Skip to main content
Erschienen in:

05.01.2022 | KNEE

Machine learning algorithms predict extended postoperative opioid use in primary total knee arthroplasty

verfasst von: Christian Klemt, Michael Joseph Harvey, Matthew Gerald Robinson, John G. Esposito, Ingwon Yeo, Young-Min Kwon

Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Adequate postoperative pain control following total knee arthroplasty (TKA) is required to achieve optimal patient recovery. However, the postoperative recovery may lead to an unnaturally extended opioid use, which has been associated with adverse outcomes. This study hypothesizes that machine learning models can accurately predict extended opioid use following primary TKA.

Methods

A total of 8873 consecutive patients that underwent primary TKA were evaluated, including 643 patients (7.2%) with extended postoperative opioid use (> 90 days). Electronic patient records were manually reviewed to identify patient demographics and surgical variables associated with prolonged postoperative opioid use. Five machine learning algorithms were developed, encompassing the breadth of state-of-the-art machine learning algorithms available in the literature, to predict extended opioid use following primary TKA, and these models were assessed by discrimination, calibration, and decision curve analysis.

Results

The strongest predictors for prolonged opioid prescription following primary TKA were preoperative opioid duration (100% importance; p < 0.01), drug abuse (54% importance; p < 0.01), and depression (47% importance; p < 0.01). The five machine learning models all achieved excellent performance across discrimination (AUC > 0.83), calibration, and decision curve analysis. Higher net benefits for all machine learning models were demonstrated, when compared to the default strategies of changing management for all patients or no patients.

Conclusion

The study findings show excellent model performance for the prediction of extended postoperative opioid use following primary total knee arthroplasty, highlighting the potential of these models to assist in preoperatively identifying at risk patients, and allowing the implementation of individualized peri-operative counselling and pain management strategies to mitigate complications associated with prolonged opioid use.

