Introduction
Materials and methods
Patients
Image acquisition
Textural feature extractions
Method | Texture feature parameters |
---|---|
Histogram (9) | Mean, variance, skewness, kurtosis, and percentiles (1%, 10%, 50%, 90%, and 99%) |
Gray-level co-occurrence matrix (GLCM) (220) | Angular second moment (AngScMom), contrast, inverse different moment (IDM), entropy (Ent), correlation (Correlat), sum of squares (SumOfSqs), sum average (SumAverg), sum variance (SumVarnc), sum entropy (SumEntrp), difference variance (DifVarnc), difference entropy (DifEntrp) along the 0°, 45°, 90°, 135°, and z‐axis directions and 1, 2, 3, and 4 pixels |
Gray‐level run‐length matrix (GLRLM) (20) | Run-length nonuniformity (RLNonUni), gray-level nonuniformity (GLevNonU), long run emphasis (LngREmph), short run emphasis (ShrtREmp), fraction of image in runs (Fraction) of four different angels (horizontal, vertical, diagonal 45, and digonal135) |
Auto‐regressive model (ARM) (5) | Teta1, Teta2, Teta3, Teta4, Sigma |
Wavelet transform (WAV) (8) | Energy computed from the low–low frequency band within the first image scale (WavEnLL_s-1), WavEnLH_s-1, WavEnHL_s-1, WavEnHH_s-1, WavEnLL_s-2, WavEnLH_s-2, WavEnHL_s-2, WavEnHH_s-2 |
Absolute gradient statistics (AGS) (5) | Absolute gradient mean (GrMean), variance (GrVariance), skewness (GrSkewness), kurtosis (GrKurtosis), nonzeros (GrNonZeros) |
Feature selections
Classifications
Algorithms | Parameters |
---|---|
SVM | C = 1.0, kernel = ‘rbf’, degree = 3, gamma = ‘scale’, coef0 = 0.0, shrinking = True, probability = False, tol = 0.001, cache_size = 200, class_weight = None, verbose = False, max_iter =—1, decision_function_shape = ‘ovr’, break_ties = False, random_state = None |
AE | hidden_layer_sizes = (100), activation = ‘relu’, *, solver = ‘adam’, alpha = 0.0001, batch_size = ‘auto’, learning_rate = ‘constant’, learning_rate_init = 0.001, power_t = 0.5, max_iter = 200, shuffle = True, random_state = None, tol = 0.0001, verbose = False, warm_start = False, momentum = 0.9, nesterovs_momentum = True, early_stopping = False, validation_fraction = 0.1, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, n_iter_no_change = 10, max_fun = 15,000 |
LDA | solver = ‘svd’, shrinkage = None, priors = None, n_components = None, store_covariance = False, tol = 0.0001 |
RF | n_estimators = 100, *, criterion = ‘gini’, max_depth = None, min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_leaf = 0.0, max_features = ‘auto’, max_leaf_nodes = None, min_impurity_decrease = 0.0, min_impurity_split = None, bootstrap = True, oob_score = False, n_jobs = None, random_state = None, verbose = 0, warm_start = False, class_weight = None, ccp_alpha = 0.0, max_samples = None |
LR | penalty = ‘l2’, *, dual = False, tol = 0.0001, C = 1.0, fit_intercept = True, intercept_scaling = 1, class_weight = None, random_state = None, solver = ‘lbfgs’, max_iter = 100, multi_class = ‘auto’, verbose = 0, warm_start = False, n_jobs = None, l1_ratio = None |
LRLasso | alpha = 1.0, *, fit_intercept = True, normalize = False, precompute = False, copy_X = True, max_iter = 1000, tol = 0.0001, warm_start = False, positive = False, random_state = None, selection = ‘cyclic’ |
AB | base_estimator = None, *, n_estimators = 50, learning_rate = 1.0, algorithm = ‘SAMME.R’, random_state = None |
DT | criterion = ‘gini’, splitter = ‘best’, max_depth = None, min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_leaf = 0.0, max_features = None, random_state = None, max_leaf_nodes = None, min_impurity_decrease = 0.0, min_impurity_split = None, class_weight = None, ccp_alpha = 0.0 |
