Skip to main content
Erschienen in: Journal of Clinical Monitoring and Computing 2/2020

06.04.2019 | Original Research

Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU

verfasst von: Gal Hever, Liel Cohen, Michael F. O’Connor, Idit Matot, Boaz Lerner, Yuval Bitan

Erschienen in: Journal of Clinical Monitoring and Computing | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Studies reveal that the false alarm rate (FAR) demonstrated by intensive care unit (ICU) vital signs monitors ranges from 0.72 to 0.99. We applied machine learning (ML) to ICU multi-sensor information to imitate a medical specialist in diagnosing patient condition. We hypothesized that applying this data-driven approach to medical monitors will help reduce the FAR even when data from sensors are missing. An expert-based rules algorithm identified and tagged in our dataset seven clinical alarm scenarios. We compared a random forest (RF) ML model trained using the tagged data, where parameters (e.g., heart rate or blood pressure) were (deliberately) removed, in detecting ICU signals with the full expert-based rules (FER), our ground truth, and partial expert-based rules (PER), missing these parameters. When all alarm scenarios were examined, RF and FER were almost identical. However, in the absence of one to three parameters, RF maintained its values of the Youden index (0.94–0.97) and positive predictive value (PPV) (0.98–0.99), whereas PER lost its value (0.54–0.8 and 0.76–0.88, respectively). While the FAR for PER with missing parameters was 0.17–0.39, it was only 0.01–0.02 for RF. When scenarios were examined separately, RF showed clear superiority in almost all combinations of scenarios and numbers of missing parameters. When sensor data are missing, specialist performance worsens with the number of missing parameters, whereas the RF model attains high accuracy and low FAR due to its ability to fuse information from available sensors, compensating for missing parameters.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In this paper, “missingness” of data is considered in two similar contexts. First is to describe parameter values that were missing in our TAMC ICU database. As mentioned above, we only used data without missing values. Second is to describe parameters that although have values in the dataset, are deliberately deleted by us in some of the experiments to check the RF ability to classify an alarm not relying on those missing parameters in order to imitate such a missingness situation at the ICU.
 
2
When the RF is trained without using a specific parameter, it is forced to find the best fit for the missing data in order to map the remaining parameters onto the alarm annotation/tag (“alarm” vs. “no alarm” or each of the seven clinical scenarios we identified) without using this parameter. That is, the remaining parameters provide a classification rule that dispenses with the missing parameter and thus, informally, we consider this behavior as “compensation” of the existing parameters to the missing parameter.
 
