Skip to main content
Erschienen in: Heart Failure Reviews 6/2020

29.10.2019

Long non-coding RNAs in cardiac hypertrophy

verfasst von: Jinghui Sun, Chenglong Wang

Erschienen in: Heart Failure Reviews | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Abstract

Cardiac hypertrophy (CH) is generally considered adaptive responses that may occur after myocardial infarction, pressure overload, volume overload, inflammatory heart muscle disease, or idiopathic dilated cardiomyopathy, whereas long-term stimulation eventually leads to heart failure (HF). However, the current molecular mechanisms involved in CH are unclear. Recently, increasing evidences reveal that long non-coding RNAs (lncRNAs) play vital roles in CH. Different lncRNAs can promote or inhibit the pathological process of CH by different mechanisms, while the regulation of lncRNAs expression can improve CH. Thus, CH-related lncRNAs may become a novel field of research on CH.
Literatur
1.
Zurück zum Zitat Balakumar P, Jagadeesh G (2010) Multifarious molecular signaling cascades of cardiac hypertrophy: can the muddy waters be cleared? Pharmacol Res 62:365–383PubMed Balakumar P, Jagadeesh G (2010) Multifarious molecular signaling cascades of cardiac hypertrophy: can the muddy waters be cleared? Pharmacol Res 62:365–383PubMed
2.
Zurück zum Zitat Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMed Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMed
3.
Zurück zum Zitat Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DJ, Drazner MH et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:1810–1852PubMed Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DJ, Drazner MH et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:1810–1852PubMed
4.
Zurück zum Zitat Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116:1462–1476PubMedPubMedCentral Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116:1462–1476PubMedPubMedCentral
5.
Zurück zum Zitat Dunham IKAAS (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74 Dunham IKAAS (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74
6.
Zurück zum Zitat Da SL, Baldassarre A, Masotti A (2012) Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int J Mol Sci 13:97–114 Da SL, Baldassarre A, Masotti A (2012) Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int J Mol Sci 13:97–114
7.
Zurück zum Zitat Shang D, Yang H, Xu Y, Yao Q, Zhou W, Shi X, Han J, Su F, Su B, Zhang C, Li C, Li X (2015) A global view of network of lncRNAs and their binding proteins. Mol BioSyst 11:656–663PubMed Shang D, Yang H, Xu Y, Yao Q, Zhou W, Shi X, Han J, Su F, Su B, Zhang C, Li C, Li X (2015) A global view of network of lncRNAs and their binding proteins. Mol BioSyst 11:656–663PubMed
8.
Zurück zum Zitat Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726PubMedPubMedCentral Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726PubMedPubMedCentral
9.
Zurück zum Zitat Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature 470:284–288PubMedPubMedCentral Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature 470:284–288PubMedPubMedCentral
10.
Zurück zum Zitat Ginger MR, Shore AN, Contreras A, Rijnkels M, Miller J, Gonzalez-Rimbau MF, Rosen JM (2006) A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc Natl Acad Sci U S A 103:5781–5786PubMedPubMedCentral Ginger MR, Shore AN, Contreras A, Rijnkels M, Miller J, Gonzalez-Rimbau MF, Rosen JM (2006) A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc Natl Acad Sci U S A 103:5781–5786PubMedPubMedCentral
11.
Zurück zum Zitat Kanduri C (2011) Kcnq1ot1: a chromatin regulatory RNA. Semin Cell Dev Biol 22:343–350PubMed Kanduri C (2011) Kcnq1ot1: a chromatin regulatory RNA. Semin Cell Dev Biol 22:343–350PubMed
12.
Zurück zum Zitat Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369PubMedPubMedCentral Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369PubMedPubMedCentral
13.
Zurück zum Zitat Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159PubMed Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159PubMed
14.
Zurück zum Zitat Li X, Zhang L, Liang J (2016) Unraveling the expression profiles of long noncoding RNAs in rat cardiac hypertrophy and functions of lncRNA BC088254 in cardiac hypertrophy induced by transverse aortic constriction. Cardiology 134:84–98PubMed Li X, Zhang L, Liang J (2016) Unraveling the expression profiles of long noncoding RNAs in rat cardiac hypertrophy and functions of lncRNA BC088254 in cardiac hypertrophy induced by transverse aortic constriction. Cardiology 134:84–98PubMed
15.
