Skip to main content
Erschienen in: Calcified Tissue International 2/2019

09.05.2019 | Original Research

Long Noncoding RNA Analyses for Osteoporosis Risk in Caucasian Women

verfasst von: Yu Zhou, Chao Xu, Wei Zhu, Hao He, Lan Zhang, Beisha Tang, Yong Zeng, Qing Tian, Hong-Wen Deng

Erschienen in: Calcified Tissue International | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Osteoporosis is a prevalent bone metabolic disease characterized by bone fragility. As a key pathophysiological mechanism, the disease is caused by excessive bone resorption (by osteoclasts) over bone formation (by osteoblasts). Peripheral blood monocytes (PBMs) is a major systemic cell model for bone metabolism by serving as progenitors of osteoclasts and producing cytokines important for osteoclastogenesis. Protein-coding genes for osteoporosis have been widely studied by mRNA analyses of PBMs in high versus low hip bone mineral density (BMD) subjects. However, long noncoding RNAs (lncRNAs), which account for a large proportion of human transcriptome, have seldom been studied.

Methods

In this study, microarray analyses of monocytes were performed using Affymetrix exon 1.0 ST arrays in 73 Caucasian females (age: 47–56). LncRNA profile was generated by re-annotating exon array for lncRNAs detection, which yielded 12,007 lncRNAs mapped to the human genome.

Results

575 lncRNAs were differentially expressed between the two groups. In the high BMD subjects, 309 lncRNAs were upregulated and 266 lncRNAs were downregulated (nominally significant, raw p-value < 0.05). To investigate the relationship between mRNAs and lncRNAs, we used two approaches to predict the target genes of lncRNAs and found that 26 candidate lncRNAs might regulate mRNA expression. The majority of these lncRNAs were further validated to be potentially correlated with BMD by GWAS analysis.

