Skip to main content
Erschienen in: Calcified Tissue International 4/2020

29.07.2020 | Original Research

Machine Learning Approaches for Fracture Risk Assessment: A Comparative Analysis of Genomic and Phenotypic Data in 5130 Older Men

verfasst von: Qing Wu, Fatma Nasoz, Jongyun Jung, Bibek Bhattarai, Mira V. Han

Erschienen in: Calcified Tissue International | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

The study aims were to develop fracture prediction models by using machine learning approaches and genomic data, as well as to identify the best modeling approach for fracture prediction. The genomic data of Osteoporotic Fractures in Men, cohort Study (n = 5130), were analyzed. After a comprehensive genotype imputation, genetic risk score (GRS) was calculated from 1103 associated Single Nucleotide Polymorphisms for each participant. Data were normalized and split into a training set (80%) and a validation set (20%) for analysis. Random forest, gradient boosting, neural network, and logistic regression were used to develop prediction models for major osteoporotic fractures separately, with GRS, bone density, and other risk factors as predictors. In model training, the synthetic minority oversampling technique was used to account for low fracture rate, and tenfold cross-validation was employed for hyperparameters optimization. In the testing, the area under curve (AUC) and accuracy were used to assess the model performance. The McNemar test was employed to examine the accuracy difference between models. The results showed that the prediction performance of gradient boosting was the best, with AUC of 0.71 and an accuracy of 0.88, and the GRS ranked as the 7th most important variable in the model. The performance of random forest and neural network were also significantly better than that of logistic regression. This study suggested that improving fracture prediction in older men can be achieved by incorporating genetic profiling and by utilizing the gradient boosting approach. This result should not be extrapolated to women or young individuals.
Literatur
1.
Zurück zum Zitat Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733PubMed Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733PubMed
2.
Zurück zum Zitat Melton LJ, Cooper C (2007) Chapter 21—Magnitude and impact of osteoporosis and fractures osteoporosis., 2nd edn, Academic Press Inc, San Diego, pp 557–567 Melton LJ, Cooper C (2007) Chapter 21—Magnitude and impact of osteoporosis and fractures osteoporosis., 2nd edn, Academic Press Inc, San Diego, pp 557–567
3.
Zurück zum Zitat Boonen S et al (2012) Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med 367(18):1714–1723PubMed Boonen S et al (2012) Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med 367(18):1714–1723PubMed
4.
Zurück zum Zitat Jiang HX et al (2005) Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J Bone Miner Res 20(3):494–500PubMed Jiang HX et al (2005) Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J Bone Miner Res 20(3):494–500PubMed
5.
Zurück zum Zitat Papaioannou A et al (2009) Risk factors for low BMD in healthy men age 50 years or older: a systematic review. Osteoporos Int 20(4):507–518PubMed Papaioannou A et al (2009) Risk factors for low BMD in healthy men age 50 years or older: a systematic review. Osteoporos Int 20(4):507–518PubMed
6.
Zurück zum Zitat Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAXTM and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397PubMedPubMedCentral Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAXTM and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397PubMedPubMedCentral
7.
Zurück zum Zitat McCloskey EV, Johansson H, Oden A, Kanis JA (2009) From relative risk to absolute fracture risk calculation: the FRAX algorithm. Curr Osteoporos Rep 7(3):77–83PubMed McCloskey EV, Johansson H, Oden A, Kanis JA (2009) From relative risk to absolute fracture risk calculation: the FRAX algorithm. Curr Osteoporos Rep 7(3):77–83PubMed
8.
Zurück zum Zitat Morris JA et al (2019) An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet 51(2):258–266PubMed Morris JA et al (2019) An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet 51(2):258–266PubMed
9.
Zurück zum Zitat Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. Endocr Rev 31(5):629–662PubMed Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. Endocr Rev 31(5):629–662PubMed
10.
Zurück zum Zitat Hsu YH et al (2010) An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility loci for osteoporosis-related traits. PLoS Genet 6(6):1–16 Hsu YH et al (2010) An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility loci for osteoporosis-related traits. PLoS Genet 6(6):1–16
11.
