Skip to main content
Erschienen in: Lasers in Medical Science 1/2019

08.10.2018 | Original Article

Low-power laser alters mRNA levels from DNA repair genes in acute lung injury induced by sepsis in Wistar rats

Erschienen in: Lasers in Medical Science | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Acute lung injury (ALI) is defined as respiratory failure syndrome, in which the pathogenesis could occur from sepsis making it a life-threatening disease by uncontrolled hyperinflammatory responses. A possible treatment for ALI is the use of low-power infrared lasers (LPIL), whose therapeutical effects depend on wavelength, power, fluence, and emission mode. The evaluation mRNA levels of repair gene related to oxidative damage after exposure to LPIL could provide important information about the modulation of genes as treatment for ALI. Thus, the aim of this study was to evaluate the mRNA levels from OGG1, APEX1, ERCC2, and ERCC1 genes in lung tissue from Wistar rats affected by ALI and after exposure to LPIL (808 nm; 100 mW). Adult male Wistar rats (n = 30) were randomized into six groups (n = 5, for each group): control, 10 J/cm2 (2 J), 20 J/cm2 (5 J), ALI, ALI + LPIL 10 J/cm2 and ALI + LPIL 20 J/cm2. ALI was induced by intraperitoneal E. coli lipopolysaccharide injection (10 mg/kg). Lungs were removed, and samples were withdrawn for total RNA extraction, cDNA synthesis, and mRNA levels were evaluated by RT-qPCR. Data normality was verified by Kolmogorov-Smirnov, comparisons among groups were by Student’s t test, Mann-Whitney test, one-way ANOVA, Kruskal-Wallis followed by post-tests. Data showed that OGG1 (0.39 ± 0.10), ERCC2 (0.67 ± 0.24), and ERCC1 (0.60 ± 0.19) mRNA levels are reduced in ALI group when compared with the control group (1.00 ± 0.07, 1.03 ± 0.25, 1.01 ± 0.16, respectively) and, after LPIL, mRNA relative levels from DNA repair genes are altered when compared to non-exposed ALI group. Our research shows that ALI alter mRNA levels from genes related to base and nucleotide excision repair genes, suggesting that DNA repair is part of cell response to sepsis, and that photobiomodulation could modulate the mRNA levels from these genes in lung tissue.
Literatur
1.
Zurück zum Zitat Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824CrossRefPubMed Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824CrossRefPubMed
2.
Zurück zum Zitat Artigas A, Bernard GR, Carlet J, Dreyfuss D, Gattinoni L, Hudson L, Lamy M, Marini JJ, Matthay MA, Pinsky MR, Spragg R, Suter PM (1998) The American-European Consensus Conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies and issues related to recovery and remodeling. Am J Respir Crit Care Med 157:1332–1347CrossRefPubMed Artigas A, Bernard GR, Carlet J, Dreyfuss D, Gattinoni L, Hudson L, Lamy M, Marini JJ, Matthay MA, Pinsky MR, Spragg R, Suter PM (1998) The American-European Consensus Conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies and issues related to recovery and remodeling. Am J Respir Crit Care Med 157:1332–1347CrossRefPubMed
3.
Zurück zum Zitat Sun W, Wang ZP, Gui P, Xia W, Xia Z, Zhang XC, Deng QZ, Xuan W, Marie C, Wang LL, Wu QP, Wang T, Lin Y (2014) Endogenous expression pattern of resolvin D1 in a rat model of self-resolution of lipopolysaccharide-induced acute respiratory distress syndrome and inflammation. Int Immunopharmacol 23:247–253CrossRefPubMed Sun W, Wang ZP, Gui P, Xia W, Xia Z, Zhang XC, Deng QZ, Xuan W, Marie C, Wang LL, Wu QP, Wang T, Lin Y (2014) Endogenous expression pattern of resolvin D1 in a rat model of self-resolution of lipopolysaccharide-induced acute respiratory distress syndrome and inflammation. Int Immunopharmacol 23:247–253CrossRefPubMed
4.
Zurück zum Zitat ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307:2526–2533 ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307:2526–2533
5.
Zurück zum Zitat Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693CrossRefPubMed Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693CrossRefPubMed
6.
