Skip to main content
Erschienen in: Endocrine 3/2016

12.04.2016 | Original Article

LXR activation causes G1/S arrest through inhibiting SKP2 expression in MIN6 pancreatic beta cells

verfasst von: Yating Li, Changwen Jing, Xinyi Tang, Yuanyuan Chen, Xiao Han, Yunxia Zhu

Erschienen in: Endocrine | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Liver X receptors (LXRs) are nuclear hormone receptors with central roles in lipid homeostasis. We previously showed that LXR activation induced aberrant lipid metabolism and G1 cell cycle arrest in pancreatic beta cells. In this study, we aimed to identify the molecular target of LXR causing G1 arrest. LXR activation was induced by its agonist, T0901317. A series of luciferase reporters of truncated Skp2 promoter were analyzed in MIN6 cells. mRNA and protein levels of SKP2 and P27 were detected. Flow cytometry assay was used to determine the cell cycle distribution. MTT assay was used to evaluate cell viability. LXR activation increased cell distribution in G1 phase and lipid accumulation. Since dominant-negative Srebp1c could clear the deposited lipid rather than recover the G1 arrest, we identified S-phase kinase-associated protein 2 (Skp2) as a potential target gene of LXR. In deed, LXR activation significantly inhibited Skp2 gene expression and protein amount. We also observed that the luciferase activity of Skp2 promoter was suppressed by T0901317 and the potential LXR regulatory site was narrowed down to a region of nt −289 to −38. Silencing Lxrα and Lxrβ rescued SKP2 protein level and recovered the cellular growth repressed by LXR activation. Moreover, SKP2 overabundance reduced P27 protein level by promoting its degradation, consequently overcame the G1 arrest caused by T0901317. Our findings demonstrate that transrepressing Skp2 expression by LXR activation resulted in defective SKP2-mediated P27 degradation and inhibitory cell growth in beta cells.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
3.
4.
Zurück zum Zitat C. Jacovetti, A. Abderrahmani, G. Parnaud, J.C. Jonas, M.L. Peyot, M. Cornu, R. Laybutt, E. Meugnier, S. Rome, B. Thorens, M. Prentki, D. Bosco, R. Regazzi, MicroRNAs contribute to compensatory beta cell expansion during pregnancy and obesity. J. Clin. Investig. 122(10), 3541–3551 (2012). doi:10.1172/jci64151 CrossRefPubMedPubMedCentral C. Jacovetti, A. Abderrahmani, G. Parnaud, J.C. Jonas, M.L. Peyot, M. Cornu, R. Laybutt, E. Meugnier, S. Rome, B. Thorens, M. Prentki, D. Bosco, R. Regazzi, MicroRNAs contribute to compensatory beta cell expansion during pregnancy and obesity. J. Clin. Investig. 122(10), 3541–3551 (2012). doi:10.​1172/​jci64151 CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat G.C. Weir, D.R. Laybutt, H. Kaneto, S. Bonner-Weir, A. Sharma, Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes 50(Suppl 1), S154–159 (2001)CrossRefPubMed G.C. Weir, D.R. Laybutt, H. Kaneto, S. Bonner-Weir, A. Sharma, Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes 50(Suppl 1), S154–159 (2001)CrossRefPubMed
7.
Zurück zum Zitat G.C. Weir, S. Bonner-Weir, Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53(Suppl 3), S16–21 (2004)CrossRefPubMed G.C. Weir, S. Bonner-Weir, Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53(Suppl 3), S16–21 (2004)CrossRefPubMed
8.
Zurück zum Zitat P. Yesil, E. Lammert, Islet dynamics: a glimpse at beta cell proliferation. Histol. Histopathol. 23(7), 883–895 (2008)PubMed P. Yesil, E. Lammert, Islet dynamics: a glimpse at beta cell proliferation. Histol. Histopathol. 23(7), 883–895 (2008)PubMed
10.
