Skip to main content
Erschienen in:

Open Access 19.06.2024 | SCIENTIFIC PAPER (OTHER)

Machine Learning to Predict Prostate Artery Embolization Outcomes

verfasst von: G. Vigneswaran, N. Doshi, D. Maclean, T. Bryant, M. Harris, N. Hacking, K. Farrahi, M. Niranjan, S. Modi

Erschienen in: CardioVascular and Interventional Radiology | Ausgabe 9/2024

Abstract

Purpose

This study leverages pre-procedural data and machine learning (ML) techniques to predict outcomes at one year following prostate artery embolization (PAE).

Materials and Methods

This retrospective analysis combines data from the UK-ROPE registry and patients that underwent PAE at our institution between 2012 and 2023. Traditional ML approaches, including linear regression, lasso regression, ridge regression, decision trees and random forests, were used with leave-one-out cross-validation to predict international prostate symptom score (IPSS) at baseline and change at 1 year. Predictors included age, prostate volume, Qmax (maximum urinary flow rate), post-void residual volume, Abrams-Griffiths number (urodynamics score) and baseline IPSS (for change at 1 year). We also independently confirmed our findings using a separate dataset. An interactive digital user interface was developed to facilitate real-time outcome prediction.

Results

Complete data were available in 128 patients (66.7 ± 6.9 years). All models predicting IPSS demonstrated reasonable performance, with mean absolute error ranging between 4.9–7.3 for baseline IPSS and 5.2–8.2 for change in IPSS. These numbers represent the differences between the patient-reported and model-predicted IPSS scores. Interestingly, the model error in predicting baseline IPSS (based on objective measures alone) significantly correlated with the change in IPSS at 1-year post-PAE (R2 = 0.2, p < 0.001), forming the basis for our digital user interface.

Conclusion

This study uses ML methods to predict IPSS improvement at 1 year, integrated into a user-friendly interface for real-time prediction. This tool could be used to counsel patients prior to treatment.
Hinweise
M. Niranjan, S. Modi are joint senior authors.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Recent advancements in embolization techniques, combined with an increasing body of supporting data, have led to prostate artery embolization (PAE) emerging as a safe and effective alternative to transurethral resection of the prostate (TURP) for the treatment of benign prostatic hyperplasia (BPH) [1]. Although PAE appears to be effective in most patients, there are a subset of patients that have suboptimal outcomes. This can include patients that have an International Prostate Symptom Score (IPSS) reduction of < 25% or no improvement in quality of life (QoL) score, clinical recurrence of symptoms (5–28% of cases) [2] or technical failure (reported as 2–5%) [3]. Given that no procedure is without risk of complications, this has spurred a growing body of research aimed at assessing the underlying predictors of PAE outcomes [4]. Recognising BPH’s heterogeneous nature, a tailored approach to treatment, emphasising the pivotal role of patient selection in both medical and surgical management, will ensure optimal care [4].
Most studies on PAE outcome predictors focus on singular patient factors such as prostate volume, vascular anatomy or IPSS, rather than using a combination of factors [59]. Furthermore, predictions are usually based on binary outcomes (responder, non-responder) rather than predictions of actual IPSS scores for that individual patient. Such detailed prediction could be beneficial for clinical decision-making. For instance, even a modest improvement in IPSS might be considered sufficient reason to opt for PAE over more invasive procedures (e.g. TURP), particularly if the latter poses significant risks to the patient.
In the realm of health care, artificial intelligence (AI) signifies a change in thinking, utilising computer systems with data-driven, decision-making processes. Machine learning (ML), a subset of AI, harnesses structured data and algorithms to decipher patterns and predict clinical outcomes. It benefits from the ease of exploring combinations of variables in large datasets to find patterns that might otherwise be missed with traditional statistical approaches. Its success is evident in various medical domains, such as predicting cancer progression (e.g. breast, prostate and lung cancer) and treatment efficacy [10]. Merging prostate volume and clinicopathological data with AI tools holds promise in forecasting PAE outcomes, refining patient outcomes and facilitating tailored patient consultations.
This pilot study seeks to evaluate the feasibility of leveraging ML to predict PAE outcomes, solely relying on pre-procedural routinely collected data (prostate volume, clinical and urodynamic variables).

