Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 2/2017

10.11.2016 | Research Article

Long-Lasting forward Suppression of Spontaneous Firing in Auditory Neurons: Implication to the Residual Inhibition of Tinnitus

verfasst von: A. V. Galazyuk, S. V. Voytenko, R. J. Longenecker

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Tinnitus is the perception of a sound that has no external source. Sound stimuli can suppress spontaneous firing in auditory neurons long after stimulus offset. It is unknown how changes in sound stimulus parameters affect this forward suppression. Using in vivo extracellular recording in awake mice, we found that about 40 % of spontaneously active inferior colliculus (IC) neurons exhibited forward suppression of spontaneous activity after sound offset. The duration of this suppression increased with sound duration and lasted about 40 s following a 30-s stimulus offset. Pure tones presented at the neuron’s characteristic frequency (CF) were more effective in triggering suppression compared to non-CF or wideband noise stimuli. In contrast, non-CF stimuli often induced forward facilitation. About one third of IC neurons exhibited shorter suppression durations with each subsequent sound presentation. These characteristics of forward suppression are similar to the psychoacoustic properties of residual inhibition of tinnitus: a phenomenon of brief (about 30 s) suppression of tinnitus observed in tinnitus patients after sound presentations. Because elevated spontaneous firing in central auditory neurons has been linked to tinnitus, forward suppression of this firing with sound might be an underlying mechanism of residual inhibition.
Literatur
Zurück zum Zitat Brozoski TJ, Bauer CA, Caspary DM (2002) Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci 22:2383–2390PubMed Brozoski TJ, Bauer CA, Caspary DM (2002) Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci 22:2383–2390PubMed
Zurück zum Zitat Dong S, Mulders WH, Rodger J, Woo S, Robertson D (2010) Acoustic trauma evokes hyperactivity and changes in gene expression in guinea-pig auditory brainstem. Eur J Neurosci 31:1616–1628PubMed Dong S, Mulders WH, Rodger J, Woo S, Robertson D (2010) Acoustic trauma evokes hyperactivity and changes in gene expression in guinea-pig auditory brainstem. Eur J Neurosci 31:1616–1628PubMed
Zurück zum Zitat Ebert U, Ostwald J (1995) GABA can improve acoustic contrast in the rat ventral cochlear nucleus. Exp Brain Res 104:310–322CrossRefPubMed Ebert U, Ostwald J (1995) GABA can improve acoustic contrast in the rat ventral cochlear nucleus. Exp Brain Res 104:310–322CrossRefPubMed
Zurück zum Zitat Eggermont JJ (2000) Sound-induced synchronization of neural activity between and within three auditory cortical areas. J Neurophysiol 83:2708–2722PubMed Eggermont JJ (2000) Sound-induced synchronization of neural activity between and within three auditory cortical areas. J Neurophysiol 83:2708–2722PubMed
Zurück zum Zitat Eggermont JJ (2016) Acquired hearing loss and brain plasticity. Hear Res xx:1–15 Eggermont JJ (2016) Acquired hearing loss and brain plasticity. Hear Res xx:1–15
Zurück zum Zitat Eggermont JJ, Roberts LE (2015) Tinnitus: animal models and findings in humans. Cell Tissue Res 361:311–336CrossRefPubMed Eggermont JJ, Roberts LE (2015) Tinnitus: animal models and findings in humans. Cell Tissue Res 361:311–336CrossRefPubMed
Zurück zum Zitat Feldmann H (1971) Homolateral and contralateral masking of tinnitus by noise-bands and by pure tones. Audiology 10:138–144CrossRefPubMed Feldmann H (1971) Homolateral and contralateral masking of tinnitus by noise-bands and by pure tones. Audiology 10:138–144CrossRefPubMed
