Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2018

11.12.2017

Long non-coding RNAs in metastasis

verfasst von: Qihong Huang, Jinchun Yan, Reuven Agami

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Long non-coding RNA (lncRNA) genes have recently been discovered as key regulators of developmental, physiological, and pathological processes in humans. Recent studies indicate that lncRNAs regulate every step of gene expression, and their aberrant expression can be found in the majority of cancer types. Particularly, lncRNAs were found to function in tumor development and metastasis, which is the major cause of cancer-related death. Thus, exploring key roles of lncRNAs in metastasis is predicted to enhance our knowledge of metastasis, and uncover novel therapeutic targets and biomarkers of this process. In this review, we discuss the molecular mechanisms of lncRNAs in gene expression regulation and their function in metastasis.
Literatur
1.
Zurück zum Zitat Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., Maeda, N., et al. (2005). The transcriptional landscape of the mammalian genome. Science, 309, 1559–1563.CrossRefPubMed Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., Maeda, N., et al. (2005). The transcriptional landscape of the mammalian genome. Science, 309, 1559–1563.CrossRefPubMed
2.
Zurück zum Zitat Banfai, B., Jia, H., Khatun, J., Wood, E., Risk, B., Gundling Jr., W. E., et al. (2012). Long noncoding RNAs are rarely translated in two human cell lines. Genome Research, 22, 1646–1657.CrossRefPubMedPubMedCentral Banfai, B., Jia, H., Khatun, J., Wood, E., Risk, B., Gundling Jr., W. E., et al. (2012). Long noncoding RNAs are rarely translated in two human cell lines. Genome Research, 22, 1646–1657.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Hon, C. C., Ramilowski, J. A., Harshbarger, J., Bertin, N., Rackham, O. J., Gough, J., et al. (2017). An atlas of human long non-coding RNAs with accurate 5′ ends. Nature, 543, 199–204.CrossRefPubMed Hon, C. C., Ramilowski, J. A., Harshbarger, J., Bertin, N., Rackham, O. J., Gough, J., et al. (2017). An atlas of human long non-coding RNAs with accurate 5′ ends. Nature, 543, 199–204.CrossRefPubMed
4.
Zurück zum Zitat Harrow, J., Frankish, A., Gonzales, J. M., Tapanari, E., Diekhans, M., Kokocinski, F., et al. (2012). GENCODE: the reference human genome annotation for the ENCODE project. Genome Research, 22, 1760–1774.CrossRefPubMedPubMedCentral Harrow, J., Frankish, A., Gonzales, J. M., Tapanari, E., Diekhans, M., Kokocinski, F., et al. (2012). GENCODE: the reference human genome annotation for the ENCODE project. Genome Research, 22, 1760–1774.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Plath, K., Fang, J., Mlynarczyk-Evans, S. K., Cao, R., Worringer, K. A., Wang, H., et al. (2003). Role of histone H3 lysine 27 methylation in X inactivation. Science, 300, 131–135.CrossRefPubMed Plath, K., Fang, J., Mlynarczyk-Evans, S. K., Cao, R., Worringer, K. A., Wang, H., et al. (2003). Role of histone H3 lysine 27 methylation in X inactivation. Science, 300, 131–135.CrossRefPubMed
6.
Zurück zum Zitat Pasmant, E., Laurendeau, I., Heron, D., Vidaud, M., Vidaud, D., & Bieche, I. (2007). Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Research, 67, 3963–3969.CrossRefPubMed Pasmant, E., Laurendeau, I., Heron, D., Vidaud, M., Vidaud, D., & Bieche, I. (2007). Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Research, 67, 3963–3969.CrossRefPubMed
7.
