Skip to main content

06.04.2019 | Original Research | Ausgabe 2/2020

Journal of Clinical Monitoring and Computing 2/2020

Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU

Journal of Clinical Monitoring and Computing > Ausgabe 2/2020
Gal Hever, Liel Cohen, Michael F. O’Connor, Idit Matot, Boaz Lerner, Yuval Bitan
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Studies reveal that the false alarm rate (FAR) demonstrated by intensive care unit (ICU) vital signs monitors ranges from 0.72 to 0.99. We applied machine learning (ML) to ICU multi-sensor information to imitate a medical specialist in diagnosing patient condition. We hypothesized that applying this data-driven approach to medical monitors will help reduce the FAR even when data from sensors are missing. An expert-based rules algorithm identified and tagged in our dataset seven clinical alarm scenarios. We compared a random forest (RF) ML model trained using the tagged data, where parameters (e.g., heart rate or blood pressure) were (deliberately) removed, in detecting ICU signals with the full expert-based rules (FER), our ground truth, and partial expert-based rules (PER), missing these parameters. When all alarm scenarios were examined, RF and FER were almost identical. However, in the absence of one to three parameters, RF maintained its values of the Youden index (0.94–0.97) and positive predictive value (PPV) (0.98–0.99), whereas PER lost its value (0.54–0.8 and 0.76–0.88, respectively). While the FAR for PER with missing parameters was 0.17–0.39, it was only 0.01–0.02 for RF. When scenarios were examined separately, RF showed clear superiority in almost all combinations of scenarios and numbers of missing parameters. When sensor data are missing, specialist performance worsens with the number of missing parameters, whereas the RF model attains high accuracy and low FAR due to its ability to fuse information from available sensors, compensating for missing parameters.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

e.Med Interdisziplinär

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag als Mediziner

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf

Über diesen Artikel

Weitere Artikel der Ausgabe 2/2020

Journal of Clinical Monitoring and Computing 2/2020 Zur Ausgabe

Neu im Fachgebiet AINS

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update AINS und bleiben Sie gut informiert – ganz bequem per eMail.