Zurück zum Zitat Finlayson PG, Kaltenbach JA (2009) Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure. Hear Res 256:104–117CrossRefPubMedPubMedCentral Finlayson PG, Kaltenbach JA (2009) Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure. Hear Res 256:104–117CrossRefPubMedPubMedCentral
Zurück zum Zitat Galazyuk AV, Hebert S (2015) Gap-prepulse inhibition of the acoustic startle reflex (GPIAS) for tinnitus assessment: current status and future directions. Front Neurol 6:88CrossRefPubMedPubMedCentral Galazyuk AV, Hebert S (2015) Gap-prepulse inhibition of the acoustic startle reflex (GPIAS) for tinnitus assessment: current status and future directions. Front Neurol 6:88CrossRefPubMedPubMedCentral
Zurück zum Zitat Galazyuk AV, Llano D, Feng AS (2000) Temporal dynamics of acoustic stimuli enhance amplitude tuning of inferior colliculus neurons. J Neurophysiol 83:128–138PubMed Galazyuk AV, Llano D, Feng AS (2000) Temporal dynamics of acoustic stimuli enhance amplitude tuning of inferior colliculus neurons. J Neurophysiol 83:128–138PubMed
Zurück zum Zitat Galazyuk AV, Lin W, Llano D, Feng AS (2005) Leading inhibition to neural oscillation is important for time-domain processing in the auditory midbrain. J Neurophysiol 94:314–326CrossRefPubMed Galazyuk AV, Lin W, Llano D, Feng AS (2005) Leading inhibition to neural oscillation is important for time-domain processing in the auditory midbrain. J Neurophysiol 94:314–326CrossRefPubMed
Zurück zum Zitat Galazyuk AV, Wenstrup JJ, Hamid MA (2012) Tinnitus and underlying brain mechanisms. Curr Opin Otolaryngol Head Neck Surg 20:409–415CrossRefPubMed Galazyuk AV, Wenstrup JJ, Hamid MA (2012) Tinnitus and underlying brain mechanisms. Curr Opin Otolaryngol Head Neck Surg 20:409–415CrossRefPubMed
Zurück zum Zitat Grimsley CA, Longenecker RJ, Rosen MJ, Young JW, Grimsley JM, Galazyuk AV (2015) An improved approach to separating startle data from noise. J Neurosci Methods 253:206–217CrossRefPubMedPubMedCentral Grimsley CA, Longenecker RJ, Rosen MJ, Young JW, Grimsley JM, Galazyuk AV (2015) An improved approach to separating startle data from noise. J Neurosci Methods 253:206–217CrossRefPubMedPubMedCentral
Zurück zum Zitat Harris DM, Dallos P (1979) Forward masking of auditory nerve fiber responses. J Neurophysiol 42:1083–1107PubMed Harris DM, Dallos P (1979) Forward masking of auditory nerve fiber responses. J Neurophysiol 42:1083–1107PubMed
Zurück zum Zitat Hays SA, Rennaker RL, Kilgard MP (2013) Targeting plasticity with vagus nerve stimulation to treat neurological disease. Prog Brain Res 207:275–299CrossRefPubMedPubMedCentral Hays SA, Rennaker RL, Kilgard MP (2013) Targeting plasticity with vagus nerve stimulation to treat neurological disease. Prog Brain Res 207:275–299CrossRefPubMedPubMedCentral
Zurück zum Zitat Hazell JW, Wood S (1981) Tinnitus masking-a significant contribution to tinnitus management. Br J Audiol 15:223–230CrossRefPubMed Hazell JW, Wood S (1981) Tinnitus masking-a significant contribution to tinnitus management. Br J Audiol 15:223–230CrossRefPubMed
Zurück zum Zitat Ison JR, Allen PD (2007) Pre-but not post-menopausal female CBA/CaJ mice show less prepulse inhibition than male mice of the same age. Behav Brain Res 185:76–81CrossRefPubMed Ison JR, Allen PD (2007) Pre-but not post-menopausal female CBA/CaJ mice show less prepulse inhibition than male mice of the same age. Behav Brain Res 185:76–81CrossRefPubMed
