Skip to main content
Erschienen in: Tumor Biology 2/2016

19.09.2015 | Original Article

Lysophosphatidic acid induces both EGFR-dependent and EGFR-independent effects on DNA synthesis and migration in pancreatic and colorectal carcinoma cells

verfasst von: Ingun Heiene Tveteraas, Monica Aasrum, Ingvild Johnsen Brusevold, John Ødegård, Thoralf Christoffersen, Dagny Sandnes

Erschienen in: Tumor Biology | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Lysophosphatidic acid (LPA) is a small glycerophospholipid ubiquitously present in tissues and plasma. It acts through receptors belonging to the G-protein-coupled receptor (GPCR) family, is involved in several biological processes, and is strongly implicated in different cancers. In this paper, we have investigated the effects of LPA on DNA synthesis and migration in a panel of pancreatic and colon cancer cells, with particular focus on the involvement of the epidermal growth factor (EGF) receptor (EGFR) in LPA-induced signaling. LPA stimulated DNA synthesis and/or migration in all the cell lines included in this study. In five of the six cell lines, LPA induced phosphorylation of the EGFR, and the effects on EGFR and Akt, and in some of the cells also ERK, were sensitive to the EGFR tyrosine kinase inhibitor gefitinib, strongly suggesting LPA-induced EGFR transactivation in these cells. In contrast, in one of the pancreatic carcinoma cell lines (Panc-1), we found no evidence of transactivation of the EGFR. In the pancreatic carcinoma cell lines where transactivation took place (BxPC3, AsPC1, HPAFII), gefitinib reduced LPA-induced DNA synthesis and/or migration. However, we also found evidence of transactivation in the two colon carcinoma cell lines (HT29, HCT116) although gefitinib did not inhibit LPA-induced DNA synthesis or migration in these cells. Taken together, the data indicate that in many gastrointestinal carcinoma cells, LPA uses EGFR transactivation as a mechanism when exerting such effects as stimulation of cell proliferation and migration, but EGFR-independent pathways may be involved instead of, or in concerted action with, the EGFR transactivation.
Literatur
1.
Zurück zum Zitat Houben AJ, Moolenaar WH. Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev. 2011;30:557–65.CrossRefPubMed Houben AJ, Moolenaar WH. Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev. 2011;30:557–65.CrossRefPubMed
2.
Zurück zum Zitat Okudaira S, Yukiura H, Aoki J. Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie. 2010;92:698–706.CrossRefPubMed Okudaira S, Yukiura H, Aoki J. Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie. 2010;92:698–706.CrossRefPubMed
3.
Zurück zum Zitat Choi JW, Herr DR, Noguchi K, et al. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 2010;50:157–86.CrossRefPubMed Choi JW, Herr DR, Noguchi K, et al. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 2010;50:157–86.CrossRefPubMed
4.
Zurück zum Zitat Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer. 2003;3:582–91.CrossRefPubMed Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer. 2003;3:582–91.CrossRefPubMed
5.
Zurück zum Zitat Stortelers C, Kerkhoven R, Moolenaar WH. Multiple actions of lysophosphatidic acid on fibroblasts revealed by transcriptional profiling. BMC Genomics. 2008;9:387.CrossRefPubMedPubMedCentral Stortelers C, Kerkhoven R, Moolenaar WH. Multiple actions of lysophosphatidic acid on fibroblasts revealed by transcriptional profiling. BMC Genomics. 2008;9:387.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Anliker B, Chun J. Lysophospholipid G protein-coupled receptors. J Biol Chem. 2004;279:20555–8.CrossRefPubMed Anliker B, Chun J. Lysophospholipid G protein-coupled receptors. J Biol Chem. 2004;279:20555–8.CrossRefPubMed
7.
Zurück zum Zitat Ishii S, Noguchi K, Yanagida K. Non-Edg family lysophosphatidic acid (LPA) receptors. Prostaglandins Other Lipid Mediat. 2009;89:57–65.CrossRefPubMed Ishii S, Noguchi K, Yanagida K. Non-Edg family lysophosphatidic acid (LPA) receptors. Prostaglandins Other Lipid Mediat. 2009;89:57–65.CrossRefPubMed
8.