Zurück zum Zitat Villar J, Blanco J, Añón JM, Santos-Bouza A, Blanch L, Ambrós A, Gandía F, Carriedo D, Mosteiro F, Basaldúa S, Fernández RL, Kacmarek RM, Network ALIEN (2011) The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med 37:1932–1941CrossRefPubMed Villar J, Blanco J, Añón JM, Santos-Bouza A, Blanch L, Ambrós A, Gandía F, Carriedo D, Mosteiro F, Basaldúa S, Fernández RL, Kacmarek RM, Network ALIEN (2011) The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med 37:1932–1941CrossRefPubMed
7.
Zurück zum Zitat Rubenfeld GD, Herridge MS (2007) Epidemiology and outcomes of acute lung injury. Chest 131:554–562CrossRefPubMed Rubenfeld GD, Herridge MS (2007) Epidemiology and outcomes of acute lung injury. Chest 131:554–562CrossRefPubMed
8.
Zurück zum Zitat Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, Cooper AB, Guest CB, Mazer CD, Mehta S, Stewart TE, Barr A, Cook D, Slutsky AS, Canadian Critical Care Trials Group (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348:683–693CrossRefPubMed Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, Cooper AB, Guest CB, Mazer CD, Mehta S, Stewart TE, Barr A, Cook D, Slutsky AS, Canadian Critical Care Trials Group (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348:683–693CrossRefPubMed
9.
Zurück zum Zitat Rocco PR, Zin WA (2005) Pulmonary and extrapulmonary acute respiratory distress syndrome: are they different? Curr Opin Crit Care 11:10–17CrossRefPubMed Rocco PR, Zin WA (2005) Pulmonary and extrapulmonary acute respiratory distress syndrome: are they different? Curr Opin Crit Care 11:10–17CrossRefPubMed
11.
Zurück zum Zitat Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349CrossRefPubMed Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349CrossRefPubMed
12.
Zurück zum Zitat Wheeler AP, Bernard GR (2007) Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 369:1553–1564CrossRefPubMed Wheeler AP, Bernard GR (2007) Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 369:1553–1564CrossRefPubMed
13.
Zurück zum Zitat Raetz CR, Ulevitch RJ, Wright SD, Sibley CH, Ding A, Nathan CF (1991) Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J 5:2652–2660CrossRefPubMed Raetz CR, Ulevitch RJ, Wright SD, Sibley CH, Ding A, Nathan CF (1991) Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J 5:2652–2660CrossRefPubMed
14.
Zurück zum Zitat Laflamme N, Rivest S (2001) Toll-like receptor 4: the missing link of cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15:155–163CrossRefPubMed Laflamme N, Rivest S (2001) Toll-like receptor 4: the missing link of cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15:155–163CrossRefPubMed
15.
Zurück zum Zitat Victor VM, Esplugues JV, Hernández-Mirajes A, Rocha M (2009) Oxidative stress and mitochondrial dysfunction in sepsis: a potential therapy with mitochondria-targeted antioxidants. Infect Disord Drug Targets 9:376–389CrossRefPubMed Victor VM, Esplugues JV, Hernández-Mirajes A, Rocha M (2009) Oxidative stress and mitochondrial dysfunction in sepsis: a potential therapy with mitochondria-targeted antioxidants. Infect Disord Drug Targets 9:376–389CrossRefPubMed
16.
Zurück zum Zitat Alonso de Vega JM, Díaz J, Serrano E, Carbonell LF (2002) Oxidative stress in critically ill patients with systemic inflammatory response syndrome. Crit Care Med 30:1782–1786CrossRefPubMed Alonso de Vega JM, Díaz J, Serrano E, Carbonell LF (2002) Oxidative stress in critically ill patients with systemic inflammatory response syndrome. Crit Care Med 30:1782–1786CrossRefPubMed
17.
Zurück zum Zitat Sarkele M, Sabelnikovs O, Vanags I, Ozolina A, Skesters A, Silova A (2013) The role of oxidative stress markers in acute respiratory distress syndrome. Acta Chir Latvien 13:22–26CrossRef Sarkele M, Sabelnikovs O, Vanags I, Ozolina A, Skesters A, Silova A (2013) The role of oxidative stress markers in acute respiratory distress syndrome. Acta Chir Latvien 13:22–26CrossRef
18.
Zurück zum Zitat Sarkele M, Ozolina A, Sabelnikovs O, Skesters A, Silova A, Vanags I (2014) The activity of oxidative stress markers in acute respiratory distress syndrome. Proc Latv Acad Sci 68:247–249 Sarkele M, Ozolina A, Sabelnikovs O, Skesters A, Silova A, Vanags I (2014) The activity of oxidative stress markers in acute respiratory distress syndrome. Proc Latv Acad Sci 68:247–249
19.