Zurück zum Zitat Ison JR, Castro J, Allen P, Virag TM, Walton JP (2002) The relative detectability for mice of gaps having different ramp durations at their onset and offset boundaries. J Acoust Soc Am 112:740–747CrossRefPubMed Ison JR, Castro J, Allen P, Virag TM, Walton JP (2002) The relative detectability for mice of gaps having different ramp durations at their onset and offset boundaries. J Acoust Soc Am 112:740–747CrossRefPubMed
Zurück zum Zitat Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8:221–254CrossRefPubMed Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8:221–254CrossRefPubMed
Zurück zum Zitat Kaltenbach JA, Afman CE (2000) Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res 140:165–172. doi:10.1016/s0378-5955(99)00197-5 Kaltenbach JA, Afman CE (2000) Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res 140:165–172. doi:10.​1016/​s0378-5955(99)00197-5
Zurück zum Zitat Langguth B, De Ridder D (2013) Tinnitus: therapeutic use of superficial brain stimulation. Handb Clin Neurol 116:441–467CrossRefPubMed Langguth B, De Ridder D (2013) Tinnitus: therapeutic use of superficial brain stimulation. Handb Clin Neurol 116:441–467CrossRefPubMed
Zurück zum Zitat Lipman RI, Lipman SP (2007) Phase-shift treatment for predominant tone tinnitus. Otolaryngol Head Neck Surg 136:763–768CrossRefPubMed Lipman RI, Lipman SP (2007) Phase-shift treatment for predominant tone tinnitus. Otolaryngol Head Neck Surg 136:763–768CrossRefPubMed
Zurück zum Zitat Mulders WH, Robertson D (2009) Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience 164:733–746CrossRefPubMed Mulders WH, Robertson D (2009) Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience 164:733–746CrossRefPubMed
Zurück zum Zitat Nelson PC, Smith ZM, Young ED (2009) Wide-dynamic-range forward suppression in marmoset inferior colliculus neurons is generated centrally and accounts for perceptual masking. J Neurosci 29:2553–2562CrossRefPubMedPubMedCentral Nelson PC, Smith ZM, Young ED (2009) Wide-dynamic-range forward suppression in marmoset inferior colliculus neurons is generated centrally and accounts for perceptual masking. J Neurosci 29:2553–2562CrossRefPubMedPubMedCentral
Zurück zum Zitat Noreña AJ, Eggermont JJ (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183:137–153CrossRefPubMed Noreña AJ, Eggermont JJ (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183:137–153CrossRefPubMed
Zurück zum Zitat Olsen SØ, Nielsen LH, Osterhammel PAA, Rasmussen AN, Ludvigsen C, Westermann S (1996) Experiments with sweeping pure tones for the inhibition of tinnitus. J Audiological Medicine 5:27–37 Olsen SØ, Nielsen LH, Osterhammel PAA, Rasmussen AN, Ludvigsen C, Westermann S (1996) Experiments with sweeping pure tones for the inhibition of tinnitus. J Audiological Medicine 5:27–37
Zurück zum Zitat Plappert CF, Rodenbücher AM, Pilz PK (2005) Effects of sex and estrous cycle on modulation of the acoustic startle response in mice. Physiol Behav 84:585–594CrossRefPubMed Plappert CF, Rodenbücher AM, Pilz PK (2005) Effects of sex and estrous cycle on modulation of the acoustic startle response in mice. Physiol Behav 84:585–594CrossRefPubMed
Zurück zum Zitat Portfors CV, Roberts PD (2007) Temporal and frequency characteristics of cartwheel cells in the dorsal cochlear nucleus of the awake mouse. J Neurophysiol 98:744–756CrossRefPubMed Portfors CV, Roberts PD (2007) Temporal and frequency characteristics of cartwheel cells in the dorsal cochlear nucleus of the awake mouse. J Neurophysiol 98:744–756CrossRefPubMed
Zurück zum Zitat Relkin EM, Turner CW (1988) A reexamination of forward masking in the auditory nerve. J Acoust Soc Am 84:584–591CrossRefPubMed Relkin EM, Turner CW (1988) A reexamination of forward masking in the auditory nerve. J Acoust Soc Am 84:584–591CrossRefPubMed
