams L, Knepper A, Rüger R, Laborde G, Gilsbach JM, Ludwig I, Reul J, Scherg M. Preoperative localization of the central sulcus by dipole source analysis of early somatosensory evoked potentials and three-dimensional magnetic resonance imaging. J Neurosurg. 1994;80(5):849–56.
40.
Zurück zum Zitat Niranjan A, Laing EJ, Laghari FJ, Richardson RM, Lunsford LD. Preoperative magnetoencephalographic sensory cortex mapping. Stereotact Funct Neurosurg. 2013;91(5):314–22.CrossRefPubMed Niranjan A, Laing EJ, Laghari FJ, Richardson RM, Lunsford LD. Preoperative magnetoencephalographic sensory cortex mapping. Stereotact Funct Neurosurg. 2013;91(5):314–22.CrossRefPubMed
41.
Zurück zum Zitat Oishi M, Fukuda M, Kameyama S, Kawaguchi T, Masuda H, Tanaka R. Magnetoencephalographic representation of the sensorimotor hand area in cases of intracerebral tumour. J Neurol Neurosurg Psychiatry. 2003;74(12):1649–54.CrossRefPubMedPubMedCentral Oishi M, Fukuda M, Kameyama S, Kawaguchi T, Masuda H, Tanaka R. Magnetoencephalographic representation of the sensorimotor hand area in cases of intracerebral tumour. J Neurol Neurosurg Psychiatry. 2003;74(12):1649–54.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Oishi M, Kameyama S, Watanabe M, Kawaguchi T, Morota N, Tomikawa M, Masuda H, Takahashi H, Tanaka R. Presurgical functional mapping of the sensorimotor area using evoked magnetic fields. No Shinkei Geka. 2002;30(4):391–7. Oishi M, Kameyama S, Watanabe M, Kawaguchi T, Morota N, Tomikawa M, Masuda H, Takahashi H, Tanaka R. Presurgical functional mapping of the sensorimotor area using evoked magnetic fields. No Shinkei Geka. 2002;30(4):391–7.
43.
Zurück zum Zitat Kober H, Nimsky C, Möller M, Hastreiter P, Fahlbusch R, Ganslandt O. Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage. 2001;14(5):1214–28.CrossRefPubMed Kober H, Nimsky C, Möller M, Hastreiter P, Fahlbusch R, Ganslandt O. Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage. 2001;14(5):1214–28.CrossRefPubMed
44.
Zurück zum Zitat Grummich P, Nimsky C, Pauli E, Buchfelder M, Ganslandt O. Combining fMRI and MEG increases the reliability of presurgical language localization: a clinical study on the difference between and congruence of both modalities. Neuroimage. 2006;32(4):1793–803.CrossRefPubMed Grummich P, Nimsky C, Pauli E, Buchfelder M, Ganslandt O. Combining fMRI and MEG increases the reliability of presurgical language localization: a clinical study on the difference between and congruence of both modalities. Neuroimage. 2006;32(4):1793–803.CrossRefPubMed
45.
Zurück zum Zitat Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys. 1993;65(2):413–97. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys. 1993;65(2):413–97.
46.
Zurück zum Zitat Im CH, An KO, Lee C, Jung HK, Lee YH. Enhancing accuracy in magneto-and electroencephalography focal source localization. IEEE Trans Magn. 2006;42(4):1387–90. Im CH, An KO, Lee C, Jung HK, Lee YH. Enhancing accuracy in magneto-and electroencephalography focal source localization. IEEE Trans Magn. 2006;42(4):1387–90.
47.
Zurück zum Zitat Baillet S, Mosher JC, Leahy RM. Electromagnetic brain mapping. Ieee Signal Process Mag. 2001;18(6):14–30.CrossRef Baillet S, Mosher JC, Leahy RM. Electromagnetic brain mapping. Ieee Signal Process Mag. 2001;18(6):14–30.CrossRef
48.
Zurück zum Zitat Ioannides AA. Magnetoencephalography (MEG). Dyn Brain Imaging. 2009;489:167–88.CrossRef Ioannides AA. Magnetoencephalography (MEG). Dyn Brain Imaging. 2009;489:167–88.CrossRef
49.
Zurück zum Zitat Dale AM, Sereno MI. Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci. 1993;5(2):162–76.CrossRefPubMed Dale AM, Sereno MI. Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci. 1993;5(2):162–76.CrossRefPubMed
50.
Zurück zum Zitat Hansen P, Kringelbach M, Salmelin R. MEG: an introduction to methods. Oxford: Oxford university press; 2010.CrossRef Hansen P, Kringelbach M, Salmelin R. MEG: an introduction to methods. Oxford: Oxford university press; 2010.CrossRef
51.