Level of evidence

IV.
Literatur
1.
Zurück zum Zitat Bedard NA, DeMik DE, Dowdle SB, Callaghan JJ (2018) Trends and risk factors for prolonged opioid use after unicompartmental knee arthroplasty. Bone Joint J 100B:62–67CrossRef Bedard NA, DeMik DE, Dowdle SB, Callaghan JJ (2018) Trends and risk factors for prolonged opioid use after unicompartmental knee arthroplasty. Bone Joint J 100B:62–67CrossRef
2.
Zurück zum Zitat Bini SA (2018) Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care? J Arthroplasty 33:2358–2361CrossRef Bini SA (2018) Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care? J Arthroplasty 33:2358–2361CrossRef
3.
Zurück zum Zitat Bonner BE, Castillo TN, Fitz DW, Zhao JZ, Klemt C, Kwon Y-M (2019) Preoperative opioid use negatively affects patient-reported outcomes after primary total hip arthroplasty. J Am Acad Orthop Surg 16:38–47 Bonner BE, Castillo TN, Fitz DW, Zhao JZ, Klemt C, Kwon Y-M (2019) Preoperative opioid use negatively affects patient-reported outcomes after primary total hip arthroplasty. J Am Acad Orthop Surg 16:38–47
4.
Zurück zum Zitat Brummett CM, Waljee JF, Goesling J, Moser S, Lin P, Englesbe MJ, Bohnert ASB, Kheterpal S, Nallamothu BK (2017) New persistent opioid use after minor and major surgical procedures in US adults. JAMA Surg 152:e170504CrossRef Brummett CM, Waljee JF, Goesling J, Moser S, Lin P, Englesbe MJ, Bohnert ASB, Kheterpal S, Nallamothu BK (2017) New persistent opioid use after minor and major surgical procedures in US adults. JAMA Surg 152:e170504CrossRef
5.
Zurück zum Zitat Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW, Bossuyt P, Collins GS, Macaskill P, McLernon DJ, Moons KGM, Steyerberg EW, Van Calster B, van Smeden M, Vickers AJ, Initiative O behalf of TG ‘Evaluating diagnostic tests and prediction models’ of the S (2019) Calibration: the Achilles heel of predictive analytics. BMC Med 17:230CrossRef Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW, Bossuyt P, Collins GS, Macaskill P, McLernon DJ, Moons KGM, Steyerberg EW, Van Calster B, van Smeden M, Vickers AJ, Initiative O behalf of TG ‘Evaluating diagnostic tests and prediction models’ of the S (2019) Calibration: the Achilles heel of predictive analytics. BMC Med 17:230CrossRef
6.
Zurück zum Zitat Clarke H, Soneji N, Ko DT, Yun L, Wijeysundera DN (2014) Rates and risk factors for prolonged opioid use after major surgery: population based cohort study. BMJ 348:g1251CrossRef Clarke H, Soneji N, Ko DT, Yun L, Wijeysundera DN (2014) Rates and risk factors for prolonged opioid use after major surgery: population based cohort study. BMJ 348:g1251CrossRef
7.
Zurück zum Zitat Collins GS, Reitsma JB, Altman DG, Moons KGM (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350:g7594CrossRef Collins GS, Reitsma JB, Altman DG, Moons KGM (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350:g7594CrossRef
8.
Zurück zum Zitat Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118CrossRef Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118CrossRef
9.
Zurück zum Zitat Ferro CAT (2007) Comparing probabilistic forecasting systems with the Brier score. Weather Forecast 22:1076–1088CrossRef Ferro CAT (2007) Comparing probabilistic forecasting systems with the Brier score. Weather Forecast 22:1076–1088CrossRef
10.
Zurück zum Zitat Franklin PD, Karbassi JA, Li W, Yang W, Ayers DC (2010) Reduction in narcotic use after primary total knee arthroplasty and association with patient pain relief and satisfaction. J Arthroplasty 25:12–16CrossRef Franklin PD, Karbassi JA, Li W, Yang W, Ayers DC (2010) Reduction in narcotic use after primary total knee arthroplasty and association with patient pain relief and satisfaction. J Arthroplasty 25:12–16CrossRef
11.
Zurück zum Zitat Goesling J, Moser SE, Zaidi B, Hassett AL, Hilliard P, Hallstrom B, Clauw DJ, Brummett CM (2016) Trends and predictors of opioid use after total knee and total hip arthroplasty. Pain 157:1259–1265CrossRef Goesling J, Moser SE, Zaidi B, Hassett AL, Hilliard P, Hallstrom B, Clauw DJ, Brummett CM (2016) Trends and predictors of opioid use after total knee and total hip arthroplasty. Pain 157:1259–1265CrossRef
12.
Zurück zum Zitat Greenwell BM, Boehmke BC, McCarthy AJ (2018) A simple and effective model-based variable importance measure. arXiv 1-27 Greenwell BM, Boehmke BC, McCarthy AJ (2018) A simple and effective model-based variable importance measure. arXiv 1-27
13.
Zurück zum Zitat Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:2402–2410CrossRef Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:2402–2410CrossRef
14.
Zurück zum Zitat Hadlandsmyth K, Vander Weg MW, McCoy KD, Mosher HJ, Vaughan-Sarrazin MS, Lund BC (2018) Risk for prolonged opioid use following total knee arthroplasty in veterans. J Arthroplasty 33:119–123CrossRef Hadlandsmyth K, Vander Weg MW, McCoy KD, Mosher HJ, Vaughan-Sarrazin MS, Lund BC (2018) Risk for prolonged opioid use following total knee arthroplasty in veterans. J Arthroplasty 33:119–123CrossRef
15.
Zurück zum Zitat Haeberle HS, Helm JM, Navarro SM, Karnuta JM, Schaffer JL, Callaghan JJ, Mont MA, Kamath AF, Krebs VE, Ramkumar PN (2019) Artificial intelligence and machine learning in lower extremity arthroplasty: a review. J Arthroplasty 34:2201–2203CrossRef Haeberle HS, Helm JM, Navarro SM, Karnuta JM, Schaffer JL, Callaghan JJ, Mont MA, Kamath AF, Krebs VE, Ramkumar PN (2019) Artificial intelligence and machine learning in lower extremity arthroplasty: a review. J Arthroplasty 34:2201–2203CrossRef
16.