Zurück zum Zitat Oliveira MC Jr, Greiffo FR, Rigonato-Oliveira NC, Custódio RW, Silva VR, Damaceno-Rodrigues NR, Almeida FM, Albertini R, Lopes-Martins RÁ, de Oliveira LV, de Carvalho PT, Ligeiro de Oliveira AP, Leal EC Jr, Vieira RP (2014) Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS. J Photochem Photobiol B 134:57–63CrossRefPubMed Oliveira MC Jr, Greiffo FR, Rigonato-Oliveira NC, Custódio RW, Silva VR, Damaceno-Rodrigues NR, Almeida FM, Albertini R, Lopes-Martins RÁ, de Oliveira LV, de Carvalho PT, Ligeiro de Oliveira AP, Leal EC Jr, Vieira RP (2014) Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS. J Photochem Photobiol B 134:57–63CrossRefPubMed
20.
Zurück zum Zitat Miranda da Silva C, Peres Leal M, Brochetti RA, Braga T, Vitoretti LB, Saraiva Câmara NO, Damazo AS, Ligeiro-de-Oliveira AP, Chavantes MC, Lino-Dos-Santos-Franco A (2015) Low level laser therapy reduces the development of lung inflammation induced by formaldehyde exposure. PLoS One 10:e0142816CrossRefPubMedPubMedCentral Miranda da Silva C, Peres Leal M, Brochetti RA, Braga T, Vitoretti LB, Saraiva Câmara NO, Damazo AS, Ligeiro-de-Oliveira AP, Chavantes MC, Lino-Dos-Santos-Franco A (2015) Low level laser therapy reduces the development of lung inflammation induced by formaldehyde exposure. PLoS One 10:e0142816CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Karu TI (2003) Low-power laser therapy. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC Press, Boca Raton Karu TI (2003) Low-power laser therapy. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC Press, Boca Raton
22.
Zurück zum Zitat O’Shea DC, Callen WR, Rhodes WT (1978) An introduction to lasers and their applications. Addison-Wesley Publishing Company, Menlo ParkCrossRef O’Shea DC, Callen WR, Rhodes WT (1978) An introduction to lasers and their applications. Addison-Wesley Publishing Company, Menlo ParkCrossRef
23.
Zurück zum Zitat Karu T (2000) Mechanisms of low-power laser light action on cellular level. In: Simunovic Z (ed) Lasers in medicine and dentistry. Vitgraf, Rijeka Karu T (2000) Mechanisms of low-power laser light action on cellular level. In: Simunovic Z (ed) Lasers in medicine and dentistry. Vitgraf, Rijeka
24.
Zurück zum Zitat Henderson TA, Morries LD (2015) Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 11:2191–2208CrossRefPubMedPubMedCentral Henderson TA, Morries LD (2015) Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 11:2191–2208CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Hudson DE, Hudson DO, Wininger JM, Richardson BD (2013) Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed Laser Surg 4:163–168CrossRef Hudson DE, Hudson DO, Wininger JM, Richardson BD (2013) Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed Laser Surg 4:163–168CrossRef
26.
Zurück zum Zitat Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H, Anders JJ (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36:171–185CrossRefPubMed Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H, Anders JJ (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36:171–185CrossRefPubMed
27.
Zurück zum Zitat Joensen J, Ovsthus K, Reed RK, Hummelsund S, Iversen VV, Lopes-Martins RÁ, Bjordal JM (2012) Skin penetration time-profiles for continuous 810 nm and superpulsed 904 nm lasers in a rat model. Photomed Laser Surg 30:688–694CrossRefPubMed Joensen J, Ovsthus K, Reed RK, Hummelsund S, Iversen VV, Lopes-Martins RÁ, Bjordal JM (2012) Skin penetration time-profiles for continuous 810 nm and superpulsed 904 nm lasers in a rat model. Photomed Laser Surg 30:688–694CrossRefPubMed
28.
Zurück zum Zitat Giacomo P, Orlando S, Dell’Ariccia M, Brandimarte B (2013) Low level laser therapy: laser radiation absorption in biological tissues. Appl Phys A Mater Sci Process 112:71–75CrossRef Giacomo P, Orlando S, Dell’Ariccia M, Brandimarte B (2013) Low level laser therapy: laser radiation absorption in biological tissues. Appl Phys A Mater Sci Process 112:71–75CrossRef
29.