Zurück zum Zitat Yap, K. L., Li, S., Munoz-Cabello, A. M., Raguz, Z., & Zeng, L. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell, 38, 662–674.CrossRefPubMedPubMedCentral Yap, K. L., Li, S., Munoz-Cabello, A. M., Raguz, Z., & Zeng, L. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell, 38, 662–674.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Hu, X., Feng, Y., Zhang, D., Zhao, S. D., Hu, Z., Greshock, J., et al. (2014). A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell, 26, 344–357.CrossRefPubMedPubMedCentral Hu, X., Feng, Y., Zhang, D., Zhao, S. D., Hu, Z., Greshock, J., et al. (2014). A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell, 26, 344–357.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Gumireddy, K., Li, A., Yan, J., Setoyama, T., Johannes, G. J., Orom, U. A., et al. (2013). Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. The EMBO Journal, 32, 2672–2684.CrossRefPubMedPubMedCentral Gumireddy, K., Li, A., Yan, J., Setoyama, T., Johannes, G. J., Orom, U. A., et al. (2013). Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. The EMBO Journal, 32, 2672–2684.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Yoon, J., Abdelmohsen, K., Srikantan, S., Yang, X., Martindale, J. L., De, S., et al. (2012). LincRNA-p21 suppresses target mRNA translation. Molecular Cell, 47, 648–655.CrossRefPubMedPubMedCentral Yoon, J., Abdelmohsen, K., Srikantan, S., Yang, X., Martindale, J. L., De, S., et al. (2012). LincRNA-p21 suppresses target mRNA translation. Molecular Cell, 47, 648–655.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., & Pandolfi, P. P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465, 1033–1038.CrossRefPubMedPubMedCentral Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., & Pandolfi, P. P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465, 1033–1038.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Kino, T., Hurt, D. E., Ichijo, T., Nader, N., & Chrousos, G. P. (2010). Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Science Signaling, 3, ra8.PubMedPubMedCentral Kino, T., Hurt, D. E., Ichijo, T., Nader, N., & Chrousos, G. P. (2010). Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Science Signaling, 3, ra8.PubMedPubMedCentral
13.
Zurück zum Zitat Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.CrossRefPubMed Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.CrossRefPubMed
15.
Zurück zum Zitat Yan, J., Yang, Q., & Huang, Q. (2012). Metastasis suppressor genes. Histology and Histopathology, 28, 285–292. Yan, J., Yang, Q., & Huang, Q. (2012). Metastasis suppressor genes. Histology and Histopathology, 28, 285–292.
16.
Zurück zum Zitat Chrisholm, K. M., Wan, Y., Li, R., Montgomery, K. D., Chang, H. Y., & West, R. B. (2012). Detection of long non-coding RNA in archival tissue: correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS One, 7, e47998.CrossRef Chrisholm, K. M., Wan, Y., Li, R., Montgomery, K. D., Chang, H. Y., & West, R. B. (2012). Detection of long non-coding RNA in archival tissue: correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS One, 7, e47998.CrossRef
17.
Zurück zum Zitat Kogo, R., Shimamura, T., Mimori, K., Kawahara, K., Imoto, S., Sudo, T., et al. (2011). Long noncoding RNA HOTAIR regulates polycomb dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Research, 71, 6320–6326.CrossRefPubMed Kogo, R., Shimamura, T., Mimori, K., Kawahara, K., Imoto, S., Sudo, T., et al. (2011). Long noncoding RNA HOTAIR regulates polycomb dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Research, 71, 6320–6326.CrossRefPubMed
18.
Zurück zum Zitat Loewen, G., Jayawickramarajah, J., Zhuo, Y., & Shan, B. (2014). Function of lncRNA HOTAIR in lung cancer. Journal of Hematology & Oncology, 7, 90.CrossRef Loewen, G., Jayawickramarajah, J., Zhuo, Y., & Shan, B. (2014). Function of lncRNA HOTAIR in lung cancer. Journal of Hematology & Oncology, 7, 90.CrossRef
19.
Zurück zum Zitat Tsai, M. C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J. K., Lan, F., et al. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329, 689–693.CrossRefPubMedPubMedCentral Tsai, M. C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J. K., Lan, F., et al. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329, 689–693.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464, 1071–1076.CrossRefPubMedPubMedCentral Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464, 1071–1076.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Ayesh, S., Matouk, I., Schneider, T., Ohana, P., Laster, M., Al-Sharef, W., et al. (2002). Possible physiological role of H19 RNA. Molecular Carcinogenesis, 35, 63–74.CrossRefPubMed Ayesh, S., Matouk, I., Schneider, T., Ohana, P., Laster, M., Al-Sharef, W., et al. (2002). Possible physiological role of H19 RNA. Molecular Carcinogenesis, 35, 63–74.CrossRefPubMed
22.