Zurück zum Zitat Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, Ng AY (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature 25:65–69 Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, Ng AY (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature 25:65–69
17.
Zurück zum Zitat Helm JM, Swiergosz AM, Haeberle HS, Karnuta JM, Schaffer JL, Krebs VE, Spitzer AI, Ramkumar PN (2020) Machine learning and artificial intelligence: definitions, applications, and future directions. Curr Rev Musculoskelet Med 13:69–76CrossRef Helm JM, Swiergosz AM, Haeberle HS, Karnuta JM, Schaffer JL, Krebs VE, Spitzer AI, Ramkumar PN (2020) Machine learning and artificial intelligence: definitions, applications, and future directions. Curr Rev Musculoskelet Med 13:69–76CrossRef
18.
Zurück zum Zitat Ingall E, Klemt C, Melnic CM, Cohen-Levy WB, Tirumala V, Kwon Y-M (2021) Impact of preoperative opioid use on patient-reported outcomes after revision total knee arthroplasty: a propensity matched analysis. J Knee Surg 13:79–86 Ingall E, Klemt C, Melnic CM, Cohen-Levy WB, Tirumala V, Kwon Y-M (2021) Impact of preoperative opioid use on patient-reported outcomes after revision total knee arthroplasty: a propensity matched analysis. J Knee Surg 13:79–86
19.
Zurück zum Zitat Karhade AV, Ogink PT, Thio QCBS, Broekman MLD, Cha TD, Hershman SH, Mao J, Peul WC, Schoenfeld AJ, Bono CM, Schwab JH (2019) Machine learning for prediction of sustained opioid prescription after anterior cervical discectomy and fusion. Spine J 19:976–983CrossRef Karhade AV, Ogink PT, Thio QCBS, Broekman MLD, Cha TD, Hershman SH, Mao J, Peul WC, Schoenfeld AJ, Bono CM, Schwab JH (2019) Machine learning for prediction of sustained opioid prescription after anterior cervical discectomy and fusion. Spine J 19:976–983CrossRef
20.
Zurück zum Zitat Karhade AV, Schwab JH, Bedair HS (2019) Development of machine learning algorithms for prediction of sustained postoperative opioid prescriptions after total hip arthroplasty. J Arthroplasty 34:2272-2277.e1CrossRef Karhade AV, Schwab JH, Bedair HS (2019) Development of machine learning algorithms for prediction of sustained postoperative opioid prescriptions after total hip arthroplasty. J Arthroplasty 34:2272-2277.e1CrossRef
21.
Zurück zum Zitat Karhade AV, Thio QCBS, Ogink PT, Bono CM, Ferrone ML, Oh KS, Saylor PJ, Schoenfeld AJ, Shin JH, Harris MB, Schwab JH (2019) Predicting 90-day and 1-year mortality in spinal metastatic disease: development and internal validation. Neurosurgery 85:E671–E681CrossRef Karhade AV, Thio QCBS, Ogink PT, Bono CM, Ferrone ML, Oh KS, Saylor PJ, Schoenfeld AJ, Shin JH, Harris MB, Schwab JH (2019) Predicting 90-day and 1-year mortality in spinal metastatic disease: development and internal validation. Neurosurgery 85:E671–E681CrossRef
22.
Zurück zum Zitat Katakam A, Karhade AV, Schwab JH, Chen AF, Bedair HS (2020) Development and validation of machine learning algorithms for postoperative opioid prescriptions after TKA. J Orthop 22:95–99CrossRef Katakam A, Karhade AV, Schwab JH, Chen AF, Bedair HS (2020) Development and validation of machine learning algorithms for postoperative opioid prescriptions after TKA. J Orthop 22:95–99CrossRef
23.
Zurück zum Zitat Klemt C, Tirumala V, Smith EJ, Padmanabha A, Kwon Y-M (2020) Development of a preoperative risk calculator for re-infection following revision surgery for periprosthetic joint infection. J Arthroplasty 36:693–699CrossRef Klemt C, Tirumala V, Smith EJ, Padmanabha A, Kwon Y-M (2020) Development of a preoperative risk calculator for re-infection following revision surgery for periprosthetic joint infection. J Arthroplasty 36:693–699CrossRef
24.
Zurück zum Zitat Lopez CD, Gazgalis A, Boddapati V, Shah RP, Cooper HJ, Geller JA (2021) Artificial learning and machine learning decision guidance applications in total hip and knee arthroplasty: a systematic review. Arthroplast Today 11:103–112CrossRef Lopez CD, Gazgalis A, Boddapati V, Shah RP, Cooper HJ, Geller JA (2021) Artificial learning and machine learning decision guidance applications in total hip and knee arthroplasty: a systematic review. Arthroplast Today 11:103–112CrossRef
25.
Zurück zum Zitat Manchikanti L, Singh A (2008) Therapeutic opioids: a ten-year perspective on the complexities and complications of the escalating use, abuse, and nonmedical use of opioids. Pain Physician 11:S63-88CrossRef Manchikanti L, Singh A (2008) Therapeutic opioids: a ten-year perspective on the complexities and complications of the escalating use, abuse, and nonmedical use of opioids. Pain Physician 11:S63-88CrossRef
26.
Zurück zum Zitat Mudumbai SC, Chung P, Nguyen N, Harris B, Clark JD, Wagner TH, Giori NJ, Stafford RS, Mariano ER (2020) Perioperative opioid prescribing patterns and readmissions after total knee arthroplasty in a national cohort of veterans health administration patients. Pain Med 21:595–603CrossRef Mudumbai SC, Chung P, Nguyen N, Harris B, Clark JD, Wagner TH, Giori NJ, Stafford RS, Mariano ER (2020) Perioperative opioid prescribing patterns and readmissions after total knee arthroplasty in a national cohort of veterans health administration patients. Pain Med 21:595–603CrossRef
27.
Zurück zum Zitat Namba RS, Singh A, Paxton EW, Inacio MCS (2018) Patient factors associated with prolonged postoperative opioid use after total knee arthroplasty. J Arthroplasty 33:2449–2454CrossRef Namba RS, Singh A, Paxton EW, Inacio MCS (2018) Patient factors associated with prolonged postoperative opioid use after total knee arthroplasty. J Arthroplasty 33:2449–2454CrossRef
28.