Zurück zum Zitat Shingyochi Y, Kanazawa S, Tajima S, Tanaka R, Mizuno H, Tobita M (2017) A low-level carbon dioxide laser promotes fibroblast proliferation and migration through activation of Akt, ERK, and JNK. PLoS One 12:e0168937CrossRefPubMedPubMedCentral Shingyochi Y, Kanazawa S, Tajima S, Tanaka R, Mizuno H, Tobita M (2017) A low-level carbon dioxide laser promotes fibroblast proliferation and migration through activation of Akt, ERK, and JNK. PLoS One 12:e0168937CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Migliario M, Pittarella P, Fanuli M, Rizzi M, Renò F (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29:1463–1467CrossRefPubMed Migliario M, Pittarella P, Fanuli M, Rizzi M, Renò F (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29:1463–1467CrossRefPubMed
31.
Zurück zum Zitat Fonseca AS, Moreira TO, Paixão DL, Farias FM, Guimarães OR, de Paoli S, Geller M, de Paoli F (2010) Effect of laser therapy on DNA damage. Lasers Surg Med 42:481–488CrossRefPubMed Fonseca AS, Moreira TO, Paixão DL, Farias FM, Guimarães OR, de Paoli S, Geller M, de Paoli F (2010) Effect of laser therapy on DNA damage. Lasers Surg Med 42:481–488CrossRefPubMed
32.
Zurück zum Zitat de Souza da Fonseca A, Mencalha AL, Araújo de Campos VM, Ferreira Machado SC, de Freitas Peregrino AA, Geller M, de Paoli F (2013) DNA repair gene expression in biological tissues exposed to low-intensity infrared laser. Laser Med Sci 28:1077–1084CrossRef de Souza da Fonseca A, Mencalha AL, Araújo de Campos VM, Ferreira Machado SC, de Freitas Peregrino AA, Geller M, de Paoli F (2013) DNA repair gene expression in biological tissues exposed to low-intensity infrared laser. Laser Med Sci 28:1077–1084CrossRef
33.
Zurück zum Zitat Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health 10:3886–3907CrossRefPubMedPubMedCentral Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health 10:3886–3907CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberg T (2006) DNA repair and mutagenesis. ASM Press, Washington Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberg T (2006) DNA repair and mutagenesis. ASM Press, Washington
35.
Zurück zum Zitat Fromme JC, Banerjee A, Verdine GL (2004) DNA glycosylase recognition and catalysis. Curr Opin Struct Biol 14:43–49CrossRefPubMed Fromme JC, Banerjee A, Verdine GL (2004) DNA glycosylase recognition and catalysis. Curr Opin Struct Biol 14:43–49CrossRefPubMed
36.
Zurück zum Zitat Dykheeva NS, Lebedeva NA, Lavrik OI (2016) AP endonuclease 1 as a key enzyme in repair of apurinic/apyrimidinic sites. Biochem Mosc 81:951–967CrossRef Dykheeva NS, Lebedeva NA, Lavrik OI (2016) AP endonuclease 1 as a key enzyme in repair of apurinic/apyrimidinic sites. Biochem Mosc 81:951–967CrossRef
38.
Zurück zum Zitat Barzilai A, Yamamoto K (2004) DNA damage responses to oxidative stress. DNA Repair (Amst) 3:1109–1115CrossRef Barzilai A, Yamamoto K (2004) DNA damage responses to oxidative stress. DNA Repair (Amst) 3:1109–1115CrossRef
39.
Zurück zum Zitat Petruseva IO, Evdokimov AN, Lavrik OI (2014) Molecular mechanism of global genome nucleotide excision repair. Acta Nat 6:23–34CrossRef Petruseva IO, Evdokimov AN, Lavrik OI (2014) Molecular mechanism of global genome nucleotide excision repair. Acta Nat 6:23–34CrossRef
40.
Zurück zum Zitat Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2005) DNA repair and mutagenesis. ASM Press, Washington Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2005) DNA repair and mutagenesis. ASM Press, Washington
42.