Zurück zum Zitat Sun L, Zhang Y, Zhang Y, Gu Y, Xuan L, Liu S et al (2014) Expression profile of long non-coding RNAs in a mouse model of cardiac hypertrophy. Int J Cardiol 177:73–75PubMed Sun L, Zhang Y, Zhang Y, Gu Y, Xuan L, Liu S et al (2014) Expression profile of long non-coding RNAs in a mouse model of cardiac hypertrophy. Int J Cardiol 177:73–75PubMed
16.
Zurück zum Zitat Zhang Y, Su L, Zhang K (2016) Transcriptional Effects of E3 Ligase Nrdp1 on Hypertrophy in neonatal rat cardiomyocytes by microarray and integrated gene network analysis. Cardiology 135:203–215PubMed Zhang Y, Su L, Zhang K (2016) Transcriptional Effects of E3 Ligase Nrdp1 on Hypertrophy in neonatal rat cardiomyocytes by microarray and integrated gene network analysis. Cardiology 135:203–215PubMed
17.
Zurück zum Zitat Song C, Zhang J, Liu Y, Pan H, Qi HP, Cao YG et al (2016) Construction and analysis of cardiac hypertrophy-associated lncRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in cardiac hypertrophy. Oncotarget 7:10827–10840PubMedPubMedCentral Song C, Zhang J, Liu Y, Pan H, Qi HP, Cao YG et al (2016) Construction and analysis of cardiac hypertrophy-associated lncRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in cardiac hypertrophy. Oncotarget 7:10827–10840PubMedPubMedCentral
18.
Zurück zum Zitat Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388PubMed Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388PubMed
19.
Zurück zum Zitat Ha T, Hua F, Li Y, Ma J, Gao X, Kelley J et al (2006) Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 290:H985–H994PubMed Ha T, Hua F, Li Y, Ma J, Gao X, Kelley J et al (2006) Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 290:H985–H994PubMed
20.
Zurück zum Zitat Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen RE, Custers K, Peters T, Hazebroek M, Stöger L, Wijnands E, Janssen BJ, Creemers EE, Pinto YM, Grimm D, Schürmann N, Vigorito E, Thum T, Stassen F, Yin X, Mayr M, de Windt LJ, Lutgens E, Wouters K, de Winther MP, Zacchigna S, Giacca M, van Bilsen M, Papageorgiou AP, Schroen B (2013) Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128:1420–1432PubMed Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen RE, Custers K, Peters T, Hazebroek M, Stöger L, Wijnands E, Janssen BJ, Creemers EE, Pinto YM, Grimm D, Schürmann N, Vigorito E, Thum T, Stassen F, Yin X, Mayr M, de Windt LJ, Lutgens E, Wouters K, de Winther MP, Zacchigna S, Giacca M, van Bilsen M, Papageorgiou AP, Schroen B (2013) Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128:1420–1432PubMed
21.
Zurück zum Zitat Wo Y, Guo J, Li P, Yang H, Wo J (2018) Long non-coding RNA CHRF facilitates cardiac hypertrophy through regulating Akt3 via miR-93. Cardiovasc Pathol 35:29–36PubMed Wo Y, Guo J, Li P, Yang H, Wo J (2018) Long non-coding RNA CHRF facilitates cardiac hypertrophy through regulating Akt3 via miR-93. Cardiovasc Pathol 35:29–36PubMed
22.
Zurück zum Zitat Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600PubMed Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600PubMed
23.
Zurück zum Zitat Dorn GN, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537PubMedPubMedCentral Dorn GN, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537PubMedPubMedCentral
24.
Zurück zum Zitat Taniyama Y, Ito M, Sato K, Kuester C, Veit K, Tremp G, Liao R, Colucci WS, Ivashchenko Y, Walsh K, Shiojima I (2005) Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy. J Mol Cell Cardiol 38:375–385PubMed Taniyama Y, Ito M, Sato K, Kuester C, Veit K, Tremp G, Liao R, Colucci WS, Ivashchenko Y, Walsh K, Shiojima I (2005) Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy. J Mol Cell Cardiol 38:375–385PubMed
25.
Zurück zum Zitat Yu X, Zou T, Zou L, Jin J, Xiao F, Yang J (2017) Plasma long noncoding RNA urothelial carcinoma associated 1 predicts poor prognosis in chronic heart failure patients. Med Sci Monit 23:2226–2231PubMedPubMedCentral Yu X, Zou T, Zou L, Jin J, Xiao F, Yang J (2017) Plasma long noncoding RNA urothelial carcinoma associated 1 predicts poor prognosis in chronic heart failure patients. Med Sci Monit 23:2226–2231PubMedPubMedCentral
26.