Literatur
1.
Zurück zum Zitat Drew BJ, Califf RM, Funk M, Kaufman ES, Krucoff MW, Laks MM, et al. Practice standards for electrocardiographic monitoring in hospital settings. Circulation. 2004;110(17):2721–46.CrossRef Drew BJ, Califf RM, Funk M, Kaufman ES, Krucoff MW, Laks MM, et al. Practice standards for electrocardiographic monitoring in hospital settings. Circulation. 2004;110(17):2721–46.CrossRef
2.
Zurück zum Zitat Sendelbach S, Funk M. Alarm fatigue: a patient safety concern. Adv Crit Care. 2013;24(4):378–86.CrossRef Sendelbach S, Funk M. Alarm fatigue: a patient safety concern. Adv Crit Care. 2013;24(4):378–86.CrossRef
3.
Zurück zum Zitat Drew BJ, Harris P, Schindler D, Salas-Boni R, Bai Y, Tinoco A, et al. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS ONE. 2014;9(10):1–23.CrossRef Drew BJ, Harris P, Schindler D, Salas-Boni R, Bai Y, Tinoco A, et al. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS ONE. 2014;9(10):1–23.CrossRef
4.
Zurück zum Zitat Cvach M. Monitor alarm fatigue: an integrative review. Biomed Instrum Technol. 2012;46(4):268–77.CrossRef Cvach M. Monitor alarm fatigue: an integrative review. Biomed Instrum Technol. 2012;46(4):268–77.CrossRef
5.
Zurück zum Zitat Sorkin RD. FORUM: why are people turning off our alarms? J Acoust Soc Am. 1988;84(3):1107–8.CrossRef Sorkin RD. FORUM: why are people turning off our alarms? J Acoust Soc Am. 1988;84(3):1107–8.CrossRef
6.
Zurück zum Zitat Edworthy J. The design and implementation of non-verbal auditory warnings. Appl Ergon. 1994;25(4):202–10.CrossRef Edworthy J. The design and implementation of non-verbal auditory warnings. Appl Ergon. 1994;25(4):202–10.CrossRef
7.
Zurück zum Zitat Xie H, Kang J, Mills GH. Clinical review: the impact of noise on patients’ sleep and the effectiveness of noise reduction strategies in intensive care units. Crit Care. 2009;13(2):208.CrossRef Xie H, Kang J, Mills GH. Clinical review: the impact of noise on patients’ sleep and the effectiveness of noise reduction strategies in intensive care units. Crit Care. 2009;13(2):208.CrossRef
8.
Zurück zum Zitat Institute ECRI. Top 10 heath technology hazards for 2012. Health Devices. 2011;40(11):358–73. Institute ECRI. Top 10 heath technology hazards for 2012. Health Devices. 2011;40(11):358–73.
9.
Zurück zum Zitat Institute ECRI. Top 10 health technology hazards for 2013. Health Devices. 2012;41(11):342–65. Institute ECRI. Top 10 health technology hazards for 2013. Health Devices. 2012;41(11):342–65.
10.
Zurück zum Zitat Institute ECRI. Top 10 heath technology hazards for 2014. Health Devices. 2013;42(11):354–80. Institute ECRI. Top 10 heath technology hazards for 2014. Health Devices. 2013;42(11):354–80.
11.
Zurück zum Zitat ECRI Institute. Top 10 heath technology hazards for 2015. Health Devices. 2014. ECRI Institute. Top 10 heath technology hazards for 2015. Health Devices. 2014.
12.
Zurück zum Zitat ECRI Institute. Top 10 heath technology hazards for 2016. Health Devices. 2015. ECRI Institute. Top 10 heath technology hazards for 2016. Health Devices. 2015.
13.
Zurück zum Zitat ECRI Institute. Top 10 heath technology hazards for 2017. Health Devices. 2016. ECRI Institute. Top 10 heath technology hazards for 2017. Health Devices. 2016.
14.
Zurück zum Zitat Clifford GD, Silva I, Moody B, Li Q, Kella D, Shahin A, et al. The PhysioNet/Computing in cardiology challenge 2015: reducing false arrhythmia alarms in the ICU. Comput Cardiol. 2015;2015:273–6. Clifford GD, Silva I, Moody B, Li Q, Kella D, Shahin A, et al. The PhysioNet/Computing in cardiology challenge 2015: reducing false arrhythmia alarms in the ICU. Comput Cardiol. 2015;2015:273–6.
15.
Zurück zum Zitat Eerikäinen LM, Vanschoren J, Rooijakkers MJ, Vullings R, Aarts RM. Reduction of false arrhythmia alarms using signal selection and machine learning. Physiol Meas. 2016;37(8):204.CrossRef Eerikäinen LM, Vanschoren J, Rooijakkers MJ, Vullings R, Aarts RM. Reduction of false arrhythmia alarms using signal selection and machine learning. Physiol Meas. 2016;37(8):204.CrossRef
16.
Zurück zum Zitat Rijsbergen CJ. Information Retrieval. 2nd ed. London: Butterworths; 1979. Rijsbergen CJ. Information Retrieval. 2nd ed. London: Butterworths; 1979.
17.
Zurück zum Zitat Bitan Y, O’Connor MF. Correlating data from different sensors to increase the positive predictive value of alarms: an empiric assessment. F1000Research. 2012;1:45.CrossRef Bitan Y, O’Connor MF. Correlating data from different sensors to increase the positive predictive value of alarms: an empiric assessment. F1000Research. 2012;1:45.CrossRef
18.
Zurück zum Zitat Imhoff M, Kuhls S. Alarm algorithms in critical care monitoring. Anesth Analg. 2006;102(5):1525–37.CrossRef Imhoff M, Kuhls S. Alarm algorithms in critical care monitoring. Anesth Analg. 2006;102(5):1525–37.CrossRef
19.
Zurück zum Zitat Vesin A, Azoulay E, Ruckly S, Vignoud L, Rusinovà K, Benoit D, et al. Reporting and handling missing values in clinical studies in intensive care units. Intensive Care Med. 2013;39(8):1396–404.CrossRef Vesin A, Azoulay E, Ruckly S, Vignoud L, Rusinovà K, Benoit D, et al. Reporting and handling missing values in clinical studies in intensive care units. Intensive Care Med. 2013;39(8):1396–404.CrossRef
20.
Zurück zum Zitat Altman DG, Bland JM. Statistics notes: diagnostic tests 2: predictive values. Br Med J. 1994;30(6947):102.CrossRef Altman DG, Bland JM. Statistics notes: diagnostic tests 2: predictive values. Br Med J. 1994;30(6947):102.CrossRef
21.
Zurück zum Zitat Lalkhen AG, McCluskey A. Clinical tests: sensitivity and specificity. Contin Educ Anaesth Crit Care Pain. 2008;8(6):221–3.CrossRef Lalkhen AG, McCluskey A. Clinical tests: sensitivity and specificity. Contin Educ Anaesth Crit Care Pain. 2008;8(6):221–3.CrossRef
22.
Zurück zum Zitat Božikov J, Zaletel-Kragelj L. Test validity measures and receiver operating characteristic (ROC) analysis. Methods Tools Public Health. 2010;50:749–70. Božikov J, Zaletel-Kragelj L. Test validity measures and receiver operating characteristic (ROC) analysis. Methods Tools Public Health. 2010;50:749–70.
23.
Zurück zum Zitat Bishop CM. Pattern recognition and machine learning. New York: Springer; 2007. Bishop CM. Pattern recognition and machine learning. New York: Springer; 2007.
24.
Zurück zum Zitat Liaw A, Wiener M. Classification and regression by random forest. R News. 2002;2(3):18–22. Liaw A, Wiener M. Classification and regression by random forest. R News. 2002;2(3):18–22.
25.
Zurück zum Zitat Breiman L. Classification and regression trees. Belmont: Wadsworth International Group; 1984. Breiman L. Classification and regression trees. Belmont: Wadsworth International Group; 1984.
Metadaten
Titel
Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU
verfasst von
Gal Hever
Liel Cohen
Michael F. O’Connor
Idit Matot
Boaz Lerner
Yuval Bitan
Publikationsdatum
06.04.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Clinical Monitoring and Computing / Ausgabe 2/2020
Print ISSN: 1387-1307
Elektronische ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-019-00307-x

Weitere Artikel der Ausgabe 2/2020

Journal of Clinical Monitoring and Computing 2/2020 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.