Methods

This study was a retrospective complete-case analysis under the ethical approval of IRAS 326704.

Study Cohort

A retrospective analysis of the UK-ROPE study (a prospectively collected database of patients from the UK) was conducted [11]. Briefly, this was a national observational database of patients treated with PAE or surgical alternatives collated from 17 centres across the UK from January 2014 to July 2016. The inclusion criteria for this subanalysis were patients that underwent PAE and had complete set of records including age, prostate volume, Qmax (maximum urinary flow rate), post-void residual volume, Abrams-Griffiths number (urodynamics score), baseline IPSS and 1-year post-PAE IPSS. In this study, predictor variables were selected based on the number of full datasets available to maximise data points for use in predictions.
This multicentre dataset was combined with a separately collected dataset encompassing patients that underwent PAE at our single institution between 2012 and 2023. These patients also had the same complete sets of predictor variables.
Some of the data from our institution was randomly selected (utilising the ‘random’ function within python) and kept separate from any training data (Dataset 2). This was used for confirmation of findings and to assess generalisability of our model.
All remaining data were used for model development and validation (Dataset 1).

Model Development

All data analyses were conducted using Python programming environment. Established machine learning algorithms were implemented within the ‘scikit-learn’ library. These included linear regression, ridge regression, lasso regression, decision tree and random forests.
For the small sample size we have in this dataset, more complex methods such as neural networks were not appropriate as they will overtrain and performance will not generalise to other datasets.
The target variables to be predicted were:
(1)
Change in IPSS at 1 year (baseline IPSS–1-year IPSS)
 
(2)
Baseline IPSS—although all patients completed a baseline IPSS questionnaire, we also aimed to evaluate the model’s performance at predicting their baseline IPSS based only on objective clinical measures (termed ‘model-generated baseline IPSS’). The accuracy of this prediction was assessed by calculating the difference between the model-generated baseline IPSS and the actual observed baseline IPSS. This ‘model-generated error’ was then regressed against the change in IPSS (baseline IPSS–1-year IPSS).
 

Validation and Model Performance

Model development and validation were performed only on Dataset 1 (see Table 1). For this analysis, models were trained using a leave-out-one cross-validated approach (LOOCV). In this method, one data point from the Dataset 1 was singled out as a validation data point, whilst the remaining data served as the training set. This was carried out so that every data point in turn was the validation set. This method was used to maximise training data and improve performance given the small sample size. Metrics such as mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE) and where appropriate R2 were used to account for continuous outcome variables (namely IPSS).
Table 1
Variables used in analysis for Dataset 1 (model development and validation), Dataset 2 (independent test set) and combined dataset
Factors
Dataset 1-model development and validation (n = 112) mean (std)
Dataset 2-independent test set (n = 16) mean (std)
Combined dataset (n = 128) mean (std)
Age (years)
66.8 (6.7)
65.6 (8.4)
66.7 (6.9)
Prostate volume on US/TRUS/CT/MRI (cc)
109.8 (60.7)
91.9 (47.6)
107.5 (59.4)
Qmax (ml/s)
8.5 (3.9)
7.9 (2.6)
8.4 (3.7)
Residual volume (mls)
179.0 (147.9)
172.4 (158.6)
178.2 (148.7)
Abrams-Griffiths number
75.0 (37.7)
76.4 (35.6)
75.1 (37.4)
Baseline IPSS
21.9 (5.9)
23.2 (3.9)
22.1 (5.7)
IPSS at 1-year post-PAE
10.6 (6.9)
11.2 (6.7)
10.7 (6.8)
Change in IPSS
11.3 (7.3)
12.0 (6.6)
11.4 (7.2)
US, Ultrasound; TRUS, Transrectal ultrasound; CT, Computed tomography; MRI, Magnetic resonance imaging; Qmax, maximum urinary flow rate; IPSS, International Prostate Symptom Score; PAE, Prostate artery embolization;
In addition to LOOCV, a further assessment of performance was made on an independent separate dataset (Dataset 2, n = 16). This was not used in any model training.

User Interface Design

‘RShiny’ Dashboard is an ‘R’ based package (available at https://​www.​rstudio.​com/​products/​shiny/​) that has previously been utilised to allow clinician friendly use of computer-based healthcare tools [12, 13]. This package was used to create a custom user interface that incorporated the final model for research purposes and would be subject to regulatory approval prior to routine clinical use.