Zurück zum Zitat Gotoh M, Fujiwara Y, Yue J, et al. Controlling cancer through the autotaxin-lysophosphatidic acid receptor axis. Biochem Soc Trans. 2012;40:31–6.CrossRefPubMedPubMedCentral Gotoh M, Fujiwara Y, Yue J, et al. Controlling cancer through the autotaxin-lysophosphatidic acid receptor axis. Biochem Soc Trans. 2012;40:31–6.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Radhika V, Hee Ha J, Jayaraman M, et al. Mitogenic signaling by lysophosphatidic acid (LPA) involves Galpha12. Oncogene. 2005;24:4597–603.CrossRefPubMed Radhika V, Hee Ha J, Jayaraman M, et al. Mitogenic signaling by lysophosphatidic acid (LPA) involves Galpha12. Oncogene. 2005;24:4597–603.CrossRefPubMed
10.
Zurück zum Zitat Shida D, Fang X, Kordula T, et al. Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res. 2008;68:6569–77.CrossRefPubMedPubMedCentral Shida D, Fang X, Kordula T, et al. Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res. 2008;68:6569–77.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Panupinthu N, Yu S, Zhang D, et al. Self-reinforcing loop of amphiregulin and Y-box binding protein-1 contributes to poor outcomes in ovarian cancer. Oncogene. 2014;33:2846–56.CrossRefPubMed Panupinthu N, Yu S, Zhang D, et al. Self-reinforcing loop of amphiregulin and Y-box binding protein-1 contributes to poor outcomes in ovarian cancer. Oncogene. 2014;33:2846–56.CrossRefPubMed
13.
Zurück zum Zitat Hwang YS, Lee SK, Park KK, et al. Secretion of IL-6 and IL-8 from lysophosphatidic acid-stimulated oral squamous cell carcinoma promotes osteoclastogenesis and bone resorption. Oral Oncol. 2012;48:40–8.CrossRefPubMed Hwang YS, Lee SK, Park KK, et al. Secretion of IL-6 and IL-8 from lysophosphatidic acid-stimulated oral squamous cell carcinoma promotes osteoclastogenesis and bone resorption. Oral Oncol. 2012;48:40–8.CrossRefPubMed
14.
Zurück zum Zitat Kim JH, Adelstein RS. LPA(1)-induced migration requires nonmuscle myosin II light chain phosphorylation in breast cancer cells. J Cell Physiol. 2011;226:2881–93.CrossRefPubMedPubMedCentral Kim JH, Adelstein RS. LPA(1)-induced migration requires nonmuscle myosin II light chain phosphorylation in breast cancer cells. J Cell Physiol. 2011;226:2881–93.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Lee SJ, Yun CC. Colorectal cancer cells - Proliferation, survival and invasion by lysophosphatidic acid. Int J Biochem Cell Biol. 2010;42:1907–10.CrossRefPubMedPubMedCentral Lee SJ, Yun CC. Colorectal cancer cells - Proliferation, survival and invasion by lysophosphatidic acid. Int J Biochem Cell Biol. 2010;42:1907–10.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Park SY, Jeong KJ, Panupinthu N, et al. Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene. 2011;30:1351–9.CrossRefPubMed Park SY, Jeong KJ, Panupinthu N, et al. Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene. 2011;30:1351–9.CrossRefPubMed
17.
Zurück zum Zitat Schulte KM, Beyer A, Kohrer K, et al. Lysophosphatidic acid, a novel lipid growth factor for human thyroid cells: over-expression of the high-affinity receptor edg4 in differentiated thyroid cancer. Int J Cancer. 2001;92:249–56.CrossRefPubMed Schulte KM, Beyer A, Kohrer K, et al. Lysophosphatidic acid, a novel lipid growth factor for human thyroid cells: over-expression of the high-affinity receptor edg4 in differentiated thyroid cancer. Int J Cancer. 2001;92:249–56.CrossRefPubMed
18.
Zurück zum Zitat Shida D, Watanabe T, Aoki J, et al. Aberrant expression of lysophosphatidic acid (LPA) receptors in human colorectal cancer. Lab Invest. 2004;84:1352–62.CrossRefPubMed Shida D, Watanabe T, Aoki J, et al. Aberrant expression of lysophosphatidic acid (LPA) receptors in human colorectal cancer. Lab Invest. 2004;84:1352–62.CrossRefPubMed
19.
Zurück zum Zitat Sokolov E, Eheim AL, Ahrens WA, et al. Lysophosphatidic acid receptor expression and function in human hepatocellular carcinoma. J Surg Res. 2013;180:104–13.CrossRefPubMed Sokolov E, Eheim AL, Ahrens WA, et al. Lysophosphatidic acid receptor expression and function in human hepatocellular carcinoma. J Surg Res. 2013;180:104–13.CrossRefPubMed
20.