Zurück zum Zitat L. Zhong, S. Georgia, S.I. Tschen, K. Nakayama, K. Nakayama, A. Bhushan, Essential role of Skp2-mediated p27 degradation in growth and adaptive expansion of pancreatic beta cells. J. Clin. Investig. 117(10), 2869–2876 (2007). doi:10.1172/JCI32198 CrossRefPubMedPubMedCentral L. Zhong, S. Georgia, S.I. Tschen, K. Nakayama, K. Nakayama, A. Bhushan, Essential role of Skp2-mediated p27 degradation in growth and adaptive expansion of pancreatic beta cells. J. Clin. Investig. 117(10), 2869–2876 (2007). doi:10.​1172/​JCI32198 CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Z. Zhang, J. Li, L. Yang, R. Chen, R. Yang, H. Zhang, D. Cai, H. Chen, The cytotoxic role of intermittent high glucose on apoptosis and cell viability in pancreatic beta cells. J. Diabetes Res. 2014, 712781 (2014). doi:10.1155/2014/712781 PubMedPubMedCentral Z. Zhang, J. Li, L. Yang, R. Chen, R. Yang, H. Zhang, D. Cai, H. Chen, The cytotoxic role of intermittent high glucose on apoptosis and cell viability in pancreatic beta cells. J. Diabetes Res. 2014, 712781 (2014). doi:10.​1155/​2014/​712781 PubMedPubMedCentral
12.
Zurück zum Zitat S.I. Tschen, S. Georgia, S. Dhawan, A. Bhushan, Skp2 is required for incretin hormone-mediated beta-cell proliferation. Mol. Endocrinol. (Baltimore, Md.) 25(12), 2134–2143 (2011). doi:10.1210/me.2011-1119 CrossRef S.I. Tschen, S. Georgia, S. Dhawan, A. Bhushan, Skp2 is required for incretin hormone-mediated beta-cell proliferation. Mol. Endocrinol. (Baltimore, Md.) 25(12), 2134–2143 (2011). doi:10.​1210/​me.​2011-1119 CrossRef
13.
Zurück zum Zitat A.C. Carrano, E. Eytan, A. Hershko, M. Pagano, SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol. 1(4), 193–199 (1999)CrossRefPubMed A.C. Carrano, E. Eytan, A. Hershko, M. Pagano, SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol. 1(4), 193–199 (1999)CrossRefPubMed
14.
Zurück zum Zitat L. Lu, H. Schulz, D.A. Wolf, The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC Cell Biol. 3, 22 (2002)CrossRefPubMedPubMedCentral L. Lu, H. Schulz, D.A. Wolf, The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC Cell Biol. 3, 22 (2002)CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat R.H. Unger, Y.T. Zhou, Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes 50(Suppl 1), S118–121 (2001)CrossRefPubMed R.H. Unger, Y.T. Zhou, Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes 50(Suppl 1), S118–121 (2001)CrossRefPubMed
17.
Zurück zum Zitat K.R. Steffensen, J.A. Gustafsson, Putative metabolic effects of the liver X receptor (LXR). Diabetes 53(Suppl 1), S36–42 (2004)CrossRefPubMed K.R. Steffensen, J.A. Gustafsson, Putative metabolic effects of the liver X receptor (LXR). Diabetes 53(Suppl 1), S36–42 (2004)CrossRefPubMed
18.
Zurück zum Zitat M. Korach-Andre, A. Archer, R.P. Barros, P. Parini, J.A. Gustafsson, Both liver-X receptor (LXR) isoforms control energy expenditure by regulating brown adipose tissue activity. Proc. Natl. Acad. Sci. USA. 108(1), 403–408 (2011). doi:10.1073/pnas.1017884108 CrossRefPubMed M. Korach-Andre, A. Archer, R.P. Barros, P. Parini, J.A. Gustafsson, Both liver-X receptor (LXR) isoforms control energy expenditure by regulating brown adipose tissue activity. Proc. Natl. Acad. Sci. USA. 108(1), 403–408 (2011). doi:10.​1073/​pnas.​1017884108 CrossRefPubMed
19.
Zurück zum Zitat I. Gerin, V.W. Dolinsky, J.G. Shackman, R.T. Kennedy, S.H. Chiang, C.F. Burant, K.R. Steffensen, J.A. Gustafsson, O.A. MacDougald, LXRbeta is required for adipocyte growth, glucose homeostasis, and beta cell function. J. Biol. Chem. 280(24), 23024–23031 (2005). doi:10.1074/jbc.M412564200 CrossRefPubMed I. Gerin, V.W. Dolinsky, J.G. Shackman, R.T. Kennedy, S.H. Chiang, C.F. Burant, K.R. Steffensen, J.A. Gustafsson, O.A. MacDougald, LXRbeta is required for adipocyte growth, glucose homeostasis, and beta cell function. J. Biol. Chem. 280(24), 23024–23031 (2005). doi:10.​1074/​jbc.​M412564200 CrossRefPubMed
20.