Conclusion

Overall, our findings for the first time reported the lncRNAs profiles for osteoporosis and suggested the potential regulatory mechanism of lncRNAs on protein-coding genes in bone metabolism.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
4.
Zurück zum Zitat Matayoshi A, Brown C, DiPersio JF, Haug J, Abu-Amer Y, Liapis H, Kuestner R, Pacifici R (1996) Human blood-mobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Proc Natl Acad Sci USA 93(20):10785–10790CrossRefPubMedPubMedCentral Matayoshi A, Brown C, DiPersio JF, Haug J, Abu-Amer Y, Liapis H, Kuestner R, Pacifici R (1996) Human blood-mobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Proc Natl Acad Sci USA 93(20):10785–10790CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Purton LE, Lee MY, Torok-Storb B (1996) Normal human peripheral blood mononuclear cells mobilized with granulocyte colony-stimulating factor have increased osteoclastogenic potential compared to nonmobilized blood. Blood 87(5):1802–1808PubMed Purton LE, Lee MY, Torok-Storb B (1996) Normal human peripheral blood mononuclear cells mobilized with granulocyte colony-stimulating factor have increased osteoclastogenic potential compared to nonmobilized blood. Blood 87(5):1802–1808PubMed
6.
9.
Zurück zum Zitat Custer RPAF (1932) Studies of the structure and function of bone marrow: variations in cellularity in various bones with advancing years of life and their relative response to stimuli. J Lab Clin Med 17:960–962 Custer RPAF (1932) Studies of the structure and function of bone marrow: variations in cellularity in various bones with advancing years of life and their relative response to stimuli. J Lab Clin Med 17:960–962
10.
Zurück zum Zitat Horton MA, Spragg JH, Bodary SC, Helfrich MH (1994) Recognition of cryptic sites in human and mouse laminins by rat osteoclasts is mediated by beta 3 and beta 1 integrins. Bone 15(6):639–646CrossRefPubMed Horton MA, Spragg JH, Bodary SC, Helfrich MH (1994) Recognition of cryptic sites in human and mouse laminins by rat osteoclasts is mediated by beta 3 and beta 1 integrins. Bone 15(6):639–646CrossRefPubMed
12.
Zurück zum Zitat Parfitt AM (1998) Osteoclast precursors as leukocytes: importance of the area code. Bone 23(6):491–494CrossRefPubMed Parfitt AM (1998) Osteoclast precursors as leukocytes: importance of the area code. Bone 23(6):491–494CrossRefPubMed
13.
Zurück zum Zitat Zallone AZ, Teti A, Primavera MV (1984) Monocytes from circulating blood fuse in vitro with purified osteoclasts in primary culture. J Cell Sci 66:335–342 Zallone AZ, Teti A, Primavera MV (1984) Monocytes from circulating blood fuse in vitro with purified osteoclasts in primary culture. J Cell Sci 66:335–342
29.
Zurück zum Zitat Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420CrossRef Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420CrossRef
30.
Zurück zum Zitat Lee M-LT (2004) Analysis of microarray gene expression data. Kluwer Academic Publishers, Boston Lee M-LT (2004) Analysis of microarray gene expression data. Kluwer Academic Publishers, Boston
37.
39.
Zurück zum Zitat Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ, Dahia CL, Park-Min KH, Tobias JH, Kooperberg C, Kleinman A, Styrkarsdottir U, Liu CT, Uggla C, Evans DS, Nielson CM, Walter K, Pettersson-Kymmer U, McCarthy S, Eriksson J, Kwan T, Jhamai M, Trajanoska K, Memari Y, Min J, Huang J, Danecek P, Wilmot B, Li R, Chou WC, Mokry LE, Moayyeri A, Claussnitzer M, Cheng CH, Cheung W, Medina-Gomez C, Ge B, Chen SH, Choi K, Oei L, Fraser J, Kraaij R, Hibbs MA, Gregson CL, Paquette D, Hofman A, Wibom C, Tranah GJ, Marshall M, Gardiner BB, Cremin K, Auer P, Hsu L, Ring S, Tung JY, Thorleifsson G, Enneman AW, van Schoor NM, de Groot LC, van der Velde N, Melin B, Kemp JP, Christiansen C, Sayers A, Zhou Y, Calderari S, van Rooij J, Carlson C, Peters U, Berlivet S, Dostie J, Uitterlinden AG, Williams SR, Farber C, Grinberg D, LaCroix AZ, Haessler J, Chasman DI, Giulianini F, Rose LM, Ridker PM, Eisman JA, Nguyen TV, Center JR, Nogues X, Garcia-Giralt N, Launer LL, Gudnason V, Mellstrom D, Vandenput L, Amin N, van Duijn CM, Karlsson MK, Ljunggren O, Svensson O, Hallmans G, Rousseau F, Giroux S, Bussiere J, Arp PP, Koromani F, Prince RL, Lewis JR, Langdahl BL, Hermann