Results

Cohort Demographics

A total of 128 patients were identified. Data from the UK-ROPE study (n = 58) were combined with a separate dataset of patients that underwent PAE at our institution (n = 70). All predictor variables (age, prostate volume, Qmax, post-void residual volume, Abrams-Griffiths number, baseline IPSS and 1-year post-PAE IPSS) were available.
Data were split into Dataset 1 (model development and validation, n = 112) and Dataset 2 (independent test set, n = 16) as per methods.
Characteristics of each variable are shown in Table 1.

Algorithm Performance

Change in IPSS
Using Dataset 1, established machine learning algorithms were used to predict the change in IPSS (baseline IPSS–1-year post-PAE IPSS) using a leave-out-one cross-validation approach. Performance metrics are shown in Table 2. These numbers represent the differences between the patient-reported and model-predicted IPSS scores. All models demonstrated modest but similar performance with the mean absolute error ranging between 5.2 for lasso regression model vs 8.2 for the decision tree-based model. Please note that the smaller the error the better the performance.
Table 2
Model performance for prediction of change in IPSS (International Prostate Symptom Score) at 1 year using Dataset 1
Model
Mean squared error
Root mean squared error
Mean absolute error
Linear regression
43.96 ± 60.60
5.26 ± 4.04
5.26 ± 4.04
Ridge regression
43.96 ± 60.60
5.26 ± 4.04
5.26 ± 4.04
Lasso regression
43.39 ± 59.86
5.21 ± 4.03
5.21 ± 4.03
Decision tree
95.12 ± 116.09
8.17 ± 5.33
8.17 ± 5.33
Random forests
48.14 ± 61.21
5.69 ± 3.97
5.69 ± 3.97
These numbers represent the differences between the patient-reported and model-predicted Change in IPSS scores
Model-Generated Baseline IPSS
Table 3 shows the performance of all models using a leave-out-one cross-validation approach using Dataset 1. Our models performed better across all performance metrics compared with predicting the change in IPSS directly. Again, the best performing model was lasso regression with MAE of 4.94 ± 3.62. Note that the errors of predicting baseline IPSS were smaller than the errors in predicting the change in IPSS (Table 2). This formed the basis for the subsequent analysis below.
Table 3
Model performance for prediction of IPSS (International Prostate Symptom Score) at baseline using Dataset 1
Model
Mean squared error
Root mean squared error
Mean absolute error
Linear regression
38.61 ± 52.86
5.00 ± 3.69
5.00 ± 3.69
Ridge regression
38.61 ± 52.85
5.00 ± 3.69
5.00 ± 3.69
Lasso regression
37.53 ± 50.61
4.94 ± 3.62
4.94 ± 3.62
Decision tree
74.83 ± 90.47
7.28 ± 4.68
7.28 ± 4.68
Random forests
39.16 ± 54.81
4.99 ± 3.78
4.99 ± 3.78
These numbers represent the differences between the patient-reported and model-predicted baseline IPSS scores
Regression of ‘Model-Generated Baseline IPSS Error’ Against ‘Change in IPSS’
To further investigate errors in prediction, the ‘model-generated baseline IPSS error’ was regressed against the change in IPSS at 1 year (baseline IPSS–1-year IPSS). Figure 1 demonstrates that there was a significant relationship between these two variables (R2 = 0.2, p < 0.001), i.e. patients on whom the model underpredicts IPSS at baseline are those that report the largest improvements in IPSS at 1-year post-procedure. In contrast, patients who reported lower IPSS than predicted had the least benefit. This is further explained below using examples.
Examples
(1)
Mr X had an IPSS of 20 at baseline. Our model estimated from objective measurements including prostate volume, urodynamic and clinical measurements that his ‘model-generated baseline IPSS’ was 10. The error was therefore + 10, and means that he is predicted have a large improvement at 1 year following PAE (X on Fig. 1).
 
(2)
Mr Y had an IPSS of 15 at baseline. Our ML model estimated that his ‘model-generated baseline IPSS’ is 25. The error was − 10, and this patient was predicted to have little or no benefit of PAE (Y in Fig. 1).
 