Zurück zum Zitat Z.X. Meng, J. Nie, J.J. Ling, J.X. Sun, Y.X. Zhu, L. Gao, J.H. Lv, D.Y. Zhu, Y.J. Sun, X. Han, Activation of liver X receptors inhibits pancreatic islet beta cell proliferation through cell cycle arrest. Diabetologia 52(1), 125–135 (2009). doi:10.1007/s00125-008-1174-x CrossRefPubMed Z.X. Meng, J. Nie, J.J. Ling, J.X. Sun, Y.X. Zhu, L. Gao, J.H. Lv, D.Y. Zhu, Y.J. Sun, X. Han, Activation of liver X receptors inhibits pancreatic islet beta cell proliferation through cell cycle arrest. Diabetologia 52(1), 125–135 (2009). doi:10.​1007/​s00125-008-1174-x CrossRefPubMed
21.
Zurück zum Zitat S. Talukdar, F.B. Hillgartner, The mechanism mediating the activation of acetyl-coenzyme A carboxylase-alpha gene transcription by the liver X receptor agonist T0-901317. J. Lipid Res. 47(11), 2451–2461 (2006). doi:10.1194/jlr.M600276-JLR200 CrossRefPubMed S. Talukdar, F.B. Hillgartner, The mechanism mediating the activation of acetyl-coenzyme A carboxylase-alpha gene transcription by the liver X receptor agonist T0-901317. J. Lipid Res. 47(11), 2451–2461 (2006). doi:10.​1194/​jlr.​M600276-JLR200 CrossRefPubMed
22.
Zurück zum Zitat A.M. Efanov, S. Sewing, K. Bokvist, J. Gromada, Liver X receptor activation stimulates insulin secretion via modulation of glucose and lipid metabolism in pancreatic beta-cells. Diabetes 53(Suppl 3), S75–78 (2004)CrossRefPubMed A.M. Efanov, S. Sewing, K. Bokvist, J. Gromada, Liver X receptor activation stimulates insulin secretion via modulation of glucose and lipid metabolism in pancreatic beta-cells. Diabetes 53(Suppl 3), S75–78 (2004)CrossRefPubMed
24.
Zurück zum Zitat M. Korach-Andre, A. Archer, C. Gabbi, R.P. Barros, M. Pedrelli, K.R. Steffensen, A.T. Pettersson, J. Laurencikiene, P. Parini, J.A. Gustafsson, Liver X receptors regulate de novo lipogenesis in a tissue-specific manner in C57BL/6 female mice. Am. J. Physiol. Endocrinol. Metab. 301(1), E210–222 (2011). doi:10.1152/ajpendo.00541.2010 CrossRefPubMed M. Korach-Andre, A. Archer, C. Gabbi, R.P. Barros, M. Pedrelli, K.R. Steffensen, A.T. Pettersson, J. Laurencikiene, P. Parini, J.A. Gustafsson, Liver X receptors regulate de novo lipogenesis in a tissue-specific manner in C57BL/6 female mice. Am. J. Physiol. Endocrinol. Metab. 301(1), E210–222 (2011). doi:10.​1152/​ajpendo.​00541.​2010 CrossRefPubMed
25.
Zurück zum Zitat Z.X. Meng, Y. Yin, J.H. Lv, M. Sha, Y. Lin, L. Gao, Y.X. Zhu, Y.J. Sun, X. Han, Aberrant activation of liver X receptors impairs pancreatic beta cell function through upregulation of sterol regulatory element-binding protein 1c in mouse islets and rodent cell lines. Diabetologia 55(6), 1733–1744 (2012). doi:10.1007/s00125-012-2516-2 CrossRefPubMed Z.X. Meng, Y. Yin, J.H. Lv, M. Sha, Y. Lin, L. Gao, Y.X. Zhu, Y.J. Sun, X. Han, Aberrant activation of liver X receptors impairs pancreatic beta cell function through upregulation of sterol regulatory element-binding protein 1c in mouse islets and rodent cell lines. Diabetologia 55(6), 1733–1744 (2012). doi:10.​1007/​s00125-012-2516-2 CrossRefPubMed
26.
