Skip to main content
Erschienen in: Pediatric Radiology 4/2019

01.04.2019 | Minisymposium: Quality and safety

Machine learning concepts, concerns and opportunities for a pediatric radiologist

verfasst von: Michael M. Moore, Einat Slonimsky, Aaron D. Long, Raymond W. Sze, Ramesh S. Iyer

Erschienen in: Pediatric Radiology | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Machine learning, a subfield of artificial intelligence, is a rapidly evolving technology that offers great potential for expanding the quality and value of pediatric radiology. We describe specific types of learning, including supervised, unsupervised and semisupervised. Subsequently, we illustrate two core concepts for the reader: data partitioning and under/overfitting. We also provide an expanded discussion of the challenges of implementing machine learning in children’s imaging. These include the requirement for very large data sets, the need to accurately label these images with a relatively small number of pediatric imagers, technical and regulatory hurdles, as well as the opaque character of convolution neural networks. We review machine learning cases in radiology including detection, classification and segmentation. Last, three pediatric radiologists from the Society for Pediatric Radiology Quality and Safety Committee share perspectives for potential areas of development.
Literatur
3.
Zurück zum Zitat Cabitza F, Rasoini R, Gensini GF (2017) Unintended consequences of machine learning in medicine. JAMA 318:517–518CrossRefPubMed Cabitza F, Rasoini R, Gensini GF (2017) Unintended consequences of machine learning in medicine. JAMA 318:517–518CrossRefPubMed
4.
Zurück zum Zitat Kruskal JB, Berkowitz S, Geis JR et al (2016) Big data and machine learning — strategies for driving this bus: a summary of the 2016 intersociety summer conference. J Am Coll Radiol 14:811–817CrossRef Kruskal JB, Berkowitz S, Geis JR et al (2016) Big data and machine learning — strategies for driving this bus: a summary of the 2016 intersociety summer conference. J Am Coll Radiol 14:811–817CrossRef
5.
Zurück zum Zitat Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284:574–582CrossRefPubMed Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284:574–582CrossRefPubMed
6.
Zurück zum Zitat Zhu X, Goldberg A (2009) Introduction to semi-supervised learning. Morgan & Claypool, San RafaelCrossRef Zhu X, Goldberg A (2009) Introduction to semi-supervised learning. Morgan & Claypool, San RafaelCrossRef
7.
Zurück zum Zitat Chapelle O, Scholkopf B, Zien A (2006) Semi-supervised learning. MIT Press, CambridgeCrossRef Chapelle O, Scholkopf B, Zien A (2006) Semi-supervised learning. MIT Press, CambridgeCrossRef
8.
Zurück zum Zitat Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep learning: a primer for radiologists. Radiographics 37:2113–2131CrossRefPubMed Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep learning: a primer for radiologists. Radiographics 37:2113–2131CrossRefPubMed
9.
Zurück zum Zitat McGinty GB, Allen B (2018) The ACR Data Science Institute and AI advisory group: harnessing the power of artificial intelligence to improve patient care. J Am Coll Radiol 15:577–579CrossRefPubMed McGinty GB, Allen B (2018) The ACR Data Science Institute and AI advisory group: harnessing the power of artificial intelligence to improve patient care. J Am Coll Radiol 15:577–579CrossRefPubMed
10.
Zurück zum Zitat Balthazar P, Harri P, Prater A et al (2018) Protecting your patients' interests in the era of big data, artificial intelligence, and predictive analytics. J Am Coll Radiol 15:580–586CrossRefPubMed Balthazar P, Harri P, Prater A et al (2018) Protecting your patients' interests in the era of big data, artificial intelligence, and predictive analytics. J Am Coll Radiol 15:580–586CrossRefPubMed
12.
Zurück zum Zitat Hosseini-Asl E, Ghazal M, Mahmoud A et al (2018) Alzheimer's disease diagnostics by a 3D deeply supervised adaptable convolutional network. Front Biosci 23:584–596CrossRef Hosseini-Asl E, Ghazal M, Mahmoud A et al (2018) Alzheimer's disease diagnostics by a 3D deeply supervised adaptable convolutional network. Front Biosci 23:584–596CrossRef
13.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi B et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed Litjens G, Kooi T, Bejnordi B et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed
14.
Zurück zum Zitat Teramoto A, Fujita H, Yamamuro O et al (2016) Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med Phys 43:2821–2827CrossRefPubMed Teramoto A, Fujita H, Yamamuro O et al (2016) Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med Phys 43:2821–2827CrossRefPubMed
15.
Zurück zum Zitat Larson DB, Chen MC, Lungren MP et al (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287:313–322CrossRefPubMed Larson DB, Chen MC, Lungren MP et al (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287:313–322CrossRefPubMed
Metadaten
Titel
Machine learning concepts, concerns and opportunities for a pediatric radiologist
verfasst von
Michael M. Moore
Einat Slonimsky
Aaron D. Long
Raymond W. Sze
Ramesh S. Iyer
Publikationsdatum
01.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 4/2019
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-018-4277-7

Weitere Artikel der Ausgabe 4/2019

Pediatric Radiology 4/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.