Validation on an Independent Dataset

An independent set of patients who underwent PAE treatment at our institution was used to confirm the generalisability of our findings (Dataset 2). This dataset was held away from the model development process (see methods), and only used in this final stage, Fig. 1 shows that the distribution of these patients (red dots) was similar to Dataset 1 (Blue dots). Indeed, 14/16 (88%) patients were within the 95% confidence intervals of the regression line.

Towards Implementation

The final model was incorporated into an interactive digital user interface for illustrative and research purposes (see Fig. 2). This provides an idea of how such a prediction tool might be implemented in a clinical setting for decision support following mandatory regulatory approval. The user can change input predictors with sliders along the left side of the tool and see real-time updates in prediction shown on the graph and right side of the interface.

Discussion

Our findings suggest that despite using a limited dataset, ML models can be used with routinely collected pre-procedure data to predict the change in IPSS at 1 year following PAE. Interestingly, the most effective way to predict patient outcome was by using purely objective clinical measures to create a ‘model-generated baseline IPSS’. The degree of error between this and the patients’ actual observed IPSS (termed the ‘model-generated baseline IPSS error’) significantly correlated with the ‘change in IPSS’ at 1-year post-procedure and can be used to predict individual patient outcomes with reasonable accuracy.
This finding might reflect a difference between objective and subjective measures of symptoms and points towards a potential psychological element of symptom evaluation through IPSS scoring. Certainly, patient expectations prior to procedures have been shown to significantly influence outcomes. Patients’ beliefs and perceptions about the forthcoming procedure can shape their psychological response, which in turn can influence physiological outcomes, and overall satisfaction with the procedure. For instance, a study by Ellingsen et al. [14] demonstrated that negative expectations could intensify the experience of pain and discomfort. Moreover, when patients hold positive expectations, they are often more compliant with pre- and post-procedure instructions, leading to improved outcomes and decreased complication rates. Indeed, the opposite also applies, in that patients who were adequately informed and thus had clear expectations had shorter recovery times report higher satisfaction rates [15]. This emphasises the importance of effective patient education and setting appropriate expectations to optimise both subjective and objective outcomes in interventional radiology. However, the objective nature of urodynamics is also controversial, e.g. there is some evidence that Qmax is effort dependent and influenced by intervention [16, 17]. Therefore, this is a complex area and needs to be interpreted carefully within this context.
Given the therapeutic intent of PAE is to provide symptomatic relief, it is likely that a combination of psychological and biological factors would lead to symptom improvement. Thus, it remains of pertinent clinical utility to continue using both objective and subjective variables as inputs for any future developed model.
We also found that including a combination of routinely collected variables, notably, prostate volume and urodynamic variables can be used for prediction and is in line with previous studies that have identified prostate volume as a significant predictor of clinical success. Patients with larger prostatic volumes, often above 80 cc, have shown better symptomatic relief post-PAE as compared to those with smaller prostates [18]. This also applied to our model, in which, increasing prostate volume predicts greater IPSS improvement. (We explored this by increasing prostate volume with our tool and observing the predicted change in IPSS rising.) However, critically, it was not this single variable alone that contributed to model performance. Instead our study utilised a combination of factors to predict IPSS outcomes, thereby benefiting from potential performance gains from variable combinations [19]. Machine learning also provides a way in which clinical decision support tools can be improved on subsequent iterations, once additional data are trained, as well as being able to be deployed through interfaces such as ‘Rshiny’ [12].
Notably, our model demonstrated applicability to a separate, blinded dataset (Dataset 2), enhancing the generalisability of our findings. This underscores the potential benefits of establishing a more comprehensive registry of PAE patients. Such an expanded registry could significantly improve model performance, offering deeper insights into patient outcomes and optimising treatment strategies.
Whilst these initial results are promising, it is important to acknowledge the limitations of our study. Firstly, the sample size might mean our models are not representative of the general populations. However, some generalisability was assessed by testing our models on a blinded independent dataset and in part by being trained on multicentre level data. We were also restricted in selecting variables that had full data, as most ML algorithms require complete data. Whilst a single radiological parameter (namely prostate volume) has been used in our models, other radiomic markers might be relevant and imaging data has not been fully utilised. Any future work would also include this readily available and now routinely collected data type, especially given the advantages of performing pre-procedure CT for planning [20]. In addition, clinical measures from formal urodynamic studies were an important component to the ML model. As many centres do not routinely perform urodynamics prior to PAE, this reduces the wider utility of the model and findings.
Furthermore, we emphasise the use of these models as a tool to support clinicians in their decision-making and not to be used as a triaging software independent of clinical oversight.