Zurück zum Zitat Zhou G, Li C, Feng J, Zhang J, Fang Y (2018) lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Med 8:130–139PubMedPubMedCentral Zhou G, Li C, Feng J, Zhang J, Fang Y (2018) lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Med 8:130–139PubMedPubMedCentral
27.
Zurück zum Zitat Pirro M, Schillaci G, Menecali C, Bagaglia F, Paltriccia R, Vaudo G, Mannarino MR, Mannarino E (2007) Reduced number of circulating endothelial progenitors and HOXA9 expression in CD34+ cells of hypertensive patients. J Hypertens 25:2093–2099PubMed Pirro M, Schillaci G, Menecali C, Bagaglia F, Paltriccia R, Vaudo G, Mannarino MR, Mannarino E (2007) Reduced number of circulating endothelial progenitors and HOXA9 expression in CD34+ cells of hypertensive patients. J Hypertens 25:2093–2099PubMed
28.
Zurück zum Zitat Wen ZQ, Li SH, Shui X, Tang LL, Zheng JR, Chen L (2019) LncRNA PEG10 aggravates cardiac hypertrophy through regulating HOXA9. Eur Rev Med Pharmacol Sci 23:281–286PubMed Wen ZQ, Li SH, Shui X, Tang LL, Zheng JR, Chen L (2019) LncRNA PEG10 aggravates cardiac hypertrophy through regulating HOXA9. Eur Rev Med Pharmacol Sci 23:281–286PubMed
29.
Zurück zum Zitat Jiang F, Zhou X, Huang J (2016) Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy. PLoS One 11:e152767 Jiang F, Zhou X, Huang J (2016) Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy. PLoS One 11:e152767
30.
Zurück zum Zitat Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618PubMed Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618PubMed
31.
Zurück zum Zitat Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:322r–326r Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:322r–326r
32.
Zurück zum Zitat McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, Coxon FP, Miranda de Stegmann D, Bhogaraju S, Maddi K, Kirchof A, Gatti E, Helfrich MH, Wakatsuki S, Behrends C, Pierre P, Dikic I (2015) PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell 57:39–54PubMed McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, Coxon FP, Miranda de Stegmann D, Bhogaraju S, Maddi K, Kirchof A, Gatti E, Helfrich MH, Wakatsuki S, Behrends C, Pierre P, Dikic I (2015) PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell 57:39–54PubMed
33.
Zurück zum Zitat Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, Nishida K, Shimizu T, Hori M, Komuro I, Takuji Shirasawa TS, Mizushima N, Otsu K (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6:600–606PubMed Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, Nishida K, Shimizu T, Hori M, Komuro I, Takuji Shirasawa TS, Mizushima N, Otsu K (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6:600–606PubMed
34.
Zurück zum Zitat Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S et al (2012) The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3:1078PubMed Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S et al (2012) The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3:1078PubMed
35.
Zurück zum Zitat Wang Y, Cao R, Yang W, Qi B (2019) SP1-SYNE1-AS1-miR-525-5p feedback loop regulates Ang-II-induced cardiac hypertrophy. J Cell Physiol 234:14319–14329PubMed Wang Y, Cao R, Yang W, Qi B (2019) SP1-SYNE1-AS1-miR-525-5p feedback loop regulates Ang-II-induced cardiac hypertrophy. J Cell Physiol 234:14319–14329PubMed
36.
Zurück zum Zitat Dong ZX, Wan L, Wang RJ, Shi YQ, Liu GZ, Zheng SJ, Hou HL, Han W, Hai X (2017) (-)-Epicatechin Suppresses angiotensin II-induced cardiac hypertrophy via the activation of the SP1/SIRT1 signaling pathway. Cell Physiol Biochem 41:2004–2015PubMed Dong ZX, Wan L, Wang RJ, Shi YQ, Liu GZ, Zheng SJ, Hou HL, Han W, Hai X (2017) (-)-Epicatechin Suppresses angiotensin II-induced cardiac hypertrophy via the activation of the SP1/SIRT1 signaling pathway. Cell Physiol Biochem 41:2004–2015PubMed
37.