Zurück zum Zitat Yu S, Murph MM, Lu Y, et al. Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst. 2008;100:1630–42.CrossRefPubMedPubMedCentral Yu S, Murph MM, Lu Y, et al. Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst. 2008;100:1630–42.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Murph M, Mills GB. Targeting the lipids LPA and S1P and their signalling pathways to inhibit tumour progression. Expert Rev Mol Med. 2007;9:1–18.CrossRefPubMed Murph M, Mills GB. Targeting the lipids LPA and S1P and their signalling pathways to inhibit tumour progression. Expert Rev Mol Med. 2007;9:1–18.CrossRefPubMed
22.
23.
Zurück zum Zitat Jorissen RN, Walker F, Pouliot N, et al. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003;284:31–53.CrossRefPubMed Jorissen RN, Walker F, Pouliot N, et al. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003;284:31–53.CrossRefPubMed
24.
Zurück zum Zitat Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21:177–84.CrossRefPubMed Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21:177–84.CrossRefPubMed
25.
Zurück zum Zitat Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366:2–16.CrossRefPubMed Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366:2–16.CrossRefPubMed
26.
Zurück zum Zitat Fischer OM, Hart S, Gschwind A, et al. EGFR signal transactivation in cancer cells. Biochem Soc Trans. 2003;31:1203–8.CrossRefPubMed Fischer OM, Hart S, Gschwind A, et al. EGFR signal transactivation in cancer cells. Biochem Soc Trans. 2003;31:1203–8.CrossRefPubMed
27.
Zurück zum Zitat Bhola NE, Grandis JR. Crosstalk between G-protein-coupled receptors and epidermal growth factor receptor in cancer. Front Biosci. 2008;13:1857–65.CrossRefPubMed Bhola NE, Grandis JR. Crosstalk between G-protein-coupled receptors and epidermal growth factor receptor in cancer. Front Biosci. 2008;13:1857–65.CrossRefPubMed
28.
Zurück zum Zitat Daub H, Weiss FU, Wallasch C, et al. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 1996;379:557–60.CrossRefPubMed Daub H, Weiss FU, Wallasch C, et al. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 1996;379:557–60.CrossRefPubMed
29.
Zurück zum Zitat Fischer OM, Hart S, Ullrich A. Dissecting the epidermal growth factor receptor signal transactivation pathway. Methods Mol Biol. 2006;327:85–97.PubMed Fischer OM, Hart S, Ullrich A. Dissecting the epidermal growth factor receptor signal transactivation pathway. Methods Mol Biol. 2006;327:85–97.PubMed
30.
Zurück zum Zitat George AJ, Hannan RD, Thomas WG. Unravelling the molecular complexity of GPCR-mediated EGFR transactivation using functional genomics approaches. FEBS J. 2013;280:5258–68.CrossRefPubMed George AJ, Hannan RD, Thomas WG. Unravelling the molecular complexity of GPCR-mediated EGFR transactivation using functional genomics approaches. FEBS J. 2013;280:5258–68.CrossRefPubMed
31.
Zurück zum Zitat Gschwind A, Zwick E, Prenzel N, et al. Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene. 2001;20:1594–600.CrossRefPubMed Gschwind A, Zwick E, Prenzel N, et al. Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene. 2001;20:1594–600.CrossRefPubMed
32.
Zurück zum Zitat Liebmann C. EGF receptor activation by GPCRs: an universal pathway reveals different versions. Mol Cell Endocrinol. 2011;331:222–31.CrossRefPubMed Liebmann C. EGF receptor activation by GPCRs: an universal pathway reveals different versions. Mol Cell Endocrinol. 2011;331:222–31.CrossRefPubMed
33.
Zurück zum Zitat Rozengurt E. Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol. 2007;213:589–602.CrossRefPubMed Rozengurt E. Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol. 2007;213:589–602.CrossRefPubMed
34.
Zurück zum Zitat Gschwind A, Prenzel N, Ullrich A. Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation. Cancer Res. 2002;62:6329–36.PubMed Gschwind A, Prenzel N, Ullrich A. Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation. Cancer Res. 2002;62:6329–36.PubMed
35.
Zurück zum Zitat Mori K, Kitayama J, Shida D, et al. Lysophosphatidic acid-induced effects in human colon carcinoma DLD1 cells are partially dependent on transactivation of epidermal growth factor receptor. J Surg Res. 2006;132:56–61.CrossRefPubMed Mori K, Kitayama J, Shida D, et al. Lysophosphatidic acid-induced effects in human colon carcinoma DLD1 cells are partially dependent on transactivation of epidermal growth factor receptor. J Surg Res. 2006;132:56–61.CrossRefPubMed
36.