Zurück zum Zitat A. Takahashi, K. Motomura, T. Kato, T. Yoshikawa, Y. Nakagawa, N. Yahagi, H. Sone, H. Suzuki, H. Toyoshima, N. Yamada, H. Shimano, Transgenic mice overexpressing nuclear SREBP-1c in pancreatic beta-cells. Diabetes 54(2), 492–499 (2005)CrossRefPubMed A. Takahashi, K. Motomura, T. Kato, T. Yoshikawa, Y. Nakagawa, N. Yahagi, H. Sone, H. Suzuki, H. Toyoshima, N. Yamada, H. Shimano, Transgenic mice overexpressing nuclear SREBP-1c in pancreatic beta-cells. Diabetes 54(2), 492–499 (2005)CrossRefPubMed
27.
Zurück zum Zitat T. Zuo, R. Liu, H. Zhang, X. Chang, Y. Liu, L. Wang, P. Zheng, Y. Liu, FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J. Clin. Investig. 117(12), 3765–3773 (2007). doi:10.1172/JCI32538 PubMedPubMedCentral T. Zuo, R. Liu, H. Zhang, X. Chang, Y. Liu, L. Wang, P. Zheng, Y. Liu, FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J. Clin. Investig. 117(12), 3765–3773 (2007). doi:10.​1172/​JCI32538 PubMedPubMedCentral
28.
30.
Zurück zum Zitat L.M. Sarmento, H. Huang, A. Limon, W. Gordon, J. Fernandes, M.J. Tavares, L. Miele, A.A. Cardoso, M. Classon, N. Carlesso, Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. J. Exp. Med. 202(1), 157–168 (2005). doi:10.1084/jem.20050559 CrossRefPubMedPubMedCentral L.M. Sarmento, H. Huang, A. Limon, W. Gordon, J. Fernandes, M.J. Tavares, L. Miele, A.A. Cardoso, M. Classon, N. Carlesso, Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. J. Exp. Med. 202(1), 157–168 (2005). doi:10.​1084/​jem.​20050559 CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat J. Miyazaki, K. Araki, E. Yamato, H. Ikegami, T. Asano, Y. Shibasaki, Y. Oka, K. Yamamura, Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127(1), 126–132 (1990)CrossRefPubMed J. Miyazaki, K. Araki, E. Yamato, H. Ikegami, T. Asano, Y. Shibasaki, Y. Oka, K. Yamamura, Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127(1), 126–132 (1990)CrossRefPubMed
32.
Zurück zum Zitat R.F. Santerre, R.A. Cook, R.M. Crisel, J.D. Sharp, R.J. Schmidt, D.C. Williams, C.P. Wilson, Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc. Natl. Acad. Sci. U.S.A. 78(7), 4339–4343 (1981)CrossRefPubMedPubMedCentral R.F. Santerre, R.A. Cook, R.M. Crisel, J.D. Sharp, R.J. Schmidt, D.C. Williams, C.P. Wilson, Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc. Natl. Acad. Sci. U.S.A. 78(7), 4339–4343 (1981)CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Z.X. Meng, J.X. Sun, J.J. Ling, J.H. Lv, D.Y. Zhu, Q. Chen, Y.J. Sun, X. Han, Prostaglandin E2 regulates Foxo activity via the Akt pathway: implications for pancreatic islet beta cell dysfunction. Diabetologia 49(12), 2959–2968 (2006). doi:10.1007/s00125-006-0447-5 CrossRefPubMed Z.X. Meng, J.X. Sun, J.J. Ling, J.H. Lv, D.Y. Zhu, Q. Chen, Y.J. Sun, X. Han, Prostaglandin E2 regulates Foxo activity via the Akt pathway: implications for pancreatic islet beta cell dysfunction. Diabetologia 49(12), 2959–2968 (2006). doi:10.​1007/​s00125-006-0447-5 CrossRefPubMed
34.
Zurück zum Zitat M. Nakakuki, H. Shimano, N. Inoue, M. Tamura, T. Matsuzaka, Y. Nakagawa, N. Yahagi, H. Toyoshima, R. Sato, N. Yamada, A transcription factor of lipid synthesis, sterol regulatory element-binding protein (SREBP)-1a causes G(1) cell-cycle arrest after accumulation of cyclin-dependent kinase (cdk) inhibitors. FEBS J. 274(17), 4440–4452 (2007). doi:10.1111/j.1742-4658.2007.05973.x CrossRefPubMed M. Nakakuki, H. Shimano, N. Inoue, M. Tamura, T. Matsuzaka, Y. Nakagawa, N. Yahagi, H. Toyoshima, R. Sato, N. Yamada, A transcription factor of lipid synthesis, sterol regulatory element-binding protein (SREBP)-1a causes G(1) cell-cycle arrest after accumulation of cyclin-dependent kinase (cdk) inhibitors. FEBS J. 274(17), 4440–4452 (2007). doi:10.​1111/​j.​1742-4658.​2007.​05973.​x CrossRefPubMed
35.