Zurück zum Zitat Hu X, Li T, Zhang C, Liu Y, Xu M, Wang W, Jia Z, Ma K, Zhang Y, Zhou C (2011) GATA4 regulates ANF expression synergistically with Sp1 in a cardiac hypertrophy model. J Cell Mol Med 15:1865–1877PubMedPubMedCentral Hu X, Li T, Zhang C, Liu Y, Xu M, Wang W, Jia Z, Ma K, Zhang Y, Zhou C (2011) GATA4 regulates ANF expression synergistically with Sp1 in a cardiac hypertrophy model. J Cell Mol Med 15:1865–1877PubMedPubMedCentral
38.
Zurück zum Zitat Chen X, Zeng K, Xu M, Hu X, Liu X, Xu T et al (2018) SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell Death Dis 9:982PubMedPubMedCentral Chen X, Zeng K, Xu M, Hu X, Liu X, Xu T et al (2018) SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell Death Dis 9:982PubMedPubMedCentral
39.
Zurück zum Zitat Dong H, Wang W, Mo S, Chen R, Zou K, Han J et al (2018) SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88. J Exp Clin Cancer Res 37:202PubMedPubMedCentral Dong H, Wang W, Mo S, Chen R, Zou K, Han J et al (2018) SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88. J Exp Clin Cancer Res 37:202PubMedPubMedCentral
40.
Zurück zum Zitat Zhang J, Liang Y, Huang X, Guo X, Liu Y, Zhong J et al (2019) STAT3-induced upregulation of lncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci Rep 9:460PubMedPubMedCentral Zhang J, Liang Y, Huang X, Guo X, Liu Y, Zhong J et al (2019) STAT3-induced upregulation of lncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci Rep 9:460PubMedPubMedCentral
41.
Zurück zum Zitat Zhang Z, Zhang L, Zhou Y, Li L, Zhao J, Qin W et al (2019) Increase in HDAC9 suppresses myoblast differentiation via epigenetic regulation of autophagy in hypoxia. Cell Death Dis 10:552PubMedPubMedCentral Zhang Z, Zhang L, Zhou Y, Li L, Zhao J, Qin W et al (2019) Increase in HDAC9 suppresses myoblast differentiation via epigenetic regulation of autophagy in hypoxia. Cell Death Dis 10:552PubMedPubMedCentral
42.
Zurück zum Zitat Lino CC, Kessinger CW, Cheng Y, MacDonald C, MacGillivray T, Ghoshhajra B et al (2018) An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun 9:1009 Lino CC, Kessinger CW, Cheng Y, MacDonald C, MacGillivray T, Ghoshhajra B et al (2018) An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun 9:1009
43.
Zurück zum Zitat Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22:1131–1139PubMedPubMedCentral Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22:1131–1139PubMedPubMedCentral
44.
Zurück zum Zitat Joh RI, Palmieri CM, Hill IT, Motamedi M (2014) Regulation of histone methylation by noncoding RNAs. Biochim Biophys Acta 1839:1385–1394PubMedPubMedCentral Joh RI, Palmieri CM, Hill IT, Motamedi M (2014) Regulation of histone methylation by noncoding RNAs. Biochim Biophys Acta 1839:1385–1394PubMedPubMedCentral
45.
Zurück zum Zitat Gould A (1997) Functions of mammalian Polycomb group and trithorax group related genes. Curr Opin Genet Dev 7:488–494PubMed Gould A (1997) Functions of mammalian Polycomb group and trithorax group related genes. Curr Opin Genet Dev 7:488–494PubMed
46.
Zurück zum Zitat Zhu XH, Yuan YX, Rao SL, Wang P (2016) LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur Rev Med Pharmacol Sci 20:3653–3660PubMed Zhu XH, Yuan YX, Rao SL, Wang P (2016) LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur Rev Med Pharmacol Sci 20:3653–3660PubMed
47.
Zurück zum Zitat Liu W, Liu Y, Zhang Y, Zhu X, Zhang R, Guan L, Tang Q, Jiang H, Huang C, Huang H (2015) MicroRNA-150 Protects against pressure overload-induced cardiac hypertrophy. J Cell Biochem 116:2166–2176PubMed Liu W, Liu Y, Zhang Y, Zhu X, Zhang R, Guan L, Tang Q, Jiang H, Huang C, Huang H (2015) MicroRNA-150 Protects against pressure overload-induced cardiac hypertrophy. J Cell Biochem 116:2166–2176PubMed
48.
