1 Introduction
1.1 The Role of Machine Learning Techniques in Healthcare
1.2 Application of Machine Learning to Clinical Datasets
1.3 Description and Use of Random Forests
1.4 Aims and Objectives
2 Methods
2.1 Design and Patients
2.2 Descriptive Analysis
2.3 Machine Learning Analysis
2.4 Incorporation of the Random Forest Model
2.5 Use of Classification Tree Analysis as Comparator with Random Forest
3 Results
Empagliflozin 25 mg/linagliptin 5 mg | Empagliflozin 10 mg/linagliptin 5 mg | Empagliflozin 25 mg | Empagliflozin 10 mg | Linagliptin 5 mg | |
---|---|---|---|---|---|
Patients (n) | 268 | 270 | 273 | 269 | 261 |
HbA1c at a target of ≤ 7% at weeks 12 and 52
| |||||
Patients [n (%)] | 116 (43.3) | 124 (45.9) | 85 (31.1) | 82 (30.5) | 57 (21.8) |
Baseline HbA1c (%) | 7.6 ± 0.7 | 7.6 ± 0.6 | 7.5 ± 0.7 | 7.4 ± 0.7 | 7.4 ± 0.5 |
Baseline FPG (mg/dL) | 145.7 ± 30.6 | 143.7 ± 24.9 | 138.5 ± 25.2 | 140.8 ± 23.9 | 137.9 ± 21.0 |
HbA1c at a target of ≤ 7% at week 12, but above target at week 52
| |||||
Patients [n (%)] | 60 (22.4) | 48 (17.8) | 31 (11.4) | 31 (11.5) | 40 (15.3) |
Baseline HbA1c (%) | 7.8 ± 0.8 | 7.8 ± 0.8 | 7.7 ± 0.8 | 7.5 ± 0.8 | 7.7 ± 0.8 |
Baseline FPG (mg/dL) | 148.1 ± 29.2 | 149.6 ± 33.5 | 144.1 ± 29.7 | 142.7 ± 20.5 | 136.7 ± 22.8 |
HbA1c above a target of ≤ 7% at week 12
| |||||
Patients [n (%)] | 92 (34.3) | 98 (36.3) | 157 (57.5) | 156 (58.0) | 164 (62.8) |
Baseline HbA1c (%) | 8.5 ± 0.8 | 8.5 ± 0.9 | 8.3 ± 0.9 | 8.4 ± 0.9 | 8.3 ± 0.9 |
Baseline FPG (mg/dL) | 172.2 ± 36.2 | 177.1 ± 37.1 | 168.6 ± 41.5 | 175.1 ± 40.4 | 167.4 ± 35.2 |
Observed response | Predicted response | Error rate (%) | |
---|---|---|---|
Yes | No | ||
Empagliflozin/linagliptin
| |||
Sustained control (n = 225) | 194 | 31 | 13.8 |
Not in control (n = 144) | 50 | 94 | 34.7 |
Empagliflozin
| |||
Sustained control (n = 147) | 100 | 47 | 32.0 |
Not in control (n = 256) | 27 | 229 | 10.5 |
Linagliptin
| |||
Sustained control (n = 49) | 16 | 33 | 67.3 |
Not in control (n = 138) | 9 | 129 | 6.5 |