Zurück zum Zitat Puumalainen MR, Rüthemann P, Min JH, Naegeli H (2016) Xeroderma pigmentosum group C sensor: unprecedented recognition strategy and tight spatiotemporal regulation. Cell Mol Life Sci 73:547–566CrossRefPubMed Puumalainen MR, Rüthemann P, Min JH, Naegeli H (2016) Xeroderma pigmentosum group C sensor: unprecedented recognition strategy and tight spatiotemporal regulation. Cell Mol Life Sci 73:547–566CrossRefPubMed
43.
44.
Zurück zum Zitat Shuck SC, Short EA, Turchi JJ (2008) Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 18:64–72CrossRefPubMed Shuck SC, Short EA, Turchi JJ (2008) Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 18:64–72CrossRefPubMed
45.
Zurück zum Zitat Seroz T, Perez C, Bergmann E, Bradsher J, Egly JM (2000) p44/SSL1, the regulatory subunit of the XPD/RAD3 helicase, plays a crucial role in the transcriptional activity of TFIIH. Biol Chem 275:33260–33266CrossRef Seroz T, Perez C, Bergmann E, Bradsher J, Egly JM (2000) p44/SSL1, the regulatory subunit of the XPD/RAD3 helicase, plays a crucial role in the transcriptional activity of TFIIH. Biol Chem 275:33260–33266CrossRef
46.
Zurück zum Zitat Benhamou S, Sarasin A (2002) ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis 17:463–469CrossRefPubMed Benhamou S, Sarasin A (2002) ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis 17:463–469CrossRefPubMed
48.
Zurück zum Zitat Bowden NA (2014) Nucleotide excision repair: why is it not used to predict response to platinum-based chemotherapy? Cancer Lett 346:163–171CrossRefPubMed Bowden NA (2014) Nucleotide excision repair: why is it not used to predict response to platinum-based chemotherapy? Cancer Lett 346:163–171CrossRefPubMed
49.
Zurück zum Zitat Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMed Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMed
50.
Zurück zum Zitat Butt Y, Kurdowska A, Allen TC (2016) Acute lung injury: a clinical and molecular review. Arch Pathol Lab Med 140:345–350CrossRefPubMed Butt Y, Kurdowska A, Allen TC (2016) Acute lung injury: a clinical and molecular review. Arch Pathol Lab Med 140:345–350CrossRefPubMed
51.
Zurück zum Zitat Borrelli E, Roux-Lombard P, Grau GE, Girardin E, Ricou B, Dayer J, Suter PM (1996) Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit Care Med 24:392–397CrossRefPubMed Borrelli E, Roux-Lombard P, Grau GE, Girardin E, Ricou B, Dayer J, Suter PM (1996) Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit Care Med 24:392–397CrossRefPubMed
52.
Zurück zum Zitat Chuang CC, Shiesh SC, Chi CH, Tu YF, Hor LI, Shieh CC, Chen MF (2006) Serum total antioxidant capacity reflects severity of illness in patients with severe sepsis. Crit Care 10:R36CrossRefPubMedPubMedCentral Chuang CC, Shiesh SC, Chi CH, Tu YF, Hor LI, Shieh CC, Chen MF (2006) Serum total antioxidant capacity reflects severity of illness in patients with severe sepsis. Crit Care 10:R36CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Goode HF, Cowley HC, Walker BE, Howdle PD, Webster NR (1995) Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit Care Med 23:646–651CrossRefPubMed Goode HF, Cowley HC, Walker BE, Howdle PD, Webster NR (1995) Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit Care Med 23:646–651CrossRefPubMed
54.
Zurück zum Zitat Guerreiro MO, Petronilho F, Andrades M, Constantino L, Mina FG, Moreira JC, Dal-Pizzol F, Ritter C (2010) Plasma superoxide dismutase activity and mortality in septic patients [corrected]. J Trauma 69:E102–E106CrossRefPubMed Guerreiro MO, Petronilho F, Andrades M, Constantino L, Mina FG, Moreira JC, Dal-Pizzol F, Ritter C (2010) Plasma superoxide dismutase activity and mortality in septic patients [corrected]. J Trauma 69:E102–E106CrossRefPubMed
55.
Zurück zum Zitat Cowley HC, Bacon PJ, Goode HF, Webster NR, Jones JG, Menon DK (1996) Plasma antioxidant potential in severe sepsis: a comparison of survivors and nonsurvivors. Crit Care Med 24:1179–1183CrossRefPubMed Cowley HC, Bacon PJ, Goode HF, Webster NR, Jones JG, Menon DK (1996) Plasma antioxidant potential in severe sepsis: a comparison of survivors and nonsurvivors. Crit Care Med 24:1179–1183CrossRefPubMed
56.