Zurück zum Zitat Deng P, Chen L, Liu Z, Ye P, Wang S, Wu J, Yao Y, Sun Y, Huang X, Ren L, Zhang A, Wang K, Wu C, Yue Z, Xu X, Chen M (2016) MicroRNA-150 inhibits the activation of cardiac fibroblasts by regulating c-Myb. Cell Physiol Biochem 38:2103–2122PubMed Deng P, Chen L, Liu Z, Ye P, Wang S, Wu J, Yao Y, Sun Y, Huang X, Ren L, Zhang A, Wang K, Wu C, Yue Z, Xu X, Chen M (2016) MicroRNA-150 inhibits the activation of cardiac fibroblasts by regulating c-Myb. Cell Physiol Biochem 38:2103–2122PubMed
49.
Zurück zum Zitat Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, Tao ZF, Song YC, Chen Q, Jiang Q (2015) lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res 116:1143–1156PubMed Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, Tao ZF, Song YC, Chen Q, Jiang Q (2015) lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res 116:1143–1156PubMed
50.
Zurück zum Zitat Shen Y, Dong LF, Zhou RM, Yao J, Song YC, Yang H et al (2016) Role of long non-coding RNA MIAT in proliferation, apoptosis and migration of lens epithelial cells: a clinical and in vitro study. J Cell Mol Med 20:537–548PubMedPubMedCentral Shen Y, Dong LF, Zhou RM, Yao J, Song YC, Yang H et al (2016) Role of long non-coding RNA MIAT in proliferation, apoptosis and migration of lens epithelial cells: a clinical and in vitro study. J Cell Mol Med 20:537–548PubMedPubMedCentral
51.
Zurück zum Zitat Li Y, Wang J, Sun L, Zhu S (2018) LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93. Eur J Pharmacol 818:508–517PubMed Li Y, Wang J, Sun L, Zhu S (2018) LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93. Eur J Pharmacol 818:508–517PubMed
52.
Zurück zum Zitat Ehrentraut H, Weber C, Ehrentraut S, Schwederski M, Boehm O, Knuefermann P et al (2011) The toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. Eur J Heart Fail 13:602–610PubMed Ehrentraut H, Weber C, Ehrentraut S, Schwederski M, Boehm O, Knuefermann P et al (2011) The toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. Eur J Heart Fail 13:602–610PubMed
53.
Zurück zum Zitat Katare PB, Bagul PK, Dinda AK, Banerjee SK (2017) Toll-Like receptor 4 inhibition improves oxidative stress and mitochondrial health in isoproterenol-induced cardiac hypertrophy in rats. Front Immunol 8:719PubMedPubMedCentral Katare PB, Bagul PK, Dinda AK, Banerjee SK (2017) Toll-Like receptor 4 inhibition improves oxidative stress and mitochondrial health in isoproterenol-induced cardiac hypertrophy in rats. Front Immunol 8:719PubMedPubMedCentral
54.
Zurück zum Zitat Ha T, Li Y, Hua F, Ma J, Gao X, Kelley J, Zhao A, Haddad GE, Williams DL, William Browder I, Kao RL, Li C (2005) Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc Res 68:224–234PubMed Ha T, Li Y, Hua F, Ma J, Gao X, Kelley J, Zhao A, Haddad GE, Williams DL, William Browder I, Kao RL, Li C (2005) Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc Res 68:224–234PubMed
55.
Zurück zum Zitat Li C, Zhou G, Feng J, Zhang J, Hou L, Cheng Z (2018) Upregulation of lncRNA VDR/CASC15 induced by facilitates cardiac hypertrophy through modulating miR-432-5p/TLR4 axis. Biochem Biophys Res Commun 503:2407–2414PubMed Li C, Zhou G, Feng J, Zhang J, Hou L, Cheng Z (2018) Upregulation of lncRNA VDR/CASC15 induced by facilitates cardiac hypertrophy through modulating miR-432-5p/TLR4 axis. Biochem Biophys Res Commun 503:2407–2414PubMed
56.
Zurück zum Zitat Davis-Dusenbery BN, Wu C, Hata A (2011) Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol 31:2370–2377PubMedPubMedCentral Davis-Dusenbery BN, Wu C, Hata A (2011) Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol 31:2370–2377PubMedPubMedCentral
57.