Zurück zum Zitat Uutela K, Hämäläinen M, Somersalo E. Visualization of magnetoencephalographic data using minimum current estimates. Neuroimage. 1999;10(2):173–80.CrossRefPubMed Uutela K, Hämäläinen M, Somersalo E. Visualization of magnetoencephalographic data using minimum current estimates. Neuroimage. 1999;10(2):173–80.CrossRefPubMed
52.
Zurück zum Zitat Liu AK, Belliveau JW, Dale AM. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci. 1998;95(15):8945–50.CrossRefPubMedPubMedCentral Liu AK, Belliveau JW, Dale AM. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci. 1998;95(15):8945–50.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Fuchs M, Wagner M, Köhler T, Wischmann HA. Linear and nonlinear current density reconstructions. J Clin Neurophysiol. 1999;16(3):267–95. Fuchs M, Wagner M, Köhler T, Wischmann HA. Linear and nonlinear current density reconstructions. J Clin Neurophysiol. 1999;16(3):267–95.
54.
Zurück zum Zitat Vorwerk J, Cho J‑H, Rampp S, Hamer H, Knösche TR, Wolters CH. A guideline for head volume conductor modeling in EEG and MEG. Neuroimage. 2014;100:590–607.CrossRefPubMed Vorwerk J, Cho J‑H, Rampp S, Hamer H, Knösche TR, Wolters CH. A guideline for head volume conductor modeling in EEG and MEG. Neuroimage. 2014;100:590–607.CrossRefPubMed
55.
Zurück zum Zitat Gramfort A, Papadopoulo T, Olivi E, Clerc M. Forward field computation with OpenMEEG. Comput Intell Neurosci. 2011;2011:923703. Gramfort A, Papadopoulo T, Olivi E, Clerc M. Forward field computation with OpenMEEG. Comput Intell Neurosci. 2011;2011:923703.
56.
Zurück zum Zitat Lin FH, Belliveau JW, Dale AM, Hämäläinen MS. Distributed current estimates using cortical orientation constraints. Hum Brain Mapp. 2006;27(1):1–13.CrossRefPubMed Lin FH, Belliveau JW, Dale AM, Hämäläinen MS. Distributed current estimates using cortical orientation constraints. Hum Brain Mapp. 2006;27(1):1–13.CrossRefPubMed
57.
Zurück zum Zitat Sharon D, Hämäläinen MS, Tootell RB, Halgren E, Belliveau JW. The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex. Neuroimage. 2007;36(4):1225–35.CrossRefPubMedPubMedCentral Sharon D, Hämäläinen MS, Tootell RB, Halgren E, Belliveau JW. The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex. Neuroimage. 2007;36(4):1225–35.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Tanaka N, Cole AJ, von Pechmann D, Wakeman DG, Hämäläinen MS, Liu H, Madsen JR, Bourgeois BF, Stufflebeam SM. Dynamic statistical parametric mapping for analyzing ictal magnetoencephalographic spikes in patients with intractable frontal lobe epilepsy. Epilepsy Res. 2009;85(2):279–86. Tanaka N, Cole AJ, von Pechmann D, Wakeman DG, Hämäläinen MS, Liu H, Madsen JR, Bourgeois BF, Stufflebeam SM. Dynamic statistical parametric mapping for analyzing ictal magnetoencephalographic spikes in patients with intractable frontal lobe epilepsy. Epilepsy Res. 2009;85(2):279–86.
59.
Zurück zum Zitat Hagiwara K, Ogata K, Hironaga N, Tobimatsu S, Okamoto T, Uehara T. et al. (editors) Neuromagnetic changes of the somatosensory information processing in normal aging. ICME International Conference on Complex Medical Engineering. 2012. Hagiwara K, Ogata K, Hironaga N, Tobimatsu S, Okamoto T, Uehara T. et al. (editors) Neuromagnetic changes of the somatosensory information processing in normal aging. ICME International Conference on Complex Medical Engineering. 2012.
60.
Zurück zum Zitat Stephen JM, Ranken D, Best E, Adair J, Knoefel J, Kovacevic S, Padilla D, Hart B, Aine CJ. Aging changes and gender differences in response to median nerve stimulation measured with MEG. Clin Neurophysiol. 2006;117(1):131–43. Stephen JM, Ranken D, Best E, Adair J, Knoefel J, Kovacevic S, Padilla D, Hart B, Aine CJ. Aging changes and gender differences in response to median nerve stimulation measured with MEG. Clin Neurophysiol. 2006;117(1):131–43.