Conclusion

This study shows promise in the development of machine learning models that are able to predict individual therapeutic success following PAE from routinely collected clinical data and incorporated into a user-friendly interface. This tool could offer a time critical opportunity for clinical decision-making and patient counselling in Urology and Interventional Radiology Clinics.

Declarations

Conflict of interest

All authors declare no conflict of interests related to this article.

Ethical Approval

IRAS 326704, REC 23/PR/0933.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Checcucci E, Veccia A, De Cillis S, Piramide F, Volpi G, Amparore D, et al. New ultra-minimally invasive surgical treatment for benign prostatic hyperplasia: a systematic review and analysis of comparative outcomes. Eur Urol Open Sci. 2021;33:28–41.CrossRefPubMedPubMedCentral Checcucci E, Veccia A, De Cillis S, Piramide F, Volpi G, Amparore D, et al. New ultra-minimally invasive surgical treatment for benign prostatic hyperplasia: a systematic review and analysis of comparative outcomes. Eur Urol Open Sci. 2021;33:28–41.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Galla N, Maron SZ, Voutsinas N, Sher A, Tangel M, Jue JS, et al. Adjunctive coil embolization of the prostatic arteries after particle embolization for prostatic artery embolization. Cardiovasc Radiol. 2021;44:1994–8.CrossRef Galla N, Maron SZ, Voutsinas N, Sher A, Tangel M, Jue JS, et al. Adjunctive coil embolization of the prostatic arteries after particle embolization for prostatic artery embolization. Cardiovasc Radiol. 2021;44:1994–8.CrossRef
3.
Zurück zum Zitat Al Rawashdah SF, Pastore AL, Velotti G, Fuschi A, Capone L, Suraci PP, et al. Sexual and functional outcomes of prostate artery embolisation: a prospective long-term follow-up, large cohort study. Int J Clin Pract. 2020;74:e13454.CrossRefPubMed Al Rawashdah SF, Pastore AL, Velotti G, Fuschi A, Capone L, Suraci PP, et al. Sexual and functional outcomes of prostate artery embolisation: a prospective long-term follow-up, large cohort study. Int J Clin Pract. 2020;74:e13454.CrossRefPubMed
4.
5.
Zurück zum Zitat Little MW, Boardman P, Macdonald AC, Taylor N, Macpherson R, Crew J, et al. Adenomatous-dominant benign prostatic hyperplasia (AdBPH) as a predictor for clinical success following prostate artery embolization: an age-matched case-control study [internet]. Cardiovasc Intervent Radiol. 2017;40:682–9. https://doi.org/10.1007/s00270-017-1602-8.CrossRefPubMed Little MW, Boardman P, Macdonald AC, Taylor N, Macpherson R, Crew J, et al. Adenomatous-dominant benign prostatic hyperplasia (AdBPH) as a predictor for clinical success following prostate artery embolization: an age-matched case-control study [internet]. Cardiovasc Intervent Radiol. 2017;40:682–9. https://​doi.​org/​10.​1007/​s00270-017-1602-8.CrossRefPubMed
6.
Zurück zum Zitat Bilhim T, Pisco J, Pereira JA, Costa NV, Fernandes L, Campos Pinheiro L, et al. Predictors of clinical outcome after prostate artery embolization with spherical and nonspherical polyvinyl alcohol particles in patients with benign prostatic hyperplasia. Radiology. 2016;281:289–300.CrossRefPubMed Bilhim T, Pisco J, Pereira JA, Costa NV, Fernandes L, Campos Pinheiro L, et al. Predictors of clinical outcome after prostate artery embolization with spherical and nonspherical polyvinyl alcohol particles in patients with benign prostatic hyperplasia. Radiology. 2016;281:289–300.CrossRefPubMed
7.
Zurück zum Zitat Bagla S, Smirniotopoulos JB, Orlando JC, van Breda A, Vadlamudi V. Comparative analysis of prostate volume as a predictor of outcome in prostate artery embolization. J Vasc Interv Radiol. 2015;26:1832–8.CrossRefPubMed Bagla S, Smirniotopoulos JB, Orlando JC, van Breda A, Vadlamudi V. Comparative analysis of prostate volume as a predictor of outcome in prostate artery embolization. J Vasc Interv Radiol. 2015;26:1832–8.CrossRefPubMed
8.
Zurück zum Zitat Hacking N, Vigneswaran G, Maclean D, Modi S, Dyer J, Harris M, et al. Technical and imaging outcomes from the UK registry of prostate artery embolization (UK-ROPE) study: focusing on predictors of clinical success. Cardiovasc Intervent Radiol. 2019;42:666–76.CrossRefPubMed Hacking N, Vigneswaran G, Maclean D, Modi S, Dyer J, Harris M, et al. Technical and imaging outcomes from the UK registry of prostate artery embolization (UK-ROPE) study: focusing on predictors of clinical success. Cardiovasc Intervent Radiol. 2019;42:666–76.CrossRefPubMed
9.
Zurück zum Zitat Bilhim T, Pisco JM, Rio Tinto H, Fernandes L, Pinheiro LC, Furtado A, et al. Prostatic arterial supply: anatomic and imaging findings relevant for selective arterial embolization. J Vasc Interv Radiol. 2012;23:1403–15.CrossRefPubMed Bilhim T, Pisco JM, Rio Tinto H, Fernandes L, Pinheiro LC, Furtado A, et al. Prostatic arterial supply: anatomic and imaging findings relevant for selective arterial embolization. J Vasc Interv Radiol. 2012;23:1403–15.CrossRefPubMed