Zurück zum Zitat Jin L, Lin X, Yang L, Fan X, Wang W, Li S, Li J, Liu X, Bao M, Cui X, Yang J, Cui Q, Geng B, Cai J (2018) AK098656, a novel vascular smooth muscle cell-dominant long noncoding RNA, promotes hypertension. Hypertension 71:262–272PubMed Jin L, Lin X, Yang L, Fan X, Wang W, Li S, Li J, Liu X, Bao M, Cui X, Yang J, Cui Q, Geng B, Cai J (2018) AK098656, a novel vascular smooth muscle cell-dominant long noncoding RNA, promotes hypertension. Hypertension 71:262–272PubMed
58.
Zurück zum Zitat Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358PubMedPubMedCentral Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358PubMedPubMedCentral
59.
Zurück zum Zitat Lai Y, He S, Ma L, Lin H, Ren B, Ma J, Zhu X, Zhuang S (2017) HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy. Mol Cell Biochem 432:179–187PubMed Lai Y, He S, Ma L, Lin H, Ren B, Ma J, Zhu X, Zhuang S (2017) HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy. Mol Cell Biochem 432:179–187PubMed
60.
Zurück zum Zitat Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82:250–260PubMed Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82:250–260PubMed
61.
Zurück zum Zitat Crackower MA, Oudit GY, Kozieradzki I, Sarao R, Sun H, Sasaki T, Hirsch E, Suzuki A, Shioi T, Irie-Sasaki J, Sah R, Cheng HY, Rybin VO, Lembo G, Fratta L, Oliveira-dos-Santos A, Benovic JL, Kahn CR, Izumo S, Steinberg SF, Wymann MP, Backx PH, Penninger JM (2002) Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 110:737–749PubMed Crackower MA, Oudit GY, Kozieradzki I, Sarao R, Sun H, Sasaki T, Hirsch E, Suzuki A, Shioi T, Irie-Sasaki J, Sah R, Cheng HY, Rybin VO, Lembo G, Fratta L, Oliveira-dos-Santos A, Benovic JL, Kahn CR, Izumo S, Steinberg SF, Wymann MP, Backx PH, Penninger JM (2002) Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 110:737–749PubMed
62.
Zurück zum Zitat Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N et al (2007) CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem 282:35078–35087PubMed Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N et al (2007) CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem 282:35078–35087PubMed
63.
Zurück zum Zitat Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A 106:2342–2347PubMedPubMedCentral Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A 106:2342–2347PubMedPubMedCentral
64.
Zurück zum Zitat Shao M, Chen G, Lv F, Liu Y, Tian H, Tao R, Jiang R, Zhang W, Zhuo C (2017) LncRNA TINCR attenuates cardiac hypertrophy by epigenetically silencing CaMKII. Oncotarget 8:47565–47573PubMedPubMedCentral Shao M, Chen G, Lv F, Liu Y, Tian H, Tao R, Jiang R, Zhang W, Zhuo C (2017) LncRNA TINCR attenuates cardiac hypertrophy by epigenetically silencing CaMKII. Oncotarget 8:47565–47573PubMedPubMedCentral
65.
Zurück zum Zitat Yuan Y, Wang J, Chen Q, Wu Q, Deng W, Zhou H, Shen D (2019) Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling. Biochim Biophys Acta Mol basis Dis 1865:1421–1427PubMed Yuan Y, Wang J, Chen Q, Wu Q, Deng W, Zhou H, Shen D (2019) Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling. Biochim Biophys Acta Mol basis Dis 1865:1421–1427PubMed
66.
Zurück zum Zitat Dai J, Shen DF, Bian ZY, Zhou H, Gan HW, Zong J et al (2013) IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis. PLoS One 8:e53412PubMedPubMedCentral Dai J, Shen DF, Bian ZY, Zhou H, Gan HW, Zong J et al (2013) IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis. PLoS One 8:e53412PubMedPubMedCentral
67.
Zurück zum Zitat Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng R, Wang Y, Huang J, Xu M, Yan J, Yu J (2014) lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J 281:3766–3775PubMed Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng R, Wang Y, Huang J, Xu M, Yan J, Yu J (2014) lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J 281:3766–3775PubMed
68.
Zurück zum Zitat Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665PubMedPubMedCentral Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665PubMedPubMedCentral
69.