Zurück zum Zitat Kim SK (2018) Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. PLoS ONE 13(7):e0200785PubMedPubMedCentral Kim SK (2018) Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. PLoS ONE 13(7):e0200785PubMedPubMedCentral
12.
Zurück zum Zitat Hsieh CH, Lu RH, Lee NH, Chiu WT, Hsu MH, Li YC (2011) Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery 149(1):87–93PubMed Hsieh CH, Lu RH, Lee NH, Chiu WT, Hsu MH, Li YC (2011) Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery 149(1):87–93PubMed
13.
Zurück zum Zitat Orwoll E et al (2005) Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study—A large observational study of the determinants of fracture in older men. Contemp Clin Trials 26:569–585PubMed Orwoll E et al (2005) Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study—A large observational study of the determinants of fracture in older men. Contemp Clin Trials 26:569–585PubMed
14.
Zurück zum Zitat Blank JB et al (2005) Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp Clin Trials 26(5):557–568PubMed Blank JB et al (2005) Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp Clin Trials 26(5):557–568PubMed
15.
Zurück zum Zitat Cauley JA et al (2005) Factors associated with the lumbar spine and proximal femur bone mineral density in older men. Osteoporos Int 16(12):1525–1537PubMed Cauley JA et al (2005) Factors associated with the lumbar spine and proximal femur bone mineral density in older men. Osteoporos Int 16(12):1525–1537PubMed
16.
Zurück zum Zitat Bauer DC, Ewing SK, Cauley JA, Ensrud KE, Cummings SR, Orwoll ES (2007) Quantitative ultrasound predicts hip and non-spine fracture in men: the MrOS study. Osteoporos Int 18(6):771–777PubMed Bauer DC, Ewing SK, Cauley JA, Ensrud KE, Cummings SR, Orwoll ES (2007) Quantitative ultrasound predicts hip and non-spine fracture in men: the MrOS study. Osteoporos Int 18(6):771–777PubMed
17.
Zurück zum Zitat Lix LM, Leslie WD, Majumdar SR (2018) Measuring improvement in fracture risk prediction for a new risk factor: a simulation. BMC Res Notes 11:62PubMedPubMedCentral Lix LM, Leslie WD, Majumdar SR (2018) Measuring improvement in fracture risk prediction for a new risk factor: a simulation. BMC Res Notes 11:62PubMedPubMedCentral
18.
Zurück zum Zitat Andrews NA (2010) Genome-wide association studies in the osteoporosis field: Impressive technological achievements, but an uncertain future in the clinical setting. IBMS BoneKEy 7(11):382–387 Andrews NA (2010) Genome-wide association studies in the osteoporosis field: Impressive technological achievements, but an uncertain future in the clinical setting. IBMS BoneKEy 7(11):382–387
19.
Zurück zum Zitat Melton LJ, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8(10):1227–1233PubMed Melton LJ, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8(10):1227–1233PubMed
20.
Zurück zum Zitat Kanis JA et al (2005) Assessment of fracture risk. Osteoporos Int 16(6):581–589PubMed Kanis JA et al (2005) Assessment of fracture risk. Osteoporos Int 16(6):581–589PubMed
21.
Zurück zum Zitat Stone KL et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res 18(9):1947–1954PubMed Stone KL et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res 18(9):1947–1954PubMed
22.
Zurück zum Zitat Iniesta R, Stahl D, McGuffin P (2016) Machine learning, statistical learning and the future of biological research in psychiatry. Psychol Med 46(12):2455–2465PubMedPubMedCentral Iniesta R, Stahl D, McGuffin P (2016) Machine learning, statistical learning and the future of biological research in psychiatry. Psychol Med 46(12):2455–2465PubMedPubMedCentral
23.
Zurück zum Zitat Sun Y, Kamel MS, Wong AKC, Wang Y (2007) Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn 40(12):3358–3378 Sun Y, Kamel MS, Wong AKC, Wang Y (2007) Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn 40(12):3358–3378
24.
Zurück zum Zitat Kotsiantis S, Kanellopoulos D, Pintelas P (2006) Handling imbalanced datasets : a review. GESTS Int Trans Comput Sci Eng 30(1):25–36 Kotsiantis S, Kanellopoulos D, Pintelas P (2006) Handling imbalanced datasets : a review. GESTS Int Trans Comput Sci Eng 30(1):25–36
25.
Zurück zum Zitat Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique nitesh. J Artif Intell Res 16(1):321–357 Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique nitesh. J Artif Intell Res 16(1):321–357
26.
Zurück zum Zitat Raschka S (2018) Model evaluation , model selection , and algorithm selection in machine learning. CoRR abs/1811.12808. Raschka S (2018) Model evaluation , model selection , and algorithm selection in machine learning. CoRR abs/1811.12808.