AP, Jensen JE, Kaptoge S, Khaw KT, Reeve J, Formosa MM, Xuereb-Anastasi A, Akesson K, McGuigan FE, Garg G, Olmos JM, Zarrabeitia MT, Riancho JA, Ralston SH, Alonso N, Jiang X, Goltzman D, Pastinen T, Grundberg E, Gauguier D, Orwoll ES, Karasik D, Davey-Smith G, Consortium A, Smith AV, Siggeirsdottir K, Harris TB, Zillikens MC, van Meurs JB, Thorsteinsdottir U, Maurano MT, Timpson NJ, Soranzo N, Durbin R, Wilson SG, Ntzani EE, Brown MA, Stefansson K, Hinds DA, Spector T, Cupples LA, Ohlsson C, Greenwood CM, Consortium UK, Jackson RD, Rowe DW, Loomis CA, Evans DM, Ackert-Bicknell CL, Joyner AL, Duncan EL, Kiel DP, Rivadeneira F, Richards JB (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–117. https://doi.org/10.1038/nature14878 CrossRefPubMedPubMedCentral Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ, Dahia CL, Park-Min KH, Tobias JH, Kooperberg C, Kleinman A, Styrkarsdottir U, Liu CT, Uggla C, Evans DS, Nielson CM, Walter K, Pettersson-Kymmer U, McCarthy S, Eriksson J, Kwan T, Jhamai M, Trajanoska K, Memari Y, Min J, Huang J, Danecek P, Wilmot B, Li R, Chou WC, Mokry LE, Moayyeri A, Claussnitzer M, Cheng CH, Cheung W, Medina-Gomez C, Ge B, Chen SH, Choi K, Oei L, Fraser J, Kraaij R, Hibbs MA, Gregson CL, Paquette D, Hofman A, Wibom C, Tranah GJ, Marshall M, Gardiner BB, Cremin K, Auer P, Hsu L, Ring S, Tung JY, Thorleifsson G, Enneman AW, van Schoor NM, de Groot LC, van der Velde N, Melin B, Kemp JP, Christiansen C, Sayers A, Zhou Y, Calderari S, van Rooij J, Carlson C, Peters U, Berlivet S, Dostie J, Uitterlinden AG, Williams SR, Farber C, Grinberg D, LaCroix AZ, Haessler J, Chasman DI, Giulianini F, Rose LM, Ridker PM, Eisman JA, Nguyen TV, Center JR, Nogues X, Garcia-Giralt N, Launer LL, Gudnason V, Mellstrom D, Vandenput L, Amin N, van Duijn CM, Karlsson MK, Ljunggren O, Svensson O, Hallmans G, Rousseau F, Giroux S, Bussiere J, Arp PP, Koromani F, Prince RL, Lewis JR, Langdahl BL, Hermann AP, Jensen JE, Kaptoge S, Khaw KT, Reeve J, Formosa MM, Xuereb-Anastasi A, Akesson K, McGuigan FE, Garg G, Olmos JM, Zarrabeitia MT, Riancho JA, Ralston SH, Alonso N, Jiang X, Goltzman D, Pastinen T, Grundberg E, Gauguier D, Orwoll ES, Karasik D, Davey-Smith G, Consortium A, Smith AV, Siggeirsdottir K, Harris TB, Zillikens MC, van Meurs JB, Thorsteinsdottir U, Maurano MT, Timpson NJ, Soranzo N, Durbin R, Wilson SG, Ntzani EE, Brown MA, Stefansson K, Hinds DA, Spector T, Cupples LA, Ohlsson C, Greenwood CM, Consortium UK, Jackson RD, Rowe DW, Loomis CA, Evans DM, Ackert-Bicknell CL, Joyner AL, Duncan EL, Kiel DP, Rivadeneira F, Richards JB (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–117. https://​doi.​org/​10.​1038/​nature14878 CrossRefPubMedPubMedCentral
40.
48.
Zurück zum Zitat Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See L-H, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489:101. https://doi.org/10.1038/nature11233 CrossRefPubMedPubMedCentral Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See L-H, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489:101. https://​doi.​org/​10.​1038/​nature11233 CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Atkins GJ, Kostakis P, Vincent C, Farrugia AN, Houchins JP, Findlay DM, Evdokiou A, Zannettino AC (2006) RANK expression as a cell surface marker of human osteoclast precursors in peripheral blood, bone marrow, and giant cell tumors of bone. J Bone Miner Res 21(9):1339–1349. https://doi.org/10.1359/jbmr.060604 CrossRefPubMed Atkins GJ, Kostakis P, Vincent C, Farrugia AN, Houchins JP, Findlay DM, Evdokiou A, Zannettino AC (2006) RANK expression as a cell surface marker of human osteoclast precursors in peripheral blood, bone marrow, and giant cell tumors of bone. J Bone Miner Res 21(9):1339–1349. https://​doi.​org/​10.​1359/​jbmr.​060604 CrossRefPubMed
Metadaten
Titel
Long Noncoding RNA Analyses for Osteoporosis Risk in Caucasian Women
verfasst von
Yu Zhou
Chao Xu
Wei Zhu
Hao He
Lan Zhang
Beisha Tang
Yong Zeng
Qing Tian
Hong-Wen Deng
Publikationsdatum
09.05.2019
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 2/2019
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-019-00555-8

Weitere Artikel der Ausgabe 2/2019

Calcified Tissue International 2/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.