Zurück zum Zitat Dajani OF, Meisdalen K, Guren TK, et al. Prostaglandin E2 upregulates EGF-stimulated signaling in mitogenic pathways involving Akt and ERK in hepatocytes. J Cell Physiol. 2008;214:371–80.CrossRefPubMed Dajani OF, Meisdalen K, Guren TK, et al. Prostaglandin E2 upregulates EGF-stimulated signaling in mitogenic pathways involving Akt and ERK in hepatocytes. J Cell Physiol. 2008;214:371–80.CrossRefPubMed
37.
Zurück zum Zitat Tveteraas IH, Muller KM, Aasrum M, et al. Mechanisms involved in PGE2-induced transactivation of the epidermal growth factor receptor in MH1C1 hepatocarcinoma cells. J Exp Clin Cancer Res. 2012;31:72.CrossRefPubMedPubMedCentral Tveteraas IH, Muller KM, Aasrum M, et al. Mechanisms involved in PGE2-induced transactivation of the epidermal growth factor receptor in MH1C1 hepatocarcinoma cells. J Exp Clin Cancer Res. 2012;31:72.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Holmstrom TE, Mattsson CL, Wang Y, et al. Non-transactivational, dual pathways for LPA-induced Erk1/2 activation in primary cultures of brown pre-adipocytes. Exp Cell Res. 2010;316:2664–75.CrossRefPubMed Holmstrom TE, Mattsson CL, Wang Y, et al. Non-transactivational, dual pathways for LPA-induced Erk1/2 activation in primary cultures of brown pre-adipocytes. Exp Cell Res. 2010;316:2664–75.CrossRefPubMed
39.
Zurück zum Zitat Brusevold IJ, Tveteraas IH, Aasrum M, et al. Role of LPAR3, PKC and EGFR in LPA-induced cell migration in oral squamous carcinoma cells. BMC Cancer. 2014;14:432.CrossRefPubMedPubMedCentral Brusevold IJ, Tveteraas IH, Aasrum M, et al. Role of LPAR3, PKC and EGFR in LPA-induced cell migration in oral squamous carcinoma cells. BMC Cancer. 2014;14:432.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Loukopoulos P, Kanetaka K, Takamura M, et al. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas. 2004;29:193–203.CrossRefPubMed Loukopoulos P, Kanetaka K, Takamura M, et al. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas. 2004;29:193–203.CrossRefPubMed
41.
42.
Zurück zum Zitat Refsnes M, Thoresen GH, Dajani OF, et al. Stimulation of hepatocyte DNA synthesis by prostaglandin E2 and prostaglandin F2 alpha: additivity with the effect of norepinephrine, and synergism with epidermal growth factor. J Cell Physiol. 1994;159:35–40.CrossRefPubMed Refsnes M, Thoresen GH, Dajani OF, et al. Stimulation of hepatocyte DNA synthesis by prostaglandin E2 and prostaglandin F2 alpha: additivity with the effect of norepinephrine, and synergism with epidermal growth factor. J Cell Physiol. 1994;159:35–40.CrossRefPubMed
43.
Zurück zum Zitat Brusevold IJ, Aasrum M, Bryne M, et al. Migration induced by epidermal and hepatocyte growth factors in oral squamous carcinoma cells in vitro: role of MEK/ERK, p38 and PI-3 kinase/Akt. J Oral Pathol Med. 2012;41:547–58.PubMed Brusevold IJ, Aasrum M, Bryne M, et al. Migration induced by epidermal and hepatocyte growth factors in oral squamous carcinoma cells in vitro: role of MEK/ERK, p38 and PI-3 kinase/Akt. J Oral Pathol Med. 2012;41:547–58.PubMed
44.
Zurück zum Zitat Komachi M, Tomura H, Malchinkhuu E, et al. LPA1 receptors mediate stimulation, whereas LPA2 receptors mediate inhibition, of migration of pancreatic cancer cells in response to lysophosphatidic acid and malignant ascites. Carcinogenesis. 2009;30:457–65.CrossRefPubMed Komachi M, Tomura H, Malchinkhuu E, et al. LPA1 receptors mediate stimulation, whereas LPA2 receptors mediate inhibition, of migration of pancreatic cancer cells in response to lysophosphatidic acid and malignant ascites. Carcinogenesis. 2009;30:457–65.CrossRefPubMed
45.