Zurück zum Zitat Fein AM, Calalang-Coluci MG (2000) Acute lung injury and acute respiratory distress syndrome in sepsis and septic shock. Crit Care Clin 16:289–317CrossRefPubMed Fein AM, Calalang-Coluci MG (2000) Acute lung injury and acute respiratory distress syndrome in sepsis and septic shock. Crit Care Clin 16:289–317CrossRefPubMed
57.
Zurück zum Zitat Hoesel LM, Neff TA, Neff SB, Younger JG, Olle EW, Gao H, Pianko MJ, Bernacki KD, Sarma JV, Ward PA (2005) Harmful and protective roles of neutrophils in sepsis. Shock 24:40–47CrossRefPubMed Hoesel LM, Neff TA, Neff SB, Younger JG, Olle EW, Gao H, Pianko MJ, Bernacki KD, Sarma JV, Ward PA (2005) Harmful and protective roles of neutrophils in sepsis. Shock 24:40–47CrossRefPubMed
58.
Zurück zum Zitat Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, Phoon MC, van Rooijen N, Chow VT (2011) Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 179:199–210CrossRefPubMedPubMedCentral Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, Phoon MC, van Rooijen N, Chow VT (2011) Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 179:199–210CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Strieter RM, Lynch JP 3rd, Basha MA, Standiford TJ, Kasahara K, Kunkel SL (1990) Host responses in mediating sepsis and adult respiratory distress syndrome. Semir Respir Infect 5:233–247 Strieter RM, Lynch JP 3rd, Basha MA, Standiford TJ, Kasahara K, Kunkel SL (1990) Host responses in mediating sepsis and adult respiratory distress syndrome. Semir Respir Infect 5:233–247
60.
Zurück zum Zitat Czaikoski PG, Mota JM, Nascimento DC, Sônego F, Castanheira FV, Melo PH, Scortegagna GT, Silva RL, Barroso-Sousa R, Souto FO, Pazin-Filho A, Figueiredo F, Alves-Filho JC, Cunha FQ (2016) Neutrophil extracelular traps induce organ damage during experimental and clinical sepsis. PLoS One 11:e0148142CrossRefPubMedPubMedCentral Czaikoski PG, Mota JM, Nascimento DC, Sônego F, Castanheira FV, Melo PH, Scortegagna GT, Silva RL, Barroso-Sousa R, Souto FO, Pazin-Filho A, Figueiredo F, Alves-Filho JC, Cunha FQ (2016) Neutrophil extracelular traps induce organ damage during experimental and clinical sepsis. PLoS One 11:e0148142CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Boiteux S, Coste F, Castaing B (2017) Repair of 8-oxo-7,8dihydroguanine in prokaryotic and eukaryotic cells: properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic Biol Med 107:179–201CrossRefPubMed Boiteux S, Coste F, Castaing B (2017) Repair of 8-oxo-7,8dihydroguanine in prokaryotic and eukaryotic cells: properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic Biol Med 107:179–201CrossRefPubMed
62.
Zurück zum Zitat Ruchko MV, Gorodnya OM, Zuleta A, Pastukh VM, Gillespie MN (2011) The DNA glycosylase, Ogg1, defends against oxidant-induced mtDNA damage and apoptosis in pulmonary artery endothelial cells. Free Radic Biol Med 50:1107–1113CrossRefPubMed Ruchko MV, Gorodnya OM, Zuleta A, Pastukh VM, Gillespie MN (2011) The DNA glycosylase, Ogg1, defends against oxidant-induced mtDNA damage and apoptosis in pulmonary artery endothelial cells. Free Radic Biol Med 50:1107–1113CrossRefPubMed
63.
Zurück zum Zitat Hashizume M, Mouner M, Chouteau JM, Gorodnya OM, Ruchko MV, Potter BJ, Wilson GL, Gillespie MN, Parker JC (2013) Mitochondrial-targeted DNA repair enzyme 8-oxoguanine DNA glycosylase 1 protects against ventilator-induced lung injury in intact mice. Am J Physiol Lung Cell Mol Physiol 304:L287–L297CrossRefPubMed Hashizume M, Mouner M, Chouteau JM, Gorodnya OM, Ruchko MV, Potter BJ, Wilson GL, Gillespie MN, Parker JC (2013) Mitochondrial-targeted DNA repair enzyme 8-oxoguanine DNA glycosylase 1 protects against ventilator-induced lung injury in intact mice. Am J Physiol Lung Cell Mol Physiol 304:L287–L297CrossRefPubMed
64.
