Skip to main content
main-content

01.01.2019 | Image & Signal Processing | Ausgabe 1/2018

Journal of Medical Systems 1/2018

LS-GSNO and CWSNO Enhancement Processes Using PCA Algorithm with LOOCV of R-SM Technique for Effective Face Recognition Approach

Zeitschrift:
Journal of Medical Systems > Ausgabe 1/2018
Autoren:
N. Rathika, P. Suresh, N. Sathya
Wichtige Hinweise
This article is part of the Topical Collection on Image & Signal Processing

Abstract

The eminence of image under test is identified with different methods of Face Recognition (FR) which results in failure due to rapid change in pixel intensity. The identification of similar face with inter class similarity is very difficult in imaging. The imaging technology faces difficult in the mounting of intra class variability because of accommodate, intra-class variability because of head pose, illumination conditions, expressions, facial accessories, aging effects and cartoon faces. In the earliest approach, gradient with Zernike momemts were used to regonize the faces, the performance is low to overcome this a new approach is introduced. Many features of FR are affected by the outcome and low occurrence of performance is observed which is applicable only for data sets that are smaller. The introduction of a new approach can overcome the above stated limitations. This paper describes a novel approach for LS enhancement technique using GSNO and CWSNO, and extracts the PCA features with three ways such as mean, median and mode which are then classified with MD classifier using LOOCV of R-SM to recognize the faces. The performance metrics is also computed and compared. Performance metrics of the proposed approach and the current approach are computed and compared. Thus, the suggested method is useful for increasing the visibility of facial recognition, and overcoming a pose, similarity and illumination problem, which provides a more accurate investigation of the required recognition procedures.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

Journal of Medical Systems 1/2018 Zur Ausgabe