Zurück zum Zitat Stahle M, Veit C, Bachfischer U, et al. Mechanisms in LPA-induced tumor cell migration: critical role of phosphorylated ERK. J Cell Sci. 2003;116:3835–46.CrossRefPubMed Stahle M, Veit C, Bachfischer U, et al. Mechanisms in LPA-induced tumor cell migration: critical role of phosphorylated ERK. J Cell Sci. 2003;116:3835–46.CrossRefPubMed
46.
Zurück zum Zitat Yamada T, Sato K, Komachi M, et al. Lysophosphatidic acid (LPA) in malignant ascites stimulates motility of human pancreatic cancer cells through LPA1. J Biol Chem. 2004;279:6595–605.CrossRefPubMed Yamada T, Sato K, Komachi M, et al. Lysophosphatidic acid (LPA) in malignant ascites stimulates motility of human pancreatic cancer cells through LPA1. J Biol Chem. 2004;279:6595–605.CrossRefPubMed
47.
Zurück zum Zitat Muller KM, Tveteraas IH, Aasrum M, et al. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells. BMC Cancer. 2011;11:421.CrossRefPubMedPubMedCentral Muller KM, Tveteraas IH, Aasrum M, et al. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells. BMC Cancer. 2011;11:421.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Oyesanya RA, Greenbaum S, Dang D, et al. Differential requirement of the epidermal growth factor receptor for G protein-mediated activation of transcription factors by lysophosphatidic acid. Mol Cancer. 2010;9:8.CrossRefPubMedPubMedCentral Oyesanya RA, Greenbaum S, Dang D, et al. Differential requirement of the epidermal growth factor receptor for G protein-mediated activation of transcription factors by lysophosphatidic acid. Mol Cancer. 2010;9:8.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Rubio I, Rennert K, Wittig U, et al. Ras activation in response to lysophosphatidic acid requires a permissive input from the epidermal growth factor receptor. Biochem J. 2003;376:571–6.CrossRefPubMedPubMedCentral Rubio I, Rennert K, Wittig U, et al. Ras activation in response to lysophosphatidic acid requires a permissive input from the epidermal growth factor receptor. Biochem J. 2003;376:571–6.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Leserer M, Gschwind A, Ullrich A. Epidermal growth factor receptor signal transactivation. IUBMB Life. 2000;49:405–9.CrossRefPubMed Leserer M, Gschwind A, Ullrich A. Epidermal growth factor receptor signal transactivation. IUBMB Life. 2000;49:405–9.CrossRefPubMed
51.
Zurück zum Zitat Gardner JA, Ha JH, Jayaraman M, et al. The gep proto-oncogene Galpha13 mediates lysophosphatidic acid-mediated migration of pancreatic cancer cells. Pancreas. 2013;42:819–28.CrossRefPubMedPubMedCentral Gardner JA, Ha JH, Jayaraman M, et al. The gep proto-oncogene Galpha13 mediates lysophosphatidic acid-mediated migration of pancreatic cancer cells. Pancreas. 2013;42:819–28.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Leve F, Marcondes TG, Bastos LG, et al. Lysophosphatidic acid induces a migratory phenotype through a crosstalk between RhoA-Rock and Src-FAK signalling in colon cancer cells. Eur J Pharmacol. 2011;671:7–17.CrossRefPubMed Leve F, Marcondes TG, Bastos LG, et al. Lysophosphatidic acid induces a migratory phenotype through a crosstalk between RhoA-Rock and Src-FAK signalling in colon cancer cells. Eur J Pharmacol. 2011;671:7–17.CrossRefPubMed
53.
Zurück zum Zitat Sun H, Ren J, Zhu Q, et al. Effects of lysophosphatidic acid on human colon cancer cells and its mechanisms of action. World J Gastroenterol. 2009;15:4547–55.CrossRefPubMedPubMedCentral Sun H, Ren J, Zhu Q, et al. Effects of lysophosphatidic acid on human colon cancer cells and its mechanisms of action. World J Gastroenterol. 2009;15:4547–55.CrossRefPubMedPubMedCentral
Metadaten
Titel
Lysophosphatidic acid induces both EGFR-dependent and EGFR-independent effects on DNA synthesis and migration in pancreatic and colorectal carcinoma cells
verfasst von
Ingun Heiene Tveteraas
Monica Aasrum
Ingvild Johnsen Brusevold
John Ødegård
Thoralf Christoffersen
Dagny Sandnes
Publikationsdatum
19.09.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 2/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4010-1

Weitere Artikel der Ausgabe 2/2016

Tumor Biology 2/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.