10.
Zurück zum Zitat Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2007;2:59–77.PubMedPubMedCentral Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2007;2:59–77.PubMedPubMedCentral
11.
Zurück zum Zitat Ray AF, Powell J, Speakman MJ, Longford NT, DasGupta R, Bryant T, et al. Efficacy and safety of prostate artery embolization for benign prostatic hyperplasia: an observational study and propensity-matched comparison with transurethral resection of the prostate (the UK-ROPE study). BJU Int. 2018;122:270–82.CrossRefPubMed Ray AF, Powell J, Speakman MJ, Longford NT, DasGupta R, Bryant T, et al. Efficacy and safety of prostate artery embolization for benign prostatic hyperplasia: an observational study and propensity-matched comparison with transurethral resection of the prostate (the UK-ROPE study). BJU Int. 2018;122:270–82.CrossRefPubMed
12.
Zurück zum Zitat Octaria R, Cincotta S, Healy J, Gowler C, Paul P, Walters M, et al. An interactive patient transfer network and model visualization tool for multidrug-resistant organism prevention strategies. Antimicrob Steward Healthc Epidemiol. 2023;3:s120–2.CrossRefPubMedCentral Octaria R, Cincotta S, Healy J, Gowler C, Paul P, Walters M, et al. An interactive patient transfer network and model visualization tool for multidrug-resistant organism prevention strategies. Antimicrob Steward Healthc Epidemiol. 2023;3:s120–2.CrossRefPubMedCentral
14.
Zurück zum Zitat Ellingsen D-M, Wessberg J, Eikemo M, Liljencrantz J, Endestad T, Olausson H, et al. Placebo improves pleasure and pain through opposite modulation of sensory processing. Proc Natl Acad Sci U S A. 2013;110:17993–8.CrossRefPubMedPubMedCentral Ellingsen D-M, Wessberg J, Eikemo M, Liljencrantz J, Endestad T, Olausson H, et al. Placebo improves pleasure and pain through opposite modulation of sensory processing. Proc Natl Acad Sci U S A. 2013;110:17993–8.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Thompson AG, Suñol R. Expectations as determinants of patient satisfaction: concepts, theory and evidence. Int J Qual Healthc. 1995;7:127–41.CrossRef Thompson AG, Suñol R. Expectations as determinants of patient satisfaction: concepts, theory and evidence. Int J Qual Healthc. 1995;7:127–41.CrossRef
16.
Zurück zum Zitat Tavakkoli M, Ghorbani H, Nobahar A, Emadzadeh M, Aghaee A, Mottaghi M, Soltani S. Transurethral intraprostatic botulinum toxin-a injection in patients with Benign Prostatic Hyperplasia: a case series and literature review. Iran J Toxicol. 2022;16(1):9–16.CrossRef Tavakkoli M, Ghorbani H, Nobahar A, Emadzadeh M, Aghaee A, Mottaghi M, Soltani S. Transurethral intraprostatic botulinum toxin-a injection in patients with Benign Prostatic Hyperplasia: a case series and literature review. Iran J Toxicol. 2022;16(1):9–16.CrossRef
17.
Zurück zum Zitat Lebani BR, Barcelos AD, Gouveia DS, Girotti ME, Remaille EP, Skaff M, Almeida FG. The role of transurethral resection of prostate (TURP) in patients with underactive bladder: 12 months follow-up in different grades of detrusor contractility. Prostate. 2023;83(9):857–62.CrossRefPubMed Lebani BR, Barcelos AD, Gouveia DS, Girotti ME, Remaille EP, Skaff M, Almeida FG. The role of transurethral resection of prostate (TURP) in patients with underactive bladder: 12 months follow-up in different grades of detrusor contractility. Prostate. 2023;83(9):857–62.CrossRefPubMed
18.
Zurück zum Zitat Rampoldi A, Barbosa F, Secco S, Migliorisi C, Galfano A, Prestini G, et al. Prostatic artery embolization as an alternative to indwelling bladder catheterization to manage benign prostatic hyperplasia in poor surgical candidates. Cardiovasc Radiol. 2017;40:530–6.CrossRef Rampoldi A, Barbosa F, Secco S, Migliorisi C, Galfano A, Prestini G, et al. Prostatic artery embolization as an alternative to indwelling bladder catheterization to manage benign prostatic hyperplasia in poor surgical candidates. Cardiovasc Radiol. 2017;40:530–6.CrossRef
19.
20.
Zurück zum Zitat Carnevale FC, Antunes AA. Prostatic artery embolization for enlarged prostates due to benign prostatic hyperplasia How i do it. Cardiovasc Radiol. 2013;36:1452–63.CrossRef Carnevale FC, Antunes AA. Prostatic artery embolization for enlarged prostates due to benign prostatic hyperplasia How i do it. Cardiovasc Radiol. 2013;36:1452–63.CrossRef
Metadaten
Titel
Machine Learning to Predict Prostate Artery Embolization Outcomes
verfasst von
G. Vigneswaran
N. Doshi
D. Maclean
T. Bryant
M. Harris
N. Hacking
K. Farrahi
M. Niranjan
S. Modi
Publikationsdatum
19.06.2024
Verlag
Springer US
Erschienen in
CardioVascular and Interventional Radiology / Ausgabe 9/2024
Print ISSN: 0174-1551
Elektronische ISSN: 1432-086X
DOI
https://doi.org/10.1007/s00270-024-03776-z