Zurück zum Zitat Roberts LE, Moffat G, Bosnyak DJ (2006) Residual inhibition functions in relation to tinnitus spectra and auditory threshold shift. Acta Otolaryngol Suppl 556:27–33CrossRef Roberts LE, Moffat G, Bosnyak DJ (2006) Residual inhibition functions in relation to tinnitus spectra and auditory threshold shift. Acta Otolaryngol Suppl 556:27–33CrossRef
Zurück zum Zitat Roberts LE, Moffat G, Baumann M, Ward LM, Bosnyak DJ (2008) Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. J Assoc Res Otolaryngol 9:417–435CrossRefPubMedPubMedCentral Roberts LE, Moffat G, Baumann M, Ward LM, Bosnyak DJ (2008) Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. J Assoc Res Otolaryngol 9:417–435CrossRefPubMedPubMedCentral
Zurück zum Zitat Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30:14972–14979CrossRefPubMedPubMedCentral Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30:14972–14979CrossRefPubMedPubMedCentral
Zurück zum Zitat Roberts LE, Bosnyak DJ, Bruce IC, Gander PE, Paul BT (2015) Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus. Hear Res 327:9–27CrossRefPubMed Roberts LE, Bosnyak DJ, Bruce IC, Gander PE, Paul BT (2015) Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus. Hear Res 327:9–27CrossRefPubMed
Zurück zum Zitat Salvi RJ, Wang J, Ding D (2000) Auditory plasticity and hyperactivity following cochlear damage. Hear Res 147:261–274CrossRefPubMed Salvi RJ, Wang J, Ding D (2000) Auditory plasticity and hyperactivity following cochlear damage. Hear Res 147:261–274CrossRefPubMed
Zurück zum Zitat Schleuning AJ, Johnson RM (1997) Use of masking for tinnitus. Int Tinnitus J 3:25–29PubMed Schleuning AJ, Johnson RM (1997) Use of masking for tinnitus. Int Tinnitus J 3:25–29PubMed
Zurück zum Zitat Sedley W, Gander PE, Kumar S, Oya H, Kovach CK, Nourski KV, Kawasaki H, Howard MA 3rd, Griffiths TD (2015) Intracranial mapping of a cortical tinnitus system using residual inhibition. Curr Biol 25:1208–1214CrossRefPubMedPubMedCentral Sedley W, Gander PE, Kumar S, Oya H, Kovach CK, Nourski KV, Kawasaki H, Howard MA 3rd, Griffiths TD (2015) Intracranial mapping of a cortical tinnitus system using residual inhibition. Curr Biol 25:1208–1214CrossRefPubMedPubMedCentral
Zurück zum Zitat Smalling JM, Galazyuk AV, Feng AS (2001) Stimulation rate influences frequency tuning characteristics of inferior colliculus neurons in the little brown bat, Myotis lucifugus. Neuroreport 12:3539–3542CrossRefPubMed Smalling JM, Galazyuk AV, Feng AS (2001) Stimulation rate influences frequency tuning characteristics of inferior colliculus neurons in the little brown bat, Myotis lucifugus. Neuroreport 12:3539–3542CrossRefPubMed
Zurück zum Zitat Smit JV, Janssen ML, Schulze H, Jahanshahi A, Van Overbeeke JJ, Temel Y, Stokroos RJ (2015) Deep brain stimulation in tinnitus: current and future perspectives. Brain Res 1608:51–65CrossRefPubMed Smit JV, Janssen ML, Schulze H, Jahanshahi A, Van Overbeeke JJ, Temel Y, Stokroos RJ (2015) Deep brain stimulation in tinnitus: current and future perspectives. Brain Res 1608:51–65CrossRefPubMed
Zurück zum Zitat Smith RL (1977) Short-term adaptation in single auditory nerve fibers: some poststimulatory effects. J Neurophysiol 40:1098–1111PubMed Smith RL (1977) Short-term adaptation in single auditory nerve fibers: some poststimulatory effects. J Neurophysiol 40:1098–1111PubMed
Zurück zum Zitat Sockalingam R, Dunphy L, Nam K, Gulliver M (2007) Effectiveness of frequency-matched masking and residual inhibition in tinnitus therapy: a preliminary study. Audiol Med 5:92–102CrossRef Sockalingam R, Dunphy L, Nam K, Gulliver M (2007) Effectiveness of frequency-matched masking and residual inhibition in tinnitus therapy: a preliminary study. Audiol Med 5:92–102CrossRef