Zurück zum Zitat Gao WL, Liu M, Yang Y, Yang H, Liao Q, Bai Y, Li YX, Li D, Peng C, Wang YL (2012) The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol 9:1002–1010PubMed Gao WL, Liu M, Yang Y, Yang H, Liao Q, Bai Y, Li YX, Li D, Peng C, Wang YL (2012) The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol 9:1002–1010PubMed
70.
Zurück zum Zitat Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111:56–65PubMed Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111:56–65PubMed
71.
Zurück zum Zitat Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51:468–473PubMedPubMedCentral Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51:468–473PubMedPubMedCentral
72.
Zurück zum Zitat Lv L, Li T, Li X, Xu C, Liu Q, Jiang H, Li Y, Liu Y, Yan H, Huang Q, Zhou Y, Zhang M, Shan H, Liang H (2018) The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids 10:387–397PubMed Lv L, Li T, Li X, Xu C, Liu Q, Jiang H, Li Y, Liu Y, Yan H, Huang Q, Zhou Y, Zhang M, Shan H, Liang H (2018) The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids 10:387–397PubMed
73.
Zurück zum Zitat Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200PubMedPubMedCentral Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200PubMedPubMedCentral
74.
Zurück zum Zitat Guan X, Wang L, Liu Z, Guo X, Jiang Y, Lu Y, Peng Y, Liu T, Yang B, Shan H, Zhang Y, Xu C (2016) miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. J Mol Cell Cardiol 99:207–217PubMed Guan X, Wang L, Liu Z, Guo X, Jiang Y, Lu Y, Peng Y, Liu T, Yang B, Shan H, Zhang Y, Xu C (2016) miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. J Mol Cell Cardiol 99:207–217PubMed
75.
Zurück zum Zitat Yu H, Guo Y, Mi L, Wang X, Li L, Gao W (2011) Mitofusin 2 inhibits angiotensin II-induced myocardial hypertrophy. J Cardiovasc Pharmacol Ther 16:205–211PubMed Yu H, Guo Y, Mi L, Wang X, Li L, Gao W (2011) Mitofusin 2 inhibits angiotensin II-induced myocardial hypertrophy. J Cardiovasc Pharmacol Ther 16:205–211PubMed
76.
Zurück zum Zitat Zhao Y, Ponnusamy M, Liu C, Tian J, Dong Y, Gao J, Wang C, Zhang Y, Zhang L, Wang K, Li P (2017) MiR-485-5p modulates mitochondrial fission through targeting mitochondrial anchored protein ligase in cardiac hypertrophy. Biochim Biophys Acta Mol basis Dis 1863:2871–2881PubMed Zhao Y, Ponnusamy M, Liu C, Tian J, Dong Y, Gao J, Wang C, Zhang Y, Zhang L, Wang K, Li P (2017) MiR-485-5p modulates mitochondrial fission through targeting mitochondrial anchored protein ligase in cardiac hypertrophy. Biochim Biophys Acta Mol basis Dis 1863:2871–2881PubMed
77.
Zurück zum Zitat Wang Z, Niu Q, Peng X, Li M, Liu K, Liu Y, Liu J, Jin F, Li X, Wei Y (2016) Candesartan cilexetil attenuated cardiac remodeling by improving expression and function of mitofusin 2 in SHR. Int J Cardiol 214:348–357PubMed Wang Z, Niu Q, Peng X, Li M, Liu K, Liu Y, Liu J, Jin F, Li X, Wei Y (2016) Candesartan cilexetil attenuated cardiac remodeling by improving expression and function of mitofusin 2 in SHR. Int J Cardiol 214:348–357PubMed
78.
Zurück zum Zitat Chen Y, Liu X, Chen L, Chen W, Zhang Y, Chen J et al (2018) The long noncoding RNA XIST protects cardiomyocyte hypertrophy by targeting miR-330-3p. Biochem Biophys Res Commun 505:807–815PubMed Chen Y, Liu X, Chen L, Chen W, Zhang Y, Chen J et al (2018) The long noncoding RNA XIST protects cardiomyocyte hypertrophy by targeting miR-330-3p. Biochem Biophys Res Commun 505:807–815PubMed
79.
