Skip to main content
Erschienen in: Diabetologia 12/2010

01.12.2010 | Article

Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines

verfasst von: M. Lundh, D. P. Christensen, D. N. Rasmussen, P. Mascagni, C. A. Dinarello, N. Billestrup, L. G. Grunnet, T. Mandrup-Poulsen

Erschienen in: Diabetologia | Ausgabe 12/2010

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Cytokine-induced beta cell toxicity is abrogated by non-selective inhibitors of lysine deacetylases (KDACs). The KDAC family consists of 11 members, namely histone deacetylases HDAC1 to HDAC11, but it is not known which KDAC members play a role in cytokine-mediated beta cell death. The aim of the present study was to examine the KDAC gene expression profile of the beta cell and to investigate whether KDAC expression is regulated by cytokines. In addition, the protective effect of the non-selective KDAC inhibitor ITF2357 and interdependent regulation of four selected KDACs were investigated.

Methods

The beta cell line INS-1 and intact rat and human islets were exposed to cytokines with or without ITF2357. Expression of mRNA was assessed by real-time PCR and selected targets validated at the protein level by immunoblotting. Effects on cytokine-induced toxicity were investigated by in vitro assays.

Results

Hdac1 to Hdac11 were expressed and differentially regulated by cytokines in INS-1 cells and rat islets. HDAC1, -2, -6 and -11 were found to be expressed and regulated by cytokines in human islets. ITF2357 protected against cytokine-induced beta cell apoptosis and counteracted cytokine-induced attenuation of basal insulin secretion. In addition, cytokine-induced regulation of Hdac2 and Hdac6, but not Hdac1 and Hdac11, was reduced by KDAC inhibition.