Zurück zum Zitat Raveh, E., Matouk, U., Gilon, M., & Hochberg, A. (2015). The H19 long non-coding RNA in cancer initiation, progression and metastasis—a proposed unifying theory. Molecular Cancer, 14, 184.CrossRefPubMedPubMedCentral Raveh, E., Matouk, U., Gilon, M., & Hochberg, A. (2015). The H19 long non-coding RNA in cancer initiation, progression and metastasis—a proposed unifying theory. Molecular Cancer, 14, 184.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Liang, W. C., Fu, W. M., Wong, C. W., Wang, Y., Wang, W. M., Hu, G. X., et al. (2015). The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget, 6, 22513–22525.PubMedPubMedCentral Liang, W. C., Fu, W. M., Wong, C. W., Wang, Y., Wang, W. M., Hu, G. X., et al. (2015). The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget, 6, 22513–22525.PubMedPubMedCentral
24.
Zurück zum Zitat Luo, M., Li, Z., Wang, W., Zeng, Y., & Liu, Z. (2013). Long noncoding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Letters, 333, 213–221.CrossRefPubMed Luo, M., Li, Z., Wang, W., Zeng, Y., & Liu, Z. (2013). Long noncoding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Letters, 333, 213–221.CrossRefPubMed
25.
Zurück zum Zitat Ling, H., Spizzo, R., Atlasi, Y., Nicoloso, M., Shimizu, M., Redis, R. S., et al. (2013). CCAT2, a novel noncoding RNA mapping to 8q24 underlies metastatic progression and chromosomal instability in colon cancer. Genome Research, 23, 1446–1461.CrossRefPubMedPubMedCentral Ling, H., Spizzo, R., Atlasi, Y., Nicoloso, M., Shimizu, M., Redis, R. S., et al. (2013). CCAT2, a novel noncoding RNA mapping to 8q24 underlies metastatic progression and chromosomal instability in colon cancer. Genome Research, 23, 1446–1461.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Redis, R. S., Sieuwerts, A. M., Look, M. P., Tudoran, O., Ivan, C., Spizzo, R., et al. (2013). CCAT2, a novel long noncoding RNA in breast cancer: expression study and clinical correlations. Oncotarget, 4, 1748–1762.CrossRefPubMedPubMedCentral Redis, R. S., Sieuwerts, A. M., Look, M. P., Tudoran, O., Ivan, C., Spizzo, R., et al. (2013). CCAT2, a novel long noncoding RNA in breast cancer: expression study and clinical correlations. Oncotarget, 4, 1748–1762.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Yang, F., Zhang, L., Huo, X. S., Yuan, J. H., Xu, D., Yuan, S. X., et al. (2011). Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology, 54, 1679–1689.CrossRefPubMed Yang, F., Zhang, L., Huo, X. S., Yuan, J. H., Xu, D., Yuan, S. X., et al. (2011). Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology, 54, 1679–1689.CrossRefPubMed
28.
Zurück zum Zitat Yang, F., Huo, X. S., Yuan, S. X., Zhang, L., Zhou, W. P., Wang, F., et al. (2013). Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Molecular Cell, 49, 1083–1097.CrossRefPubMed Yang, F., Huo, X. S., Yuan, S. X., Zhang, L., Zhou, W. P., Wang, F., et al. (2013). Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Molecular Cell, 49, 1083–1097.CrossRefPubMed
29.
Zurück zum Zitat Hu, Q., Lu, Y. Y., Noh, H., Hong, S., Dong, Z., Ding, H. F., et al. (2013). Interleukin enhancer-binding factor 3 promotes breast tumor progression by regulating sustained urokinase-type plasminogen activator expression. Oncogene, 32, 3933–3943.CrossRefPubMed Hu, Q., Lu, Y. Y., Noh, H., Hong, S., Dong, Z., Ding, H. F., et al. (2013). Interleukin enhancer-binding factor 3 promotes breast tumor progression by regulating sustained urokinase-type plasminogen activator expression. Oncogene, 32, 3933–3943.CrossRefPubMed
30.