Zurück zum Zitat Hazra TK, Das A, Das S, Choudhury S, Kow YW, Roy R (2007) Oxidative DNA damage repair in mammalian cells: a new perspective. DNA Repair (Amst) 6:470–480CrossRef Hazra TK, Das A, Das S, Choudhury S, Kow YW, Roy R (2007) Oxidative DNA damage repair in mammalian cells: a new perspective. DNA Repair (Amst) 6:470–480CrossRef
65.
Zurück zum Zitat Quoilin C, Mouithys-Mickalad A, Lécart S, Fontaine-Aupart MP, Hoebeke M (2014) Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro models of sepsis-induced kidney injury. Biochim Biophys Acta 1837:1790–1800CrossRefPubMed Quoilin C, Mouithys-Mickalad A, Lécart S, Fontaine-Aupart MP, Hoebeke M (2014) Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro models of sepsis-induced kidney injury. Biochim Biophys Acta 1837:1790–1800CrossRefPubMed
66.
Zurück zum Zitat Klungland A, Bjelland S (2007) Oxidative damage to purines in DNA: role of mammalian Ogg1. DNA Repair (Amst) 6:481–488CrossRef Klungland A, Bjelland S (2007) Oxidative damage to purines in DNA: role of mammalian Ogg1. DNA Repair (Amst) 6:481–488CrossRef
68.
Zurück zum Zitat Cheng L, Spitz MR, Hong WK, Wei Q (2000) Reduced expression levels of nucleotide excision repair genes in lung cancer: a case-control analysis. Carcinogenesis 21:1527–1530CrossRefPubMed Cheng L, Spitz MR, Hong WK, Wei Q (2000) Reduced expression levels of nucleotide excision repair genes in lung cancer: a case-control analysis. Carcinogenesis 21:1527–1530CrossRefPubMed
69.
Zurück zum Zitat Berndt SI, Huang WY, Fallin MD, Helzlsouer KJ, Platz EA, Weissfeld JL, Church TR, Welch R, Chanock SJ, Hayes RB (2007) Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. Cancer Res 67:13950–11404CrossRef Berndt SI, Huang WY, Fallin MD, Helzlsouer KJ, Platz EA, Weissfeld JL, Church TR, Welch R, Chanock SJ, Hayes RB (2007) Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. Cancer Res 67:13950–11404CrossRef
70.
Zurück zum Zitat Holmes CL, Russell JA, Walley KR (2003) Genetic polymorphisms in sepsis and septic shock: role in prognosis and potential for therapy. Chest 124:1103–1115CrossRefPubMed Holmes CL, Russell JA, Walley KR (2003) Genetic polymorphisms in sepsis and septic shock: role in prognosis and potential for therapy. Chest 124:1103–1115CrossRefPubMed
71.
Zurück zum Zitat Delongui F, Carvalho Grion CM, Ehara Watanabe MA, Morimoto HK, Bonametti AM, Maeda Oda JM, Kallaur AP, Matsuo T, Reiche EM (2011) Association of tumor necrosis factor β genetic polymorphism and sepsis susceptibility. Exp Ther Med 2:349–356CrossRefPubMedPubMedCentral Delongui F, Carvalho Grion CM, Ehara Watanabe MA, Morimoto HK, Bonametti AM, Maeda Oda JM, Kallaur AP, Matsuo T, Reiche EM (2011) Association of tumor necrosis factor β genetic polymorphism and sepsis susceptibility. Exp Ther Med 2:349–356CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Zhang AQ, Pan W, Gao JW, Yue CL, Zeng L, Gu W, Jiang JX (2014) Associations between interleukin-1 gene polymorphisms and sepsis risk: a meta-analysis. BMC Med Genet 15:8CrossRefPubMedPubMedCentral Zhang AQ, Pan W, Gao JW, Yue CL, Zeng L, Gu W, Jiang JX (2014) Associations between interleukin-1 gene polymorphisms and sepsis risk: a meta-analysis. BMC Med Genet 15:8CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Slupphaug G, Kavli B, Kroka HE (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251CrossRefPubMed Slupphaug G, Kavli B, Kroka HE (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251CrossRefPubMed
74.
