Skip to main content
Erschienen in: Journal of Clinical Monitoring and Computing 4/2019

27.09.2018 | Original Research

Machine learning based framework to predict cardiac arrests in a paediatric intensive care unit

Prediction of cardiac arrests

verfasst von: B. R. Matam, Heather Duncan, David Lowe

Erschienen in: Journal of Clinical Monitoring and Computing | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

A cardiac arrest is a life-threatening event, often fatal. Whilst clinicians classify some of the cardiac arrests as potentially predictable, the majority are difficult to identify even in a post-incident analysis. Changes in some patients’ physiology when analysed in detail can however be predictive of acute deterioration leading to cardiac or respiratory arrests. This paper seeks to exploit the causally-related changing patterns in signals such as heart rate, respiration rate, systolic blood pressure and peripheral cutaneous oxygen saturation to evaluate the predictability of cardiac arrests in critically ill paediatric patients in intensive care. In this paper we report the results of a framework constituting feature space embedding and time series forecasting methods to build an automated prediction system. The results were compared with clinical assessment of predictability. A sensitivity of 71% and specificity of 69% was obtained when the maximum value of Anomaly Index (12) in the 50 min (starting one hour and ending 10 min) before the arrest was considered for the case patients and a random 50 min of data was considered for the control set patients. A positive predictive value of 11% and negative predictive value of 98% was obtained with a prevalence of 5% by our method of prediction. While clinicians predicted 4 out of the 69 cardiac arrests (6%), the prediction system predicted 63 (91%) cardiac arrests. Prospective validation of the automated system remains.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Broomhead DS, King GP. Extracting qualitative dynamics from experimental data. Physica D. 1986;20(2–3):217–36.CrossRef Broomhead DS, King GP. Extracting qualitative dynamics from experimental data. Physica D. 1986;20(2–3):217–36.CrossRef
3.
Zurück zum Zitat Clifton L, Clifton DA, Pimentel MAF. Predictive monitoring of mobile patients by combining clinical observations with data from wearable sensors. IEEE J Biomed Health Inform. 2014;18(3):722–30.CrossRefPubMed Clifton L, Clifton DA, Pimentel MAF. Predictive monitoring of mobile patients by combining clinical observations with data from wearable sensors. IEEE J Biomed Health Inform. 2014;18(3):722–30.CrossRefPubMed
4.
Zurück zum Zitat Golyandina NE, Nekrutkin VV, Zhigljavsky A. Analysis of structure of time series: SSA and related techniques. Boca Raton: CRC/Chapman & Hall; 2009. Golyandina NE, Nekrutkin VV, Zhigljavsky A. Analysis of structure of time series: SSA and related techniques. Boca Raton: CRC/Chapman & Hall; 2009.
5.
Zurück zum Zitat Hillman KM, Bristow PJ, Chey T. Antecedents to hospital deaths. J Intern Med. 2001;31(6):343–8.CrossRef Hillman KM, Bristow PJ, Chey T. Antecedents to hospital deaths. J Intern Med. 2001;31(6):343–8.CrossRef
9.
Zurück zum Zitat Lim C, Alexander MP, LaFleche G. The neurological and cognitive sequelae of cardiac arrest. Neurology. 2004;63:1774–8.CrossRefPubMed Lim C, Alexander MP, LaFleche G. The neurological and cognitive sequelae of cardiac arrest. Neurology. 2004;63:1774–8.CrossRefPubMed
10.
Zurück zum Zitat Lowe D. Feature space embeddings for extracting structure from single channel wake EEG using RBF networks. Neural Networks for Signal Processing VIII, 1998. Proceedings of the 1998 IEEE signal processing society workshop 1998; pp. 428–437 Lowe D. Feature space embeddings for extracting structure from single channel wake EEG using RBF networks. Neural Networks for Signal Processing VIII, 1998. Proceedings of the 1998 IEEE signal processing society workshop 1998; pp. 428–437