Zurück zum Zitat Navarro SM, Wang EY, Haeberle HS, Mont MA, Krebs VE, Patterson BM, Ramkumar PN (2018) Machine learning and primary total knee arthroplasty: patient forecasting for a patient-specific payment model. J Arthroplasty 33:3617–3623CrossRef Navarro SM, Wang EY, Haeberle HS, Mont MA, Krebs VE, Patterson BM, Ramkumar PN (2018) Machine learning and primary total knee arthroplasty: patient forecasting for a patient-specific payment model. J Arthroplasty 33:3617–3623CrossRef
29.
Zurück zum Zitat Obermeyer Z, Emanuel EJ (2016) Predicting the future—big data, machine learning, and clinical medicine. N Engl J Med 375:1216–1219CrossRef Obermeyer Z, Emanuel EJ (2016) Predicting the future—big data, machine learning, and clinical medicine. N Engl J Med 375:1216–1219CrossRef
30.
Zurück zum Zitat Pryymachenko Y, Wilson RA, Abbott JH, Dowsey MM, Choong PFM (2020) Risk factors for chronic opioid use following hip and knee arthroplasty: evidence from New Zealand population data. J Arthroplasty 35:3099-3107.e14CrossRef Pryymachenko Y, Wilson RA, Abbott JH, Dowsey MM, Choong PFM (2020) Risk factors for chronic opioid use following hip and knee arthroplasty: evidence from New Zealand population data. J Arthroplasty 35:3099-3107.e14CrossRef
31.
Zurück zum Zitat Ramkumar PN, Karnuta JM, Navarro SM, Haeberle HS, Iorio R, Mont MA, Patterson BM, Krebs VE (2019) Preoperative prediction of value metrics and a patient-specific payment model for primary total hip arthroplasty: development and validation of a deep learning model. J Arthroplasty 34:2228-2234.e1CrossRef Ramkumar PN, Karnuta JM, Navarro SM, Haeberle HS, Iorio R, Mont MA, Patterson BM, Krebs VE (2019) Preoperative prediction of value metrics and a patient-specific payment model for primary total hip arthroplasty: development and validation of a deep learning model. J Arthroplasty 34:2228-2234.e1CrossRef
32.
Zurück zum Zitat Ramkumar PN, Navarro SM, Haeberle HS, Karnuta JM, Mont MA, Iannotti JP, Patterson BM, Krebs VE (2019) Development and validation of a machine learning algorithm after primary total hip arthroplasty: applications to length of stay and payment models. J Arthroplasty 34:632–637CrossRef Ramkumar PN, Navarro SM, Haeberle HS, Karnuta JM, Mont MA, Iannotti JP, Patterson BM, Krebs VE (2019) Development and validation of a machine learning algorithm after primary total hip arthroplasty: applications to length of stay and payment models. J Arthroplasty 34:632–637CrossRef
33.
Zurück zum Zitat Schoenfeld AJ, Jiang W, Chaudhary MA, Scully RE, Koehlmoos T, Haider AH (2017) Sustained prescription opioid use among previously opioid-naive patients insured through TRICARE (2006–2014). JAMA Surg 152:1175–1176CrossRef Schoenfeld AJ, Jiang W, Chaudhary MA, Scully RE, Koehlmoos T, Haider AH (2017) Sustained prescription opioid use among previously opioid-naive patients insured through TRICARE (2006–2014). JAMA Surg 152:1175–1176CrossRef
34.
Zurück zum Zitat Senders JT, Staples PC, Karhade AV, Zaki MM, Gormley WB, Broekman MLD, Smith TR, Arnaout O (2018) Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg 109:476-486.e1CrossRef Senders JT, Staples PC, Karhade AV, Zaki MM, Gormley WB, Broekman MLD, Smith TR, Arnaout O (2018) Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg 109:476-486.e1CrossRef
35.
Zurück zum Zitat Sheth DS, Ho N, Pio JR, Zill P, Tovar S, Namba RS (2020) Prolonged opioid use after primary total knee and total hip arthroplasty: prospective evaluation of risk factors and psychological profile for depression, pain catastrophizing, and aberrant drug-related behavior. J Arthroplasty 35:3535–3544CrossRef Sheth DS, Ho N, Pio JR, Zill P, Tovar S, Namba RS (2020) Prolonged opioid use after primary total knee and total hip arthroplasty: prospective evaluation of risk factors and psychological profile for depression, pain catastrophizing, and aberrant drug-related behavior. J Arthroplasty 35:3535–3544CrossRef
36.
Zurück zum Zitat Smith E, Klemt C, Sabeh K, Tirumala V, Kwon Y-M (2021) Patient-reported outcomes associated with preoperative opioid use in revision total hip arthroplasty: a propensity score-matched cohort study. J Am Acad Orthop Surg 29:e330–e336CrossRef Smith E, Klemt C, Sabeh K, Tirumala V, Kwon Y-M (2021) Patient-reported outcomes associated with preoperative opioid use in revision total hip arthroplasty: a propensity score-matched cohort study. J Am Acad Orthop Surg 29:e330–e336CrossRef
37.
Zurück zum Zitat Sun EC, Darnall BD, Baker LC, Mackey S (2016) Incidence of and risk factors for chronic opioid use among opioid-naive patients in the postoperative period. JAMA Intern Med 176:1286–1293CrossRef Sun EC, Darnall BD, Baker LC, Mackey S (2016) Incidence of and risk factors for chronic opioid use among opioid-naive patients in the postoperative period. JAMA Intern Med 176:1286–1293CrossRef
38.
Zurück zum Zitat Waljee JF, Li L, Brummett CM, Englesbe MJ (2017) Iatrogenic opioid dependence in the United States: are surgeons the gatekeepers? Ann Surg 265:728–730CrossRef Waljee JF, Li L, Brummett CM, Englesbe MJ (2017) Iatrogenic opioid dependence in the United States: are surgeons the gatekeepers? Ann Surg 265:728–730CrossRef
Metadaten
Titel
Machine learning algorithms predict extended postoperative opioid use in primary total knee arthroplasty
verfasst von
Christian Klemt
Michael Joseph Harvey
Matthew Gerald Robinson
John G. Esposito
Ingwon Yeo
Young-Min Kwon
Publikationsdatum
05.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Knee Surgery, Sports Traumatology, Arthroscopy / Ausgabe 8/2022
Print ISSN: 0942-2056
Elektronische ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-021-06812-4