Zurück zum Zitat T. Uchida, T. Nakamura, N. Hashimoto, T. Matsuda, K. Kotani, H. Sakaue, Y. Kido, Y. Hayashi, K.I. Nakayama, M.F. White, M. Kasuga, Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat. Med. 11(2), 175–182 (2005). doi:10.1038/nm1187 CrossRefPubMed T. Uchida, T. Nakamura, N. Hashimoto, T. Matsuda, K. Kotani, H. Sakaue, Y. Kido, Y. Hayashi, K.I. Nakayama, M.F. White, M. Kasuga, Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat. Med. 11(2), 175–182 (2005). doi:10.​1038/​nm1187 CrossRefPubMed
36.
Zurück zum Zitat L. Hengst, S.I. Reed, Translational control of p27Kip1 accumulation during the cell cycle. Science 271(5257), 1861–1864 (1996)CrossRefPubMed L. Hengst, S.I. Reed, Translational control of p27Kip1 accumulation during the cell cycle. Science 271(5257), 1861–1864 (1996)CrossRefPubMed
37.
Zurück zum Zitat M. Shirane, Y. Harumiya, N. Ishida, A. Hirai, C. Miyamoto, S. Hatakeyama, K. Nakayama, M. Kitagawa, Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J. Biol. Chem. 274(20), 13886–13893 (1999)CrossRefPubMed M. Shirane, Y. Harumiya, N. Ishida, A. Hirai, C. Miyamoto, S. Hatakeyama, K. Nakayama, M. Kitagawa, Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J. Biol. Chem. 274(20), 13886–13893 (1999)CrossRefPubMed
38.
41.
Zurück zum Zitat F. Blaschke, O. Leppanen, Y. Takata, E. Caglayan, J. Liu, M.C. Fishbein, K. Kappert, K.I. Nakayama, A.R. Collins, E. Fleck, W.A. Hsueh, R.E. Law, D. Bruemmer, Liver X receptor agonists suppress vascular smooth muscle cell proliferation and inhibit neointima formation in balloon-injured rat carotid arteries. Circ. Res. 95(12), e110–123 (2004). doi:10.1161/01.RES.0000150368.56660.4f CrossRefPubMed F. Blaschke, O. Leppanen, Y. Takata, E. Caglayan, J. Liu, M.C. Fishbein, K. Kappert, K.I. Nakayama, A.R. Collins, E. Fleck, W.A. Hsueh, R.E. Law, D. Bruemmer, Liver X receptor agonists suppress vascular smooth muscle cell proliferation and inhibit neointima formation in balloon-injured rat carotid arteries. Circ. Res. 95(12), e110–123 (2004). doi:10.​1161/​01.​RES.​0000150368.​56660.​4f CrossRefPubMed
42.
Zurück zum Zitat L.L. Vedin, S.A. Lewandowski, P. Parini, J.A. Gustafsson, K.R. Steffensen, The oxysterol receptor LXR inhibits proliferation of human breast cancer cells. Carcinogenesis 30(4), 575–579 (2009). doi:10.1093/carcin/bgp029 CrossRefPubMed L.L. Vedin, S.A. Lewandowski, P. Parini, J.A. Gustafsson, K.R. Steffensen, The oxysterol receptor LXR inhibits proliferation of human breast cancer cells. Carcinogenesis 30(4), 575–579 (2009). doi:10.​1093/​carcin/​bgp029 CrossRefPubMed
45.
Zurück zum Zitat J. Wu, S.W. Lee, X. Zhang, F. Han, S.Y. Kwan, X. Yuan, W.L. Yang, Y.S. Jeong, A.H. Rezaeian, Y. Gao, Y.X. Zeng, H.K. Lin, Foxo3a transcription factor is a negative regulator of Skp2 and Skp2 SCF complex. Oncogene 32(1), 78–85 (2013). doi:10.1038/onc.2012.26 CrossRefPubMed J. Wu, S.W. Lee, X. Zhang, F. Han, S.Y. Kwan, X. Yuan, W.L. Yang, Y.S. Jeong, A.H. Rezaeian, Y. Gao, Y.X. Zeng, H.K. Lin, Foxo3a transcription factor is a negative regulator of Skp2 and Skp2 SCF complex. Oncogene 32(1), 78–85 (2013). doi:10.​1038/​onc.​2012.​26 CrossRefPubMed
46.