12.
Zurück zum Zitat Matam BR, Duncan H, Lowe D. Automated prediction of deterioration of infants in paediatric intensive care using SpO2. Int J Biomed Eng Technol. 2013;13(4):341–56.CrossRef Matam BR, Duncan H, Lowe D. Automated prediction of deterioration of infants in paediatric intensive care using SpO2. Int J Biomed Eng Technol. 2013;13(4):341–56.CrossRef
15.
Zurück zum Zitat Murukesan L, Murugappan M, Iqbal M. Machine learning approach for sudden cardiac arrest prediction based on optimal heart rate variability features. J Med Imaging Health Inform. 2014;4(4):521–32.CrossRef Murukesan L, Murugappan M, Iqbal M. Machine learning approach for sudden cardiac arrest prediction based on optimal heart rate variability features. J Med Imaging Health Inform. 2014;4(4):521–32.CrossRef
18.
Zurück zum Zitat Parshuram CS, Duncan HP, Joffe AR, Farell CA, Lacroix JR, Middaugh KL, Hutchison JS, Wensley D, Blanchard N, Beyene J, Parkin PC. Multicentre validation of the bedside paediatric early warning system score: a severity of illness score to detect evolving critical illness in hospitalized children. Crit Care. 2011;15(R184):1–10. Parshuram CS, Duncan HP, Joffe AR, Farell CA, Lacroix JR, Middaugh KL, Hutchison JS, Wensley D, Blanchard N, Beyene J, Parkin PC. Multicentre validation of the bedside paediatric early warning system score: a severity of illness score to detect evolving critical illness in hospitalized children. Crit Care. 2011;15(R184):1–10.
20.
Zurück zum Zitat Smith GB. Hospital-wide physiological surveillance. A new approach tot he early identification and management of the sick patient. Resuscitation. 2006;71:19–28.CrossRefPubMed Smith GB. Hospital-wide physiological surveillance. A new approach tot he early identification and management of the sick patient. Resuscitation. 2006;71:19–28.CrossRefPubMed
21.
Zurück zum Zitat Takens F. Detecting strange attractors in turbulence. 898 of lecture notes in mathematics, Springer, Heidelberg; 1981 Takens F. Detecting strange attractors in turbulence. 898 of lecture notes in mathematics, Springer, Heidelberg; 1981
22.
Zurück zum Zitat Talley L, Hooper J, Jacobs B, et al. Cardiopulmonary monitors and clinically significant events in critically ill children. Biomed Instrum Technol. 2011;45:38–45.CrossRef Talley L, Hooper J, Jacobs B, et al. Cardiopulmonary monitors and clinically significant events in critically ill children. Biomed Instrum Technol. 2011;45:38–45.CrossRef
23.
Zurück zum Zitat Teixeira AR, Tome AM, Bohm M. How to apply nonlinear subspace techniques to univariate biomedical time series. IEEE Trans Instrum Meas. 2009;58(8):2433–43.CrossRef Teixeira AR, Tome AM, Bohm M. How to apply nonlinear subspace techniques to univariate biomedical time series. IEEE Trans Instrum Meas. 2009;58(8):2433–43.CrossRef
24.
Zurück zum Zitat Woon WL, Lowe D. Can we learn anything from single-channel unaveraged MEG data? Neural Comput Appl. 2004;13(4):360–8.CrossRef Woon WL, Lowe D. Can we learn anything from single-channel unaveraged MEG data? Neural Comput Appl. 2004;13(4):360–8.CrossRef
Metadaten
Titel
Machine learning based framework to predict cardiac arrests in a paediatric intensive care unit
Prediction of cardiac arrests
verfasst von
B. R. Matam
Heather Duncan
David Lowe
Publikationsdatum
27.09.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Clinical Monitoring and Computing / Ausgabe 4/2019
Print ISSN: 1387-1307
Elektronische ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-018-0198-0

Weitere Artikel der Ausgabe 4/2019

Journal of Clinical Monitoring and Computing 4/2019 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.