61.
Zurück zum Zitat Papadelis C, Leonardelli E, Staudt M, Braun C. Can magnetoencephalography track the afferent information flow along white matter thalamo-cortical fibers? Neuroimage. 2012;60(2):1092–105.CrossRefPubMed Papadelis C, Leonardelli E, Staudt M, Braun C. Can magnetoencephalography track the afferent information flow along white matter thalamo-cortical fibers? Neuroimage. 2012;60(2):1092–105.CrossRefPubMed
62.
Zurück zum Zitat Chang WS, Kim BS, Jung HH, Kim K, Kwon HC, Lee YH, Chang JW. Decreased inhibitory neuronal activity in patients with frontal lobe brain tumors with seizure presentation: Preliminary study using magnetoencephalography. Acta Neurochir (Wien). 2013;155(8):1449–57. Chang WS, Kim BS, Jung HH, Kim K, Kwon HC, Lee YH, Chang JW. Decreased inhibitory neuronal activity in patients with frontal lobe brain tumors with seizure presentation: Preliminary study using magnetoencephalography. Acta Neurochir (Wien). 2013;155(8):1449–57.
63.
Zurück zum Zitat Bast T, Wright T, Boor R, Harting I, Feneberg R, Rupp A, Hoechstetter K, Rating D, Baumgärtner U. Combined EEG and MEG analysis of early somatosensory evoked activity in children and adolescents with focal epilepsies. Clin Neurophysiol. 2007;118(8):1721–35. Bast T, Wright T, Boor R, Harting I, Feneberg R, Rupp A, Hoechstetter K, Rating D, Baumgärtner U. Combined EEG and MEG analysis of early somatosensory evoked activity in children and adolescents with focal epilepsies. Clin Neurophysiol. 2007;118(8):1721–35.
64.
Zurück zum Zitat Kubota M, Takeshita K, Sakakihara Y, Yanagisawa M. Magnetoencephalographic study of giant somatosensory evoked responses in patients with rolandic epilepsy. J Child Neurol. 2000;15(6):370–9.CrossRefPubMed Kubota M, Takeshita K, Sakakihara Y, Yanagisawa M. Magnetoencephalographic study of giant somatosensory evoked responses in patients with rolandic epilepsy. J Child Neurol. 2000;15(6):370–9.CrossRefPubMed
65.
Zurück zum Zitat Manganotti P, Miniussi C, Santorum E, Tinazzi M, Bonato C, Polo A, Marzi CA, Fiaschi A, Dalla Bernardina B, Zanette G. Scalp topography and source analysis of interictal spontaneous spikes and evoked spikes by digital stimulation in benign rolandic epilepsy. Electroencephalogr Clin Neurophysiol. 1998;107(1):18–26. Manganotti P, Miniussi C, Santorum E, Tinazzi M, Bonato C, Polo A, Marzi CA, Fiaschi A, Dalla Bernardina B, Zanette G. Scalp topography and source analysis of interictal spontaneous spikes and evoked spikes by digital stimulation in benign rolandic epilepsy. Electroencephalogr Clin Neurophysiol. 1998;107(1):18–26.
66.
Zurück zum Zitat Theuvenet PJ, van Dijk BW, Peters MJ, van Ree JM, Lopes da Silva FL, Chen AC. Whole-head MEG analysis of cortical spatial organization from unilateral stimulation of median nerve in both hands: no complete hemispheric homology. Neuroimage. 2005;28(2):314–25. Theuvenet PJ, van Dijk BW, Peters MJ, van Ree JM, Lopes da Silva FL, Chen AC. Whole-head MEG analysis of cortical spatial organization from unilateral stimulation of median nerve in both hands: no complete hemispheric homology. Neuroimage. 2005;28(2):314–25.
67.
Zurück zum Zitat Hari R, Nagamine T, Nishitani N, Mikuni N, Sato T, Tarkiainen A, Shibasaki H. Time-varying activation of different cytoarchitectonic areas of the human SI cortex after tibial nerve stimulation. Neuroimage. 1996;4(2):111–8. Hari R, Nagamine T, Nishitani N, Mikuni N, Sato T, Tarkiainen A, Shibasaki H. Time-varying activation of different cytoarchitectonic areas of the human SI cortex after tibial nerve stimulation. Neuroimage. 1996;4(2):111–8.
68.