Zurück zum Zitat Liu, B., Sun, L., Liu, Q., Gong, C., Yao, Y., Lv, X., et al. (2015). A cytoplasmic NF-ĸB interacting long noncoding RNA blocks IĸB phosphorylation and suppresses breast cancer metastasis. Cancer Cell, 27, 370–381.CrossRefPubMed Liu, B., Sun, L., Liu, Q., Gong, C., Yao, Y., Lv, X., et al. (2015). A cytoplasmic NF-ĸB interacting long noncoding RNA blocks IĸB phosphorylation and suppresses breast cancer metastasis. Cancer Cell, 27, 370–381.CrossRefPubMed
31.
Zurück zum Zitat Huang, J. F., Guo, Y. J., Zhao, C. X., Yuan, S. X., Wang, Y., Tang, G. N., et al. (2013). Hepatitis B virus X protein (HBx)-related long noncoding RNA (lncRNA) down-regulated expression of HBx (Dreh) inhibits hepatocellular carcinoma metastasis by targeting the intermediate filament protein vimentin. Hepatology, 57, 1882–1892.CrossRefPubMed Huang, J. F., Guo, Y. J., Zhao, C. X., Yuan, S. X., Wang, Y., Tang, G. N., et al. (2013). Hepatitis B virus X protein (HBx)-related long noncoding RNA (lncRNA) down-regulated expression of HBx (Dreh) inhibits hepatocellular carcinoma metastasis by targeting the intermediate filament protein vimentin. Hepatology, 57, 1882–1892.CrossRefPubMed
32.
Zurück zum Zitat Ji, P., Diederichs, S., Wang, W., Böing, S., Metzger, R., Schneider, P. M., et al. (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031–8041.CrossRefPubMed Ji, P., Diederichs, S., Wang, W., Böing, S., Metzger, R., Schneider, P. M., et al. (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031–8041.CrossRefPubMed
33.
Zurück zum Zitat Ying, L., Chen, Q., Wang, Y., Zhou, Z., Huang, Y., & Qiu, F. (2012). Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Molecular Biosystems, 8, 2289–2294.CrossRefPubMed Ying, L., Chen, Q., Wang, Y., Zhou, Z., Huang, Y., & Qiu, F. (2012). Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Molecular Biosystems, 8, 2289–2294.CrossRefPubMed
34.
Zurück zum Zitat Li, Y., Yang, Z., Wan, X., Zhou, J., Zhang, Y., Ma, H., et al. (2016). Clinical prognostic value of metastasis-associated adenocarcinoma transcript 1 in various human cancers: an updated meta-analysis. The International Journal of Biological Markers, 31, e173–e182.CrossRefPubMed Li, Y., Yang, Z., Wan, X., Zhou, J., Zhang, Y., Ma, H., et al. (2016). Clinical prognostic value of metastasis-associated adenocarcinoma transcript 1 in various human cancers: an updated meta-analysis. The International Journal of Biological Markers, 31, e173–e182.CrossRefPubMed
35.
Zurück zum Zitat Tripathi, V., Ellis, J. D., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., et al. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Molecular Cell, 39, 925–938.CrossRefPubMedPubMedCentral Tripathi, V., Ellis, J. D., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., et al. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Molecular Cell, 39, 925–938.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Wilusz, J. E. (2016). Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochimica et Biophysica Acta, 1859, 128–138.CrossRefPubMed Wilusz, J. E. (2016). Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochimica et Biophysica Acta, 1859, 128–138.CrossRefPubMed
37.
Zurück zum Zitat Gutschner, T., Hämmerle, M., Eissmann, M., Hsu, J., Kim, Y., Hung, G., et al. (2013). The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Research, 73, 1180–1189.CrossRefPubMed Gutschner, T., Hämmerle, M., Eissmann, M., Hsu, J., Kim, Y., Hung, G., et al. (2013). The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Research, 73, 1180–1189.CrossRefPubMed
38.