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie erweitert durch Fallbeispiele, Videos und Abbildungen. Zur Fortbildung und Wissenserweiterung, verfasst und geprüft von Expertinnen und Experten der Gesellschaft für Arthroskopie und Gelenkchirurgie (AGA).


Jetzt entdecken!

Neu im Fachgebiet Orthopädie und Unfallchirurgie

Positive Daten für supraskapulären Nervenblock bei Schultersteife

Daten einer aktuellen Metaanalyse sprechen dafür, dass eine Blockade des Nervus suprascapularis bei Schultersteife mit Blick auf Funktion und Schmerzlinderung mindestens so effektiv ist wie eine Physiotherapie oder intraartikulär injizierte Steroide.

Wirbelgleiten: Dem persönlichen Drang zum Versteifen widerstehen!

In einer norwegischen Studie schnitt die alleinige Dekompressions-Op. bei Personen mit Wirbelgleiten auch dann nicht schlechter ab, wenn erfahrene Chirurgen/ Chirurginnen eigentlich für eine zusätzliche Versteifung plädiert hätten.

Nackenschmerzen nach Bandscheibenvorfall: Muskeltraining hilft!

Bei hartnäckigen Schmerzen aufgrund einer zervikalen Radikulopathie schlägt ein Team der Universität Istanbul vor, lokale Steroidinjektionen mit einem speziellen Trainingsprogramm zur Stabilisierung der Nackenmuskulatur zu kombinieren.

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.