Zurück zum Zitat Kakigi R, Koyama S, Hoshiyama M, Shimojo M, Kitamura Y, Watanabe S. Topography of somatosensory evoked magnetic fields following posterior tibial nerve stimulation. Electroencephalogr Clin Neurophysiol. 1995;95(2):127–34.CrossRefPubMed Kakigi R, Koyama S, Hoshiyama M, Shimojo M, Kitamura Y, Watanabe S. Topography of somatosensory evoked magnetic fields following posterior tibial nerve stimulation. Electroencephalogr Clin Neurophysiol. 1995;95(2):127–34.CrossRefPubMed
69.
Zurück zum Zitat Rossini PM, Narici L, Martino G, Pasquarelli A, Peresson M, Pizzella V, Tecchio F, Romani GL. Analysis of interhemispheric asymmetries of somatosensory evoked magnetic fields to right and left median nerve stimulation. Electroencephalogr Clin Neurophysiol. 1994;91(6):476–82. Rossini PM, Narici L, Martino G, Pasquarelli A, Peresson M, Pizzella V, Tecchio F, Romani GL. Analysis of interhemispheric asymmetries of somatosensory evoked magnetic fields to right and left median nerve stimulation. Electroencephalogr Clin Neurophysiol. 1994;91(6):476–82.
70.
Zurück zum Zitat Rossini PM, Tecchio F, Pizzella V, Lupoi D, Cassetta E, Paqualetti P. Interhemispheric differences of sensory hand areas after monohemispheric stroke: MEG/MRI integrative study. Neuroimage. 2001;14(2):474–85.CrossRefPubMed Rossini PM, Tecchio F, Pizzella V, Lupoi D, Cassetta E, Paqualetti P. Interhemispheric differences of sensory hand areas after monohemispheric stroke: MEG/MRI integrative study. Neuroimage. 2001;14(2):474–85.CrossRefPubMed
71.
Zurück zum Zitat Sörös P, Knecht S, Imai T, Gürtler S, Lütkenhöner B, Ringelstein EB, Henningsen H. Cortical asymmetries of the human somatosensory hand representation in right-and left-handers. Neurosci Lett. 1999;271(2):89–92. Sörös P, Knecht S, Imai T, Gürtler S, Lütkenhöner B, Ringelstein EB, Henningsen H. Cortical asymmetries of the human somatosensory hand representation in right-and left-handers. Neurosci Lett. 1999;271(2):89–92.
72.
Zurück zum Zitat Liepert J, Restemeyer C, Kucinski T, Zittel S, Weiller C. Motor strokes the lesion location determines motor excitability changes. Stroke. 2005;36(12):2648–53.CrossRefPubMed Liepert J, Restemeyer C, Kucinski T, Zittel S, Weiller C. Motor strokes the lesion location determines motor excitability changes. Stroke. 2005;36(12):2648–53.CrossRefPubMed
73.
Zurück zum Zitat Elaina NS, Malik A, Badruddin N, Abdullah JM, Reza MF. (editors) Somatosensory source localization for the magnetoencephalography (MEG) inverse problem in patients with brain tumor. Biomedical Engineering (ICoBE), 2nd International Conference. 2015. Elaina NS, Malik A, Badruddin N, Abdullah JM, Reza MF. (editors) Somatosensory source localization for the magnetoencephalography (MEG) inverse problem in patients with brain tumor. Biomedical Engineering (ICoBE), 2nd International Conference. 2015.
74.
Zurück zum Zitat Tecchio F, Zappasodi F, Tombini M, Oliviero A, Pasqualetti P, Vernieri F, Ercolani M, Pizzella V, Rossini PM. Brain plasticity in recovery from stroke: an MEG assessment. Neuroimage. 2006;32(3):1326–34. Tecchio F, Zappasodi F, Tombini M, Oliviero A, Pasqualetti P, Vernieri F, Ercolani M, Pizzella V, Rossini PM. Brain plasticity in recovery from stroke: an MEG assessment. Neuroimage. 2006;32(3):1326–34.
Metadaten
Titel
Localized N20 Component of Somatosensory Evoked Magnetic Fields in Frontoparietal Brain Tumor Patients Using Noise-Normalized Approaches
verfasst von
Nor Safira Elaina
Aamir Saeed Malik
Wafaa Khazaal Shams
Nasreen Badruddin
Jafri Malin Abdullah
Mohammad Faruque Reza
Publikationsdatum
23.01.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Neuroradiology / Ausgabe 2/2018
Print ISSN: 1869-1439
Elektronische ISSN: 1869-1447
DOI
https://doi.org/10.1007/s00062-017-0557-0

Weitere Artikel der Ausgabe 2/2018

Clinical Neuroradiology 2/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.