Skip to main content
main-content

04.03.2019 | Original Article | Ausgabe 8/2019

Lasers in Medical Science 8/2019

Low-level laser therapy as a modifier of erythrocytes morphokinetic parameters in hyperadrenalinemia

Zeitschrift:
Lasers in Medical Science > Ausgabe 8/2019
Autoren:
Anna V. Deryugina, Marina N. Ivashchenko, Pavel S. Ignatiev, Irina V. Balalaeva, Alexander G. Samodelkin
Wichtige Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Low-level laser therapy (LLLT) is widely used in clinical practice for treatment of various pathologies. It is assumed that LLLT impact on microcirculation is among the mechanisms underlying its therapeutic effect. The microcirculation disorder is observed in the pathogenesis of any inflammatory process and is significantly influenced by red blood cells (RBCs). On this point, studying the RBCs morphology under the influence of LLLT on alterated organism is of scientific interest and practical importance. The aim of the present study was to analyze the LLLT effect on morphokinetic parameters of RBCs in hyperadrenalinemia. The LLLT effect was analyzed on rats intraperitoneally injected with adrenaline hydrochloride solution (0.1 mg/kg). As the comparison groups, the effects of LLLT, adrenaline, or saline injection as well as the parameters of intact animals were studied. LLLT was applied on the occipital region of rats for 10 min. The light irradiation with pulse frequency 415 Hz at 890 nm wavelength and average power density in the plane of the output window at 193 μW/cm2 was used. The dynamics of morphological characteristics of RBCs was studied by phase interference microscopy; the RBC electrophoretic mobility was tested by microelectrophoresis technique; photometric analyses of the RBCs amount, hemoglobin content, and osmotic fragility were performed. The adrenaline injection resulted in a significant increase in the amount of RBC pathological forms and a decrease in discocytes and normocytes by more than 50%. An increase in the optical density of RBC phase portraits, a decline in osmotic resistance, and electronegativity of RBC membranes and a reduction of their number in peripheral blood were also registered. The revealed effects persisted for 1 week after the adrenaline administration. LLLT did not significantly impact on the RBC parameters 1 h after adrenaline injection. However, a day later, LLLT reduced the severity of the adrenaline effect on RBSs, which was manifested in a decreased amount of the pathological forms of RBCs, restored RBC phase portraits, higher electrophoretic mobility and osmotic resistance, and RBSs amount in peripheral blood restored up to the level of intact animals. We suppose that the mechanism of LLLT action is realized both at cellular level through the laser radiation effect on RBC membranes, and at systemic level through the activation of stress-realizing systems of the organism with subsequent limitation of inflammatory response.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt e.Med zum Sonderpreis bestellen!

Sichern Sie sich jetzt Ihr e.Med-Abo und sparen Sie 50 %!

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 8/2019

Lasers in Medical Science 8/2019 Zur Ausgabe
  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.