Conclusions/interpretation

All classical KDAC genes are expressed by beta cells and differentially regulated by cytokines. Based on the relative expression levels and degree of regulation by cytokines, we propose that HDAC1, -2, -6 and -11 are of particular importance for beta cell function. These observations may help in the design of specific KDAC inhibitors to prevent beta cell destruction in situ and in islet grafts.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840CrossRefPubMed Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840CrossRefPubMed
2.
Zurück zum Zitat Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97:10014–10019CrossRefPubMed Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97:10014–10019CrossRefPubMed
3.
Zurück zum Zitat Chou CW, Chen CC (2008) HDAC inhibition upregulates the expression of angiostatic ADAMTS1. FEBS Lett 582:4059–4065CrossRefPubMed Chou CW, Chen CC (2008) HDAC inhibition upregulates the expression of angiostatic ADAMTS1. FEBS Lett 582:4059–4065CrossRefPubMed
4.
Zurück zum Zitat Yu Z, Zhang W, Kone BC (2002) Histone deacetylases augment cytokine induction of the iNOS gene. J Am Soc Nephrol 13:2009–2017CrossRefPubMed Yu Z, Zhang W, Kone BC (2002) Histone deacetylases augment cytokine induction of the iNOS gene. J Am Soc Nephrol 13:2009–2017CrossRefPubMed
5.
Zurück zum Zitat Suenaga M, Soda H, Oka M et al (2002) Histone deacetylase inhibitors suppress telomerase reverse transcriptase mRNA expression in prostate cancer cells. Int J Cancer 97:621–625CrossRefPubMed Suenaga M, Soda H, Oka M et al (2002) Histone deacetylase inhibitors suppress telomerase reverse transcriptase mRNA expression in prostate cancer cells. Int J Cancer 97:621–625CrossRefPubMed
6.
Zurück zum Zitat Wang Z, Zang C, Cui K et al (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–1031CrossRefPubMed Wang Z, Zang C, Cui K et al (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–1031CrossRefPubMed
7.
Zurück zum Zitat Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13CrossRefPubMed Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13CrossRefPubMed
8.
Zurück zum Zitat de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749CrossRefPubMed de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749CrossRefPubMed
9.
Zurück zum Zitat Ma X, Ezzeldin HH, Diasio RB (2009) Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs 69:1911–1934CrossRefPubMed Ma X, Ezzeldin HH, Diasio RB (2009) Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs 69:1911–1934CrossRefPubMed
10.
Zurück zum Zitat Mai A, Rotili D, Valente S, Kazantsev AG (2009) Histone deacetylase inhibitors and neurodegenerative disorders: holding the promise. Curr Pharm Des 15:3940–3957CrossRefPubMed Mai A, Rotili D, Valente S, Kazantsev AG (2009) Histone deacetylase inhibitors and neurodegenerative disorders: holding the promise. Curr Pharm Des 15:3940–3957CrossRefPubMed
11.
Zurück zum Zitat Vojinovic J, Dinarello C, Furlan A, Damjanov N, D’Urzo C, Oldoni T (2009) Safety and efficacy of oral ITF 2357 in patients with active systemic onset juvenile idiopathic arthritis. Cytokine 48:93–94CrossRef Vojinovic J, Dinarello C, Furlan A, Damjanov N, D’Urzo C, Oldoni T (2009) Safety and efficacy of oral ITF 2357 in patients with active systemic onset juvenile idiopathic arthritis. Cytokine 48:93–94CrossRef
12.
Zurück zum Zitat Larsen L, Tonnesen M, Ronn S et al (2007) Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia 50:779–789CrossRefPubMed Larsen L, Tonnesen M, Ronn S et al (2007) Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia 50:779–789CrossRefPubMed
13.
Zurück zum Zitat Donath MY, Størling J, Berchtold LA, Billestrup N, Mandrup-Poulsen T (2008) Cytokines and β-cell biology: from concept to clinical translation. Endocr Rev 29:334–350CrossRefPubMed Donath MY, Størling J, Berchtold LA, Billestrup N, Mandrup-Poulsen T (2008) Cytokines and β-cell biology: from concept to clinical translation. Endocr Rev 29:334–350CrossRefPubMed
14.
Zurück zum Zitat Leoni F, Fossati G, Lewis EC et al (2008) The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med 11:1–15CrossRef Leoni F, Fossati G, Lewis EC et al (2008) The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med 11:1–15CrossRef
15.
Zurück zum Zitat Shein NA, Grigoriadis N, Alexandrovich AG et al (2009) Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury. FASEB J 23:4266–4275CrossRefPubMed Shein NA, Grigoriadis N, Alexandrovich AG et al (2009) Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury. FASEB J 23:4266–4275CrossRefPubMed
16.
Zurück zum Zitat Matalon S, Palmer BE, Nold MF et al (2010) The histone deacetylase inhibitor ITF2357 decreases surface CXCR4 and CCR5 expression on CD4(+) T cells and monocytes and is superior to valproic acid for latent HIV-1 expression in vitro. J Acquir Immune Defic Syndr 54:1–9PubMed Matalon S, Palmer BE, Nold MF et al (2010) The histone deacetylase inhibitor ITF2357 decreases surface CXCR4 and CCR5 expression on CD4(+) T cells and monocytes and is superior to valproic acid for latent HIV-1 expression in vitro. J Acquir Immune Defic Syndr 54:1–9PubMed
17.
Zurück zum Zitat Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42CrossRefPubMed Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42CrossRefPubMed