Zurück zum Zitat Spalding JA (1903) Tinnitus, with a plea for its more accurate musical notation. Archives of Otology 32:263–272 Spalding JA (1903) Tinnitus, with a plea for its more accurate musical notation. Archives of Otology 32:263–272
Zurück zum Zitat Terry AM, Jones DM, Davis BR, Slater R (1983) Parametric studies of tinnitus masking and residual inhibition. Br J Audiol 17:245–256CrossRefPubMed Terry AM, Jones DM, Davis BR, Slater R (1983) Parametric studies of tinnitus masking and residual inhibition. Br J Audiol 17:245–256CrossRefPubMed
Zurück zum Zitat Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195CrossRefPubMed Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195CrossRefPubMed
Zurück zum Zitat Tyler RS, Conrad-Armes D, Smith PA (1984) Postmasking effects of sensorineural tinnitus: a preliminary investigation. J Speech Hear Res 27:466–474CrossRefPubMed Tyler RS, Conrad-Armes D, Smith PA (1984) Postmasking effects of sensorineural tinnitus: a preliminary investigation. J Speech Hear Res 27:466–474CrossRefPubMed
Zurück zum Zitat Vanneste S, De Ridder D (2012) Noninvasive and invasive neuromodulation for the treatment of tinnitus: an overview. Neuromodulation 15:350–360CrossRefPubMed Vanneste S, De Ridder D (2012) Noninvasive and invasive neuromodulation for the treatment of tinnitus: an overview. Neuromodulation 15:350–360CrossRefPubMed
Zurück zum Zitat Vernon JA, Meikle MB (1981) Tinnitus masking: unresolved problems. CIBA Found Symp 85:239–262PubMed Vernon JA, Meikle MB (1981) Tinnitus masking: unresolved problems. CIBA Found Symp 85:239–262PubMed
Zurück zum Zitat Vernon JA, Meikle MB (2003) Tinnitus: clinical measurement. Otolaryngol Clin N Am 36:293–305CrossRef Vernon JA, Meikle MB (2003) Tinnitus: clinical measurement. Otolaryngol Clin N Am 36:293–305CrossRef
Zurück zum Zitat Voytenko SV, Galazyuk AV (2010) Suppression of spontaneous firing in inferior colliculus neurons during sound processing. Neuroscience 165:1490–1500CrossRefPubMed Voytenko SV, Galazyuk AV (2010) Suppression of spontaneous firing in inferior colliculus neurons during sound processing. Neuroscience 165:1490–1500CrossRefPubMed
Zurück zum Zitat Voytenko SV, Galazyuk AV (2011) mGluRs modulate neuronal firing in the auditory midbrain. Neurosci Lett 492:145–149CrossRefPubMed Voytenko SV, Galazyuk AV (2011) mGluRs modulate neuronal firing in the auditory midbrain. Neurosci Lett 492:145–149CrossRefPubMed
Zurück zum Zitat Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445CrossRefPubMed Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445CrossRefPubMed
Zurück zum Zitat Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403CrossRefPubMed Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403CrossRefPubMed
Zurück zum Zitat Zhou X, Jen PH (2006) Duration selectivity of bat inferior collicular neurons improves with increasing pulse repetition rate. Chin J Physiol 49:46–55PubMed Zhou X, Jen PH (2006) Duration selectivity of bat inferior collicular neurons improves with increasing pulse repetition rate. Chin J Physiol 49:46–55PubMed
Metadaten
Titel
Long-Lasting forward Suppression of Spontaneous Firing in Auditory Neurons: Implication to the Residual Inhibition of Tinnitus
verfasst von
A. V. Galazyuk
S. V. Voytenko
R. J. Longenecker
Publikationsdatum
10.11.2016
Verlag
Springer US
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 2/2017
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-016-0601-9

Weitere Artikel der Ausgabe 2/2017

Journal of the Association for Research in Otolaryngology 2/2017 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.