Zurück zum Zitat Khalil, A. M., Guttman, M., Harte, M., Garber, M., Raj, A., Rivea-Morales, D., et al. (2009). Decreased expression of large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 106, 11667–11672.CrossRefPubMedPubMedCentral Khalil, A. M., Guttman, M., Harte, M., Garber, M., Raj, A., Rivea-Morales, D., et al. (2009). Decreased expression of large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 106, 11667–11672.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Xu, T. P., Huang, M. D., Xia, R., Liu, X. X., Sun, M., Yin, L., et al. (2014). Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. Journal of Hematology & Oncology, 7, 63.CrossRef Xu, T. P., Huang, M. D., Xia, R., Liu, X. X., Sun, M., Yin, L., et al. (2014). Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. Journal of Hematology & Oncology, 7, 63.CrossRef
40.
Zurück zum Zitat Hou, P., Zhao, Y., Li, Z., Ma, M., Gao, Y., Zhao, L., et al. (2014). LincRNA ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death & Disease, 5, e1287.CrossRef Hou, P., Zhao, Y., Li, Z., Ma, M., Gao, Y., Zhao, L., et al. (2014). LincRNA ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death & Disease, 5, e1287.CrossRef
41.
Zurück zum Zitat Eades, G., Wolfson, B., Zhang, Y., Li, Q., Yao, Y., & Zhou, Q. (2015). LincRNA ROR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6. Molecular Cancer Research, 13, 330–338.CrossRefPubMed Eades, G., Wolfson, B., Zhang, Y., Li, Q., Yao, Y., & Zhou, Q. (2015). LincRNA ROR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6. Molecular Cancer Research, 13, 330–338.CrossRefPubMed
42.
Zurück zum Zitat Sun, T. T., He, J., Liang, Q., Ren, L. L., Yan, T. T., Yu, T. C., et al. (2016). LncRNA GClnc1 promotes gastric carcinogenesis and may act as a molecular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discovery, 6, 784–801.CrossRefPubMed Sun, T. T., He, J., Liang, Q., Ren, L. L., Yan, T. T., Yu, T. C., et al. (2016). LncRNA GClnc1 promotes gastric carcinogenesis and may act as a molecular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discovery, 6, 784–801.CrossRefPubMed
43.
Zurück zum Zitat Chang, B., Yang, H., Jiao, Y., Wang, K., Liu, Z., Wu, P., et al. (2016). SOD2 deregulation enhances migration, invasion and has poor prognosis in salivary adenoid cystic carcinoma. Scientific Reports, 6, 25918.CrossRefPubMedPubMedCentral Chang, B., Yang, H., Jiao, Y., Wang, K., Liu, Z., Wu, P., et al. (2016). SOD2 deregulation enhances migration, invasion and has poor prognosis in salivary adenoid cystic carcinoma. Scientific Reports, 6, 25918.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Yuan, J. H., Yang, F., Wang, F., Ma, J. Z., Guo, Y. J., Tao, Q. F., et al. (2014). A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell, 25, 666–681.CrossRefPubMed Yuan, J. H., Yang, F., Wang, F., Ma, J. Z., Guo, Y. J., Tao, Q. F., et al. (2014). A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell, 25, 666–681.CrossRefPubMed
45.
Zurück zum Zitat Prensner, J. R., Zhao, S., Erho, N., Schipper, M., Iyer, M. K., Dhanasekaran, S. M., et al. (2014). RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SCHLAP1. The Lancet Oncology, 15, 1469–1480.CrossRefPubMedPubMedCentral Prensner, J. R., Zhao, S., Erho, N., Schipper, M., Iyer, M. K., Dhanasekaran, S. M., et al. (2014). RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SCHLAP1. The Lancet Oncology, 15, 1469–1480.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Mehra, R., Udager, A. M., Ahearn, T. U., Cao, X., Feng, F. Y., Loda, M., et al. (2016). Overexpression of the long non-coding RNA SCHLAP1 independently predicts lethal prostate cancer. European Urology, 70, 549–552.CrossRefPubMed Mehra, R., Udager, A. M., Ahearn, T. U., Cao, X., Feng, F. Y., Loda, M., et al. (2016). Overexpression of the long non-coding RNA SCHLAP1 independently predicts lethal prostate cancer. European Urology, 70, 549–552.CrossRefPubMed
47.