Zurück zum Zitat Y. Zhang, Z. Gan, P. Huang, L. Zhou, T. Mao, M. Shao, X. Jiang, Y. Chen, H. Ying, M. Cao, J. Li, J. Li, W.J. Zhang, L. Yang, Y. Liu, A role for protein inhibitor of activated STAT1 (PIAS1) in lipogenic regulation through SUMOylation-independent suppression of liver X receptors. J. Biol. Chem. 287(45), 37973–37985 (2012). doi:10.1074/jbc.M112.403139 CrossRefPubMedPubMedCentral Y. Zhang, Z. Gan, P. Huang, L. Zhou, T. Mao, M. Shao, X. Jiang, Y. Chen, H. Ying, M. Cao, J. Li, J. Li, W.J. Zhang, L. Yang, Y. Liu, A role for protein inhibitor of activated STAT1 (PIAS1) in lipogenic regulation through SUMOylation-independent suppression of liver X receptors. J. Biol. Chem. 287(45), 37973–37985 (2012). doi:10.​1074/​jbc.​M112.​403139 CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat J.H. Lee, S.M. Park, O.S. Kim, C.S. Lee, J.H. Woo, S.J. Park, E.H. Joe, I. Jou, Differential SUMOylation of LXRalpha and LXRbeta mediates transrepression of STAT1 inflammatory signaling in IFN-gamma-stimulated brain astrocytes. Mol. Cell 35(6), 806–817 (2009). doi:10.1016/j.molcel.2009.07.021 CrossRefPubMed J.H. Lee, S.M. Park, O.S. Kim, C.S. Lee, J.H. Woo, S.J. Park, E.H. Joe, I. Jou, Differential SUMOylation of LXRalpha and LXRbeta mediates transrepression of STAT1 inflammatory signaling in IFN-gamma-stimulated brain astrocytes. Mol. Cell 35(6), 806–817 (2009). doi:10.​1016/​j.​molcel.​2009.​07.​021 CrossRefPubMed
48.
Zurück zum Zitat S.B. Joseph, A. Castrillo, B.A. Laffitte, D.J. Mangelsdorf, P. Tontonoz, Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9(2), 213–219 (2003). doi:10.1038/nm820 CrossRefPubMed S.B. Joseph, A. Castrillo, B.A. Laffitte, D.J. Mangelsdorf, P. Tontonoz, Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9(2), 213–219 (2003). doi:10.​1038/​nm820 CrossRefPubMed
49.
Zurück zum Zitat M. Pascual-Garcia, L. Rue, T. Leon, J. Julve, J.M. Carbo, J. Matalonga, H. Auer, A. Celada, J.C. Escola-Gil, K.R. Steffensen, E. Perez-Navarro, A.F. Valledor, Reciprocal negative cross-talk between liver X receptors (LXRs) and STAT1: effects on IFN-gamma-induced inflammatory responses and LXR-dependent gene expression. J. Immunol. (Baltimore, Md.: 1950) 190(12), 6520–6532 (2013). doi:10.4049/jimmunol.1201393 CrossRef M. Pascual-Garcia, L. Rue, T. Leon, J. Julve, J.M. Carbo, J. Matalonga, H. Auer, A. Celada, J.C. Escola-Gil, K.R. Steffensen, E. Perez-Navarro, A.F. Valledor, Reciprocal negative cross-talk between liver X receptors (LXRs) and STAT1: effects on IFN-gamma-induced inflammatory responses and LXR-dependent gene expression. J. Immunol. (Baltimore, Md.: 1950) 190(12), 6520–6532 (2013). doi:10.​4049/​jimmunol.​1201393 CrossRef
Metadaten
Titel
LXR activation causes G1/S arrest through inhibiting SKP2 expression in MIN6 pancreatic beta cells
verfasst von
Yating Li
Changwen Jing
Xinyi Tang
Yuanyuan Chen
Xiao Han
Yunxia Zhu
Publikationsdatum
12.04.2016
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 3/2016
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-016-0915-8

Weitere Artikel der Ausgabe 3/2016

Endocrine 3/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.