18.
Zurück zum Zitat Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24:8467–8476CrossRefPubMed Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24:8467–8476CrossRefPubMed
19.
Zurück zum Zitat McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111CrossRefPubMed McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111CrossRefPubMed
20.
Zurück zum Zitat Dequiedt F, van Lint J, Lecomte E et al (2005) Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. J Exp Med 201:793–804CrossRefPubMed Dequiedt F, van Lint J, Lecomte E et al (2005) Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. J Exp Med 201:793–804CrossRefPubMed
21.
Zurück zum Zitat Vega RB, Matsuda K, Oh J et al (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119:555–566CrossRefPubMed Vega RB, Matsuda K, Oh J et al (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119:555–566CrossRefPubMed
22.
Zurück zum Zitat Chen B, Cepko CL (2009) HDAC4 regulates neuronal survival in normal and diseased retinas. Science 323:256–259CrossRefPubMed Chen B, Cepko CL (2009) HDAC4 regulates neuronal survival in normal and diseased retinas. Science 323:256–259CrossRefPubMed
23.
Zurück zum Zitat Liu H, Hu Q, D’ercole AJ, Ye P (2009) Histone deacetylase 11 regulates oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells. Glia 57:1–12CrossRefPubMed Liu H, Hu Q, D’ercole AJ, Ye P (2009) Histone deacetylase 11 regulates oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells. Glia 57:1–12CrossRefPubMed
24.
Zurück zum Zitat Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277:25748–25755CrossRefPubMed Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277:25748–25755CrossRefPubMed
25.
Zurück zum Zitat Susick L, Veluthakal R, Suresh MV, Hadden T, Kowluru A (2007) Regulatory roles for histone deacetylation in IL-1β-induced nitric oxide release in pancreatic beta-cells. J Cell Mol Med 12:1571–1583CrossRefPubMed Susick L, Veluthakal R, Suresh MV, Hadden T, Kowluru A (2007) Regulatory roles for histone deacetylation in IL-1β-induced nitric oxide release in pancreatic beta-cells. J Cell Mol Med 12:1571–1583CrossRefPubMed
26.
Zurück zum Zitat Ortis F, Naamane N, Flamez D et al (2009) The cytokines IL-1β and TNF-α regulate different transcriptional and alternative splicing networks in primary beta cells. Diabetes 59:358–374CrossRefPubMed Ortis F, Naamane N, Flamez D et al (2009) The cytokines IL-1β and TNF-α regulate different transcriptional and alternative splicing networks in primary beta cells. Diabetes 59:358–374CrossRefPubMed
27.
Zurück zum Zitat Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130:167–178CrossRefPubMed Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130:167–178CrossRefPubMed
28.
Zurück zum Zitat Brunstedt J (1980) Rapid isolation of functionally intact pancreatic islets from mice and rats by percollTM gradient centrifucation. Diabète Métab 6:87–89PubMed Brunstedt J (1980) Rapid isolation of functionally intact pancreatic islets from mice and rats by percollTM gradient centrifucation. Diabète Métab 6:87–89PubMed
29.
Zurück zum Zitat Larsen L, Storling J, Darville M et al (2005) Extracellular signal-regulated kinase is essential for interleukin-1-induced and nuclear factor kappaB-mediated gene expression in insulin-producing INS-1E cells. Diabetologia 48:2582–2590CrossRefPubMed Larsen L, Storling J, Darville M et al (2005) Extracellular signal-regulated kinase is essential for interleukin-1-induced and nuclear factor kappaB-mediated gene expression in insulin-producing INS-1E cells. Diabetologia 48:2582–2590CrossRefPubMed
30.
Zurück zum Zitat Rabinovitch A, Suarez-Pinzon WL, Strynadka K et al (1994) Human pancreatic islet beta-cell destruction by cytokines is independent of nitric oxide production. J Clin Endocrinol Metab 79:1058–1062CrossRefPubMed Rabinovitch A, Suarez-Pinzon WL, Strynadka K et al (1994) Human pancreatic islet beta-cell destruction by cytokines is independent of nitric oxide production. J Clin Endocrinol Metab 79:1058–1062CrossRefPubMed
31.
Zurück zum Zitat Mandrup-Poulsen T, Egeberg J, Nerup J, Bendtzen K, Nielsen JH, Dinarello CA (1987) Ultrastructural studies of time-course and cellular specificity of interleukin-1 mediated islet cytotoxicity. Acta Pathol Microbiol Immunol Scand C 95:55–63PubMed Mandrup-Poulsen T, Egeberg J, Nerup J, Bendtzen K, Nielsen JH, Dinarello CA (1987) Ultrastructural studies of time-course and cellular specificity of interleukin-1 mediated islet cytotoxicity. Acta Pathol Microbiol Immunol Scand C 95:55–63PubMed
32.
Zurück zum Zitat Ajamian F, Salminen A, Reeben M (2004) Selective regulation of class I and class II histone deacetylases expression by inhibitors of histone deacetylases in cultured mouse neural cells. Neurosci Lett 365:64–68CrossRefPubMed Ajamian F, Salminen A, Reeben M (2004) Selective regulation of class I and class II histone deacetylases expression by inhibitors of histone deacetylases in cultured mouse neural cells. Neurosci Lett 365:64–68CrossRefPubMed
33.
Zurück zum Zitat Ashburner BP, Westerheide SD, Baldwin AS Jr (2001) The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol 21:7065–7077CrossRefPubMed Ashburner BP, Westerheide SD, Baldwin AS Jr (2001) The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol 21:7065–7077CrossRefPubMed