Zurück zum Zitat Costa RM, Chiganças V, Galhardo Rda S, Carvalho H, Menck CF (2003) The eukaryotic nucleotide excision repair pathway. Biochimie 85:1083–1099CrossRefPubMed Costa RM, Chiganças V, Galhardo Rda S, Carvalho H, Menck CF (2003) The eukaryotic nucleotide excision repair pathway. Biochimie 85:1083–1099CrossRefPubMed
75.
Zurück zum Zitat Mitchel JR, Hoeijmakers JH, Niedernhofer LJ (2003) Divide and conquer: nucleotide excision repair battles cancer and ageing. Curr Opin Cell Biol 15:232–240CrossRef Mitchel JR, Hoeijmakers JH, Niedernhofer LJ (2003) Divide and conquer: nucleotide excision repair battles cancer and ageing. Curr Opin Cell Biol 15:232–240CrossRef
76.
Zurück zum Zitat Sancar A, Reardon JT (2004) Nucleotide excision repair in E. coli and man. Adv Protein Chem 69:43–71CrossRefPubMed Sancar A, Reardon JT (2004) Nucleotide excision repair in E. coli and man. Adv Protein Chem 69:43–71CrossRefPubMed
77.
Zurück zum Zitat Trajano LASN, Sergio LP, Silva CL, Carvalho L, Mencalha AL, Stumbo AC, Fonseca AS (2016) Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts. Laser Phys Lett 13:075601CrossRef Trajano LASN, Sergio LP, Silva CL, Carvalho L, Mencalha AL, Stumbo AC, Fonseca AS (2016) Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts. Laser Phys Lett 13:075601CrossRef
78.
Zurück zum Zitat Huang YY, Chen ACH, Hamblin M (2009) Low-level laser therapy: an emerging clinical paradigm. SPIE Newsroom 9:1–3 Huang YY, Chen ACH, Hamblin M (2009) Low-level laser therapy: an emerging clinical paradigm. SPIE Newsroom 9:1–3
79.
Zurück zum Zitat Karu TI (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17CrossRefPubMed Karu TI (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17CrossRefPubMed
80.
Zurück zum Zitat Calabrese EJ (2001) The future of hormesis: where do we go from here? Crit Rev Toxicol 31:637–648CrossRefPubMed Calabrese EJ (2001) The future of hormesis: where do we go from here? Crit Rev Toxicol 31:637–648CrossRefPubMed
82.
Zurück zum Zitat Sergio LPS, Campos VM, Vicentini SC, Mencalha AL, de Paoli F, Fonseca AS (2016) Low-intensity red and infrared lasers affect mRNA expression of DNA nucleotide excision repair in skin and muscle tissue. Laser Med Sci 31:429–435CrossRef Sergio LPS, Campos VM, Vicentini SC, Mencalha AL, de Paoli F, Fonseca AS (2016) Low-intensity red and infrared lasers affect mRNA expression of DNA nucleotide excision repair in skin and muscle tissue. Laser Med Sci 31:429–435CrossRef
83.
Zurück zum Zitat Karu T (1986) Molecular mechanism of the therapeutic effect of low-intensity laser irradiation. Dokl Akad Nauk SSSR 291:1245–1249PubMed Karu T (1986) Molecular mechanism of the therapeutic effect of low-intensity laser irradiation. Dokl Akad Nauk SSSR 291:1245–1249PubMed
84.
Zurück zum Zitat Chung KF, Marwick JA (2010) Molecular mechanisms of oxidative stress in airways and lungs with reference to asthma and chronic obstructive pulmonary disease. Ann N Y Acad Sci 1203:85–91CrossRefPubMed Chung KF, Marwick JA (2010) Molecular mechanisms of oxidative stress in airways and lungs with reference to asthma and chronic obstructive pulmonary disease. Ann N Y Acad Sci 1203:85–91CrossRefPubMed
Metadaten
Titel
Low-power laser alters mRNA levels from DNA repair genes in acute lung injury induced by sepsis in Wistar rats
Publikationsdatum
08.10.2018
Erschienen in
Lasers in Medical Science / Ausgabe 1/2019
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-018-2656-9

Weitere Artikel der Ausgabe 1/2019

Lasers in Medical Science 1/2019 Zur Ausgabe