Zurück zum Zitat Prensner, J. R., Iyer, M. K., Sahu, A., Asangani, I. A., Cao, Q., Patel, L., et al. (2013). The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nature Genetics, 45, 1392–1398.CrossRefPubMedPubMedCentral Prensner, J. R., Iyer, M. K., Sahu, A., Asangani, I. A., Cao, Q., Patel, L., et al. (2013). The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nature Genetics, 45, 1392–1398.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Meijer, D., van Agthoven, T., Bosma, P. T., Nooter, K., & Dorssers, L. C. (2006). Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells. Molecular Cancer Research, 4, 379–386.CrossRefPubMed Meijer, D., van Agthoven, T., Bosma, P. T., Nooter, K., & Dorssers, L. C. (2006). Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells. Molecular Cancer Research, 4, 379–386.CrossRefPubMed
49.
Zurück zum Zitat Godinho, M. F., Sieuwerts, A. M., Look, M. P., Meijer, D., Foekens, J. A., Dorssers, L. C., et al. (2010). Relevance of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. British Journal of Cancer, 103, 1284–1291.CrossRefPubMedPubMedCentral Godinho, M. F., Sieuwerts, A. M., Look, M. P., Meijer, D., Foekens, J. A., Dorssers, L. C., et al. (2010). Relevance of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. British Journal of Cancer, 103, 1284–1291.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Xing, Z., Lin, A., Li, C., Liang, K., Wang, S., Liu, Y., et al. (2014). LncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell, 159, 1110–1125.CrossRefPubMedPubMedCentral Xing, Z., Lin, A., Li, C., Liang, K., Wang, S., Liu, Y., et al. (2014). LncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell, 159, 1110–1125.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Washington, K., Ammosova, T., Beullens, M., Jerebtsova, M., Kumar, A., Bollen, M., et al. (2002). Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase II. The Journal of Biological Chemistry, 277, 40442–40448.CrossRefPubMed Washington, K., Ammosova, T., Beullens, M., Jerebtsova, M., Kumar, A., Bollen, M., et al. (2002). Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase II. The Journal of Biological Chemistry, 277, 40442–40448.CrossRefPubMed
52.
Zurück zum Zitat Sun, N. X., Ye, C., Zhao, Q., Zhang, Q., Xu, C., Wang, S. B., et al. (2014). Long noncoding RNA-EBIC promotes tumor cell invasion by binding to EZH2 and repressing E-cadherin in cervical cancer. PLoS One, 9, e100340.CrossRefPubMedPubMedCentral Sun, N. X., Ye, C., Zhao, Q., Zhang, Q., Xu, C., Wang, S. B., et al. (2014). Long noncoding RNA-EBIC promotes tumor cell invasion by binding to EZH2 and repressing E-cadherin in cervical cancer. PLoS One, 9, e100340.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Yan, Y., Shen, Z., Gao, Z., Cao, J., Yang, Y., Wang, B., et al. (2015). Long noncoding ribonucleic acid specific for distant metastasis of gastric cancer is associated with TRIM16 expression and facilitates tumor cell invasion in vitro. Journal of Gastroenterology and Hepatology, 30, 1367–1375.CrossRefPubMed Yan, Y., Shen, Z., Gao, Z., Cao, J., Yang, Y., Wang, B., et al. (2015). Long noncoding ribonucleic acid specific for distant metastasis of gastric cancer is associated with TRIM16 expression and facilitates tumor cell invasion in vitro. Journal of Gastroenterology and Hepatology, 30, 1367–1375.CrossRefPubMed
54.
Zurück zum Zitat Fang, Z., Wu, L., Wang, L., Yang, Y., Meng, Y., & Yang, H. (2014). Increased expression of the long non-coding RNA UCA1 in tongue squamous cell carcinomas: a possible correlation with cancer metastasis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 117, 89–95.CrossRef Fang, Z., Wu, L., Wang, L., Yang, Y., Meng, Y., & Yang, H. (2014). Increased expression of the long non-coding RNA UCA1 in tongue squamous cell carcinomas: a possible correlation with cancer metastasis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 117, 89–95.CrossRef
55.