Neu im Fachgebiet Radiologie

Ringen um den richtigen Umgang mit Zufallsbefunden

Wenn 2026 in Deutschland das Lungenkrebsscreening mittels Low-Dose-Computertomografie (LDCT) eingeführt wird, wird es auch viele Zufallsbefunde ans Licht bringen. Das birgt Chancen und Risiken.

Bald 5% der Krebserkrankungen durch CT verursacht

Die jährlich rund 93 Millionen CTs in den USA könnten künftig zu über 100.000 zusätzlichen Krebserkrankungen führen, geht aus einer Modellrechnung hervor. Damit würde eine von 20 Krebserkrankungen auf die ionisierende Strahlung bei CT-Untersuchungen zurückgehen.

Röntgen-Thorax oder LDCT fürs Lungenscreening nach HNSCC?

Personen, die an einem Plattenepithelkarzinom im Kopf-Hals-Bereich erkrankt sind, haben ein erhöhtes Risiko für Metastasen oder zweite Primärmalignome der Lunge. Eine Studie hat untersucht, wie die radiologische Überwachung aussehen sollte.

Statine: Was der G-BA-Beschluss für Praxen bedeutet

Nach dem G-BA-Beschluss zur erweiterten Verordnungsfähigkeit von Lipidsenkern rechnet die DEGAM mit 200 bis 300 neuen Dauerpatienten pro Praxis. Im Interview erläutert Präsidiumsmitglied Erika Baum, wie Hausärztinnen und Hausärzte am besten vorgehen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.