27.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J (2011) Scikit-learn: machine learning in Python. J. Mach Learn Res 12:2825–2830 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J (2011) Scikit-learn: machine learning in Python. J. Mach Learn Res 12:2825–2830
28.
Zurück zum Zitat Bolland MJ et al (2011) Evaluation of the FRAX and Garvan fracture risk calculators in older women. J Bone Miner Res 26(2):420–427PubMed Bolland MJ et al (2011) Evaluation of the FRAX and Garvan fracture risk calculators in older women. J Bone Miner Res 26(2):420–427PubMed
29.
Zurück zum Zitat Al-Barghouthi BM, Farber CR (2019) Dissecting the genetics of osteoporosis using systems approaches. Trends Genet 35(1):55–67PubMed Al-Barghouthi BM, Farber CR (2019) Dissecting the genetics of osteoporosis using systems approaches. Trends Genet 35(1):55–67PubMed
30.
Zurück zum Zitat Eriksson J et al (2015) Limited clinical utility of a genetic risk score for the prediction of fracture risk in elderly subjects. J Bone Miner Res 30(1):184–194PubMed Eriksson J et al (2015) Limited clinical utility of a genetic risk score for the prediction of fracture risk in elderly subjects. J Bone Miner Res 30(1):184–194PubMed
31.
Zurück zum Zitat Ho-Le TP, Center JR, Eisman JA, Nguyen HT, Nguyen TV (2017) Prediction of bone mineral density and fragility fracture by genetic profiling. J Bone Miner Res 32(2):285–293PubMed Ho-Le TP, Center JR, Eisman JA, Nguyen HT, Nguyen TV (2017) Prediction of bone mineral density and fragility fracture by genetic profiling. J Bone Miner Res 32(2):285–293PubMed
32.
Zurück zum Zitat Estrada K et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501PubMedPubMedCentral Estrada K et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501PubMedPubMedCentral
33.
Zurück zum Zitat Taylor RA, Moore CL, Cheung KH, Brandt C (2018) Predicting urinary tract infections in the emergency department with machine learning. PLoS ONE 13(3):1–15 Taylor RA, Moore CL, Cheung KH, Brandt C (2018) Predicting urinary tract infections in the emergency department with machine learning. PLoS ONE 13(3):1–15
34.
Zurück zum Zitat Kruse C, Eiken P, Vestergaard P (2017) Machine learning principles can improve hip fracture prediction. Calcif Tissue Int 100(4):348–360PubMed Kruse C, Eiken P, Vestergaard P (2017) Machine learning principles can improve hip fracture prediction. Calcif Tissue Int 100(4):348–360PubMed
35.
Zurück zum Zitat Sato M et al (2019) Machine-learning approach for the development of a novel predictive model for the diagnosis of hepatocellular carcinoma. Sci Rep 9(1):1–7 Sato M et al (2019) Machine-learning approach for the development of a novel predictive model for the diagnosis of hepatocellular carcinoma. Sci Rep 9(1):1–7
36.
Zurück zum Zitat Chiew CJ, Liu N, Tagami T, Wong TH, Koh ZX, Ong MEH (2019) Heart rate variability based machine learning models for risk prediction of suspected sepsis patients in the emergency department. Medicine 98(6):e14197PubMedPubMedCentral Chiew CJ, Liu N, Tagami T, Wong TH, Koh ZX, Ong MEH (2019) Heart rate variability based machine learning models for risk prediction of suspected sepsis patients in the emergency department. Medicine 98(6):e14197PubMedPubMedCentral
37.
Zurück zum Zitat Babajide Mustapha I, Saeed F (2016) Bioactive molecule prediction using extreme gradient boosting. Molecules (Basel, Switzerland) 21(8):1–11 Babajide Mustapha I, Saeed F (2016) Bioactive molecule prediction using extreme gradient boosting. Molecules (Basel, Switzerland) 21(8):1–11
38.
Zurück zum Zitat Cummings SR et al (1993) Bone density at various sites for prediction of hip fractures. The Lancet 341(8837):72–75 Cummings SR et al (1993) Bone density at various sites for prediction of hip fractures. The Lancet 341(8837):72–75
39.
Zurück zum Zitat Beleites C, Neugebauer U, Bocklitz T, Krafft C, Popp J (2015) Sample size planning for classification models. Anal Chim Acta 760:25–33 Beleites C, Neugebauer U, Bocklitz T, Krafft C, Popp J (2015) Sample size planning for classification models. Anal Chim Acta 760:25–33
40.
Zurück zum Zitat Nguyen TV, Eisman JA (2013) Genetic profiling and individualized assessment of fracture risk. Nat Rev Endocrinol 9(3):153–161PubMed Nguyen TV, Eisman JA (2013) Genetic profiling and individualized assessment of fracture risk. Nat Rev Endocrinol 9(3):153–161PubMed
Metadaten
Titel
Machine Learning Approaches for Fracture Risk Assessment: A Comparative Analysis of Genomic and Phenotypic Data in 5130 Older Men
verfasst von
Qing Wu
Fatma Nasoz
Jongyun Jung
Bibek Bhattarai
Mira V. Han
Publikationsdatum
29.07.2020
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 4/2020
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-020-00734-y

Weitere Artikel der Ausgabe 4/2020

Calcified Tissue International 4/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.