Zurück zum Zitat Tsoporis JN, Mohammadzadeh F, Parker TG (2011) S100B: a multifunctional role in cardiovascular pathophysiology. Amino Acids 41:843–847PubMed Tsoporis JN, Mohammadzadeh F, Parker TG (2011) S100B: a multifunctional role in cardiovascular pathophysiology. Amino Acids 41:843–847PubMed
80.
Zurück zum Zitat Xiao L, Gu Y, Sun Y, Chen J, Wang X, Zhang Y, Gao L, Li L (2019) The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol 234:13680–13692PubMed Xiao L, Gu Y, Sun Y, Chen J, Wang X, Zhang Y, Gao L, Li L (2019) The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol 234:13680–13692PubMed
81.
Zurück zum Zitat Wang JW, Fontes M, Wang X, Chong SY, Kessler EL, Zhang YN et al (2017) Leukocytic Toll-Like receptor 2 deficiency preserves cardiac function and reduces fibrosis in sustained pressure overload. Sci Rep 7:9193PubMedPubMedCentral Wang JW, Fontes M, Wang X, Chong SY, Kessler EL, Zhang YN et al (2017) Leukocytic Toll-Like receptor 2 deficiency preserves cardiac function and reduces fibrosis in sustained pressure overload. Sci Rep 7:9193PubMedPubMedCentral
82.
Zurück zum Zitat Trentin-Sonoda M, Da SR, Kmit FV, Abrahao MV, Monnerat CG, Brasil GV et al (2015) Knockout of Toll-like receptors 2 and 4 prevents renal ischemia-reperfusion-induced cardiac hypertrophy in mice. PLoS One 10:e139350 Trentin-Sonoda M, Da SR, Kmit FV, Abrahao MV, Monnerat CG, Brasil GV et al (2015) Knockout of Toll-like receptors 2 and 4 prevents renal ischemia-reperfusion-induced cardiac hypertrophy in mice. PLoS One 10:e139350
83.
Zurück zum Zitat Luo Y, Xu Y, Liang C, Xing W, Zhang T (2018) The mechanism of myocardial hypertrophy regulated by the interaction between mhrt and myocardin. Cell Signal 43:11–20PubMed Luo Y, Xu Y, Liang C, Xing W, Zhang T (2018) The mechanism of myocardial hypertrophy regulated by the interaction between mhrt and myocardin. Cell Signal 43:11–20PubMed
84.
Zurück zum Zitat Cen B, Selvaraj A, Prywes R (2004) Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J Cell Biochem 93:74–82PubMed Cen B, Selvaraj A, Prywes R (2004) Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J Cell Biochem 93:74–82PubMed
85.
Zurück zum Zitat Pipes GC, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20:1545–1556PubMed Pipes GC, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20:1545–1556PubMed
86.
Zurück zum Zitat Parmacek MS (2007) Myocardin-related transcription factors: critical coactivators regulating cardiovascular development and adaptation. Circ Res 100:633–644PubMed Parmacek MS (2007) Myocardin-related transcription factors: critical coactivators regulating cardiovascular development and adaptation. Circ Res 100:633–644PubMed
87.
Zurück zum Zitat Kontaraki JE, Parthenakis FI, Patrianakos AP, Karalis IK, Vardas PE (2007) Altered expression of early cardiac marker genes in circulating cells of patients with hypertrophic cardiomyopathy. Cardiovasc Pathol 16:329–335PubMed Kontaraki JE, Parthenakis FI, Patrianakos AP, Karalis IK, Vardas PE (2007) Altered expression of early cardiac marker genes in circulating cells of patients with hypertrophic cardiomyopathy. Cardiovasc Pathol 16:329–335PubMed
88.
Zurück zum Zitat Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE (2011) Early cardiac gene transcript levels in peripheral blood mononuclear cells in patients with untreated essential hypertension. J Hypertens 29:791–797PubMed Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE (2011) Early cardiac gene transcript levels in peripheral blood mononuclear cells in patients with untreated essential hypertension. J Hypertens 29:791–797PubMed
Metadaten
Titel
Long non-coding RNAs in cardiac hypertrophy
verfasst von
Jinghui Sun
Chenglong Wang
Publikationsdatum
29.10.2019
Verlag
Springer US
Erschienen in
Heart Failure Reviews / Ausgabe 6/2020
Print ISSN: 1382-4147
Elektronische ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-019-09882-2

Weitere Artikel der Ausgabe 6/2020

Heart Failure Reviews 6/2020 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.