GP | kernel = None, *, optimizer = ‘fmin_l_bfgs_b’, n_restarts_optimizer = 0, max_iter_predict = 100, warm_start = False, copy_X_train = True, random_state = None, multi_class = ‘one_vs_rest’, n_jobs = None |
NB | alpha = 1.0, binarize = 0.0, fit_prior = True, class_prior = None |
Evaluations
Results
Feature set | AUC | 95% CIs | Std | Acc | Youden Index | Sen | Spe | PPV | NPV |
---|---|---|---|---|---|---|---|---|---|
Zscore_PCC_ANOVA_1_AE | 0.895 | [0.8260–0.9533] | 0.033 | 0.840 | 0.513 | 0.833 | 0.848 | 0.877 | 0.796 |
Zscore_PCC_ANOVA_3_LDA | 0.891 | [0.8212–0.9481] | 0.032 | 0.840 | 0.367 | 0.850 | 0.826 | 0.864 | 0.809 |
Zscore_PCC_ANOVA_3_LRLasso | 0.887 | [0.8114–0.9512] | 0.035 | 0.849 | 0.359 | 0.883 | 0.804 | 0.855 | 0.841 |
Zscore_PCC_ANOVA_8_SVM | 0.885 | [0.8100–0.9461] | 0.034 | 0.830 | 0.586 | 0.767 | 0.913 | 0.920 | 0.750 |
Zscore_PCC_ANOVA_3_LR | 0.884 | [0.8103–0.9449] | 0.035 | 0.840 | 0.388 | 0.883 | 0.783 | 0.841 | 0.837 |
Zscore_PCC_ANOVA_1_NB | 0.878 | [0.8025–0.9444] | 0.036 | 0.840 | 0.403 | 0.833 | 0.848 | 0.877 | 0.796 |
Zscore_PCC_ANOVA_3_RF | 0.878 | [0.7977–0.9457] | 0.038 | 0.859 | 0.520 | 0.867 | 0.848 | 0.881 | 0.830 |
Zscore_PCC_ANOVA_4_GP | 0.869 | [0.7940–0.9343] | 0.036 | 0.821 | 0.482 | 0.817 | 0.826 | 0.860 | 0.776 |
Zscore_PCC_ANOVA_3_AB | 0.865 | [0.7867–0.9337] | 0.038 | 0.802 | 0.529 | 0.683 | 0.957 | 0.954 | 0.698 |
Zscore_PCC_ANOVA_5_DT | 0.811 | [0.7298–0.8842] | 0.039 | 0.811 | 1.000 | 0.817 | 0.804 | 0.845 | 0.771 |
Zscore_PCC_RFE_10_GP | 0.902 | [0.8379–0.9519] | 0.029 | 0.830 | 0.498 | 0.867 | 0.783 | 0.839 | 0.818 |
Zscore_PCC_RFE_1_AE | 0.895 | [0.8260–0.9533] | 0.033 | 0.840 | 0.513 | 0.833 | 0.848 | 0.877 | 0.796 |
Zscore_PCC_RFE_8_RF | 0.894 | [0.8251–0.9525] | 0.033 | 0.849 | 0.565 | 0.833 | 0.870 | 0.893 | 0.800 |
Zscore_PCC_RFE_3_LDA | 0.891 | [0.8208–0.9478] | 0.032 | 0.840 | 0.367 | 0.850 | 0.826 | 0.864 | 0.809 |
Zscore_PCC_RFE_3_LRLasso | 0.886 | [0.8107–0.9502] | 0.035 | 0.849 | 0.359 | 0.883 | 0.804 | 0.855 | 0.841 |
Zscore_PCC_RFE_1_SVM | 0.883 | [0.8073–0.9460] | 0.035 | 0.821 | 0.672 | 0.733 | 0.935 | 0.936 | 0.729 |
Zscore_PCC_RFE_3_LR | 0.883 | [0.8096–0.9449] | 0.035 | 0.840 | 0.388 | 0.883 | 0.783 | 0.841 | 0.837 |
Zscore_PCC_RFE_1_NB | 0.878 | [0.8025–0.9444] | 0.036 | 0.840 | 0.403 | 0.833 | 0.848 | 0.877 | 0.796 |
Zscore_PCC_RFE_3_AB | 0.865 | [0.7867–0.9337] | 0.038 | 0.802 | 0.529 | 0.683 | 0.957 | 0.954 | 0.698 |
Zscore_PCC_RFE_9_DT | 0.808 | [0.7304–0.8795] | 0.039 | 0.811 | 1.000 | 0.833 | 0.783 | 0.833 | 0.783 |
Zscore_PCC_Relief_5_LRLasso | 0.886 | [0.8108–0.9483] | 0.035 | 0.849 | 0.359 | 0.883 | 0.804 | 0.855 | 0.841 |
Zscore_PCC_Relief_5_LDA | 0.884 | [0.8088–0.9435] | 0.033 | 0.840 | 0.332 | 0.883 | 0.783 | 0.841 | 0.837 |
Zscore_PCC_Relief_5_SVM | 0.883 | [0.8077–0.9454] | 0.035 | 0.830 | 0.511 | 0.817 | 0.848 | 0.875 | 0.780 |
Zscore_PCC_Relief_5_LR | 0.882 | [0.8055–0.9454] | 0.035 | 0.830 | 0.417 | 0.850 | 0.804 | 0.850 | 0.804 |
Zscore_PCC_Relief_3_GP | 0.880 | [0.8054–0.9423] | 0.035 | 0.840 | 0.552 | 0.800 | 0.891 | 0.906 | 0.774 |
Zscore_PCC_Relief_3_NB | 0.875 | [0.7950–0.9423] | 0.037 | 0.830 | 0.362 | 0.817 | 0.848 | 0.875 | 0.780 |
Zscore_PCC_Relief_2_AE | 0.871 | [0.7907–0.9373] | 0.037 | 0.821 | 0.441 | 0.817 | 0.826 | 0.860 | 0.776 |
Zscore_PCC_Relief_19_RF | 0.869 | [0.7947–0.9347] | 0.035 | 0.821 | 0.645 | 0.767 | 0.891 | 0.902 | 0.746 |
Zscore_PCC_Relief_5_AB | 0.855 | [0.7652–0.9254] | 0.040 | 0.821 | 0.513 | 0.767 | 0.891 | 0.902 | 0.746 |
Zscore_PCC_Relief_9_DT | 0.786 | [0.7069–0.8678] | 0.041 | 0.793 | 1.000 | 0.833 | 0.739 | 0.807 | 0.773 |