34.
Zurück zum Zitat Matthias P, Yoshida M, Khochbin S (2008) HDAC6 a new cellular stress surveillance factor. Cell Cycle 7:7–10CrossRefPubMed Matthias P, Yoshida M, Khochbin S (2008) HDAC6 a new cellular stress surveillance factor. Cell Cycle 7:7–10CrossRefPubMed
35.
Zurück zum Zitat Villagra A, Cheng F, Wang HW et al (2009) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10:92–100CrossRefPubMed Villagra A, Cheng F, Wang HW et al (2009) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10:92–100CrossRefPubMed
36.
Zurück zum Zitat Ouaissi M, Cabral S, Tavares J et al (2008) Histone deacetylase (HDAC) encoding gene expression in pancreatic cancer cell lines and cell sensitivity to HDAC inhibitors. Cancer Biol Ther 7:523–531PubMed Ouaissi M, Cabral S, Tavares J et al (2008) Histone deacetylase (HDAC) encoding gene expression in pancreatic cancer cell lines and cell sensitivity to HDAC inhibitors. Cancer Biol Ther 7:523–531PubMed
37.
Zurück zum Zitat Schuettengruber B, Simboeck E, Khier H, Seiser C (2003) Autoregulation of mouse histone deacetylase 1 expression. Mol Cell Biol 23:6993–7004CrossRefPubMed Schuettengruber B, Simboeck E, Khier H, Seiser C (2003) Autoregulation of mouse histone deacetylase 1 expression. Mol Cell Biol 23:6993–7004CrossRefPubMed
38.
Zurück zum Zitat Lagger G, O’Carroll D, Rembold M et al (2002) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21:2672–2681CrossRefPubMed Lagger G, O’Carroll D, Rembold M et al (2002) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21:2672–2681CrossRefPubMed
39.
Zurück zum Zitat Wyrwicz LS, Gaj P, Hoffmann M, Rychlewski L, Ostrowski J (2007) A common cis-element in promoters of protein synthesis and cell cycle genes. Acta Biochim Pol 54:89–98PubMed Wyrwicz LS, Gaj P, Hoffmann M, Rychlewski L, Ostrowski J (2007) A common cis-element in promoters of protein synthesis and cell cycle genes. Acta Biochim Pol 54:89–98PubMed
40.
Zurück zum Zitat Zhang D, Li J, Costa M, Gao J, Huang C (2010) JNK1 mediates degradation HIF-1alpha by a VHL-independent mechanism that involves the chaperones Hsp90/Hsp70. Cancer Res 70:813–823CrossRefPubMed Zhang D, Li J, Costa M, Gao J, Huang C (2010) JNK1 mediates degradation HIF-1alpha by a VHL-independent mechanism that involves the chaperones Hsp90/Hsp70. Cancer Res 70:813–823CrossRefPubMed
41.
Zurück zum Zitat Roggli E, Britan A, Gattesco S et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells. Diabetes 59:978–986CrossRefPubMed Roggli E, Britan A, Gattesco S et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells. Diabetes 59:978–986CrossRefPubMed
42.
Zurück zum Zitat Susick L, Senanayake T, Veluthakal R, Woster P, Kowluru A (2009) A novel histone deacetylase inhibitor prevents IL-1β-induced metabolic dysfunction in pancreatic beta-cells. J Cell Mol Med 13:1877–1885CrossRefPubMed Susick L, Senanayake T, Veluthakal R, Woster P, Kowluru A (2009) A novel histone deacetylase inhibitor prevents IL-1β-induced metabolic dysfunction in pancreatic beta-cells. J Cell Mol Med 13:1877–1885CrossRefPubMed
43.
Zurück zum Zitat Spinas GA, Mandrup-Poulsen T, Molvig J et al (1986) Low concentrations of interleukin-1 stimulate and high concentrations inhibit insulin release from isolated rat islets of Langerhans. Acta Endocrinol (Copenh) 113:551–558 Spinas GA, Mandrup-Poulsen T, Molvig J et al (1986) Low concentrations of interleukin-1 stimulate and high concentrations inhibit insulin release from isolated rat islets of Langerhans. Acta Endocrinol (Copenh) 113:551–558
44.
Zurück zum Zitat Eizirik DL, Sandler S, Welsh N, Juntti-Berggren L, Berggren PO (1995) Interleukin-1 beta-induced stimulation of insulin release in mouse pancreatic islets is related to diacylglycerol production and protein kinase C activation. Mol Cell Endocrinol 111:159–165CrossRefPubMed Eizirik DL, Sandler S, Welsh N, Juntti-Berggren L, Berggren PO (1995) Interleukin-1 beta-induced stimulation of insulin release in mouse pancreatic islets is related to diacylglycerol production and protein kinase C activation. Mol Cell Endocrinol 111:159–165CrossRefPubMed
45.
Zurück zum Zitat Faraco G, Pittelli M, Cavone L et al (2009) Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis 36:269–279CrossRefPubMed Faraco G, Pittelli M, Cavone L et al (2009) Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis 36:269–279CrossRefPubMed
46.
Zurück zum Zitat Chabane N, Zayed N, Afif H et al (2008) Histone deacetylase inhibitors suppress interleukin-1β-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthritis Cartilage 16:1267–1274CrossRefPubMed Chabane N, Zayed N, Afif H et al (2008) Histone deacetylase inhibitors suppress interleukin-1β-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthritis Cartilage 16:1267–1274CrossRefPubMed
Metadaten
Titel
Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines
verfasst von
M. Lundh
D. P. Christensen
D. N. Rasmussen
P. Mascagni
C. A. Dinarello
N. Billestrup
L. G. Grunnet
T. Mandrup-Poulsen
Publikationsdatum
01.12.2010
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 12/2010
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-010-1892-8

Weitere Artikel der Ausgabe 12/2010

Diabetologia 12/2010 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.