Zurück zum Zitat Li, J. Y., Ma, X., & Zhang, C. B. (2014). Overexpression of long non-coding RNA UCA1 predicts a poor prognosis in patients with esophageal squamous cell carcinoma. International Journal of Clinical and Experimental Pathology, 7, 7938–7944.PubMedPubMedCentral Li, J. Y., Ma, X., & Zhang, C. B. (2014). Overexpression of long non-coding RNA UCA1 predicts a poor prognosis in patients with esophageal squamous cell carcinoma. International Journal of Clinical and Experimental Pathology, 7, 7938–7944.PubMedPubMedCentral
56.
Zurück zum Zitat Han, Y., Yang, Y. N., Yuan, H. H., Zhang, T. T., Sui, H., Wei, X. L., et al. (2014). UCA1, a long non-coding RNA up-regulated in colorectal cancer influences cell proliferation, apoptosis and cell cycle distribution. Pathology, 46, 396–401.CrossRefPubMed Han, Y., Yang, Y. N., Yuan, H. H., Zhang, T. T., Sui, H., Wei, X. L., et al. (2014). UCA1, a long non-coding RNA up-regulated in colorectal cancer influences cell proliferation, apoptosis and cell cycle distribution. Pathology, 46, 396–401.CrossRefPubMed
57.
Zurück zum Zitat Xue, M., Li, X., Li, Z., & Chen, W. (2014). Urothelial carcinoma associated 1 is a hypoxia inducible factor-1alpha-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biology, 35, 6901–6912.CrossRefPubMed Xue, M., Li, X., Li, Z., & Chen, W. (2014). Urothelial carcinoma associated 1 is a hypoxia inducible factor-1alpha-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biology, 35, 6901–6912.CrossRefPubMed
58.
Zurück zum Zitat Wang, Z., He, C., Hu, L., Shi, H., Li, J., Gu, Q., et al. (2017). Long noncoding RNA UCA1 promotes tumor metastasis by inducing GRK2 degradation in gastric cancer. Cancer Letters, 408, 10–21.CrossRefPubMed Wang, Z., He, C., Hu, L., Shi, H., Li, J., Gu, Q., et al. (2017). Long noncoding RNA UCA1 promotes tumor metastasis by inducing GRK2 degradation in gastric cancer. Cancer Letters, 408, 10–21.CrossRefPubMed
59.
Zurück zum Zitat Zhou, Y., Wang, X., Zhang, J., He, A., Wang, Y., Han, K., et al. (2017). Artesunate suppresses the viability and mobility of prostate cancer cells through UCA1, the sponge of miR-184. Oncotarget, 8, 18260–18270.PubMedPubMedCentral Zhou, Y., Wang, X., Zhang, J., He, A., Wang, Y., Han, K., et al. (2017). Artesunate suppresses the viability and mobility of prostate cancer cells through UCA1, the sponge of miR-184. Oncotarget, 8, 18260–18270.PubMedPubMedCentral
60.
Zurück zum Zitat Cai, Q., Jin, L., Wang, S., Zhou, D., Wang, J., Tang, Z., et al. (2017). Long non-coding RNA UCA1 promotes gallbladder cancer progression by epigenetically repressing p21 and E-cadherin expression. Oncotarget, 8, 47957–47968.PubMedPubMedCentral Cai, Q., Jin, L., Wang, S., Zhou, D., Wang, J., Tang, Z., et al. (2017). Long non-coding RNA UCA1 promotes gallbladder cancer progression by epigenetically repressing p21 and E-cadherin expression. Oncotarget, 8, 47957–47968.PubMedPubMedCentral
62.
63.
Zurück zum Zitat Korkmaz, G., Lopes, R., Ugalde, A. P., Nevedomskaya, E., Han, R., Myacheva, K., et al. (2016). Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nature Biotechnology, 34, 192–198.CrossRefPubMed Korkmaz, G., Lopes, R., Ugalde, A. P., Nevedomskaya, E., Han, R., Myacheva, K., et al. (2016). Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nature Biotechnology, 34, 192–198.CrossRefPubMed
Metadaten
Titel
Long non-coding RNAs in metastasis
verfasst von
Qihong Huang
Jinchun Yan
Reuven Agami
Publikationsdatum
11.12.2017
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2018
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9713-x

Weitere Artikel der Ausgabe 1/2018

Cancer and Metastasis Reviews 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.