Skip to main content
Erschienen in:

15.02.2022

Machine vs. Radiologist-Based Translations of RadLex: Implications for Multi-language Report Interoperability

verfasst von: Christian J. Park, Paul H. Yi, Hussain Al Yousif, Kenneth C. Wang

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

The purpose of this study was to evaluate the feasibility of translation of RadLex lexicon from English to German performed by Google Translate, using the RadLex ontology as ground truth. The same comparison was also performed for German to English translations. We determined the concordance rate of the Google Translate–rendered translations (for both English to German and German to English translations) to the official German RadLex (translations provided by the German Radiological Society) and English RadLex terms via character-by-character concordance analysis (string matching). Specific term characteristics of term character count and word count were compared between concordant and discordant translations using t-tests. Google Translate–rendered translations originally considered incongruent (2482 English terms and 2500 German terms) were then reviewed by German and English-speaking radiologists to further evaluate clinical utility. Overall success rates of both methods were calculated by adding the percentage of terms marked correct by string comparison to the percentage marked correct during manual review extrapolated to the terms that had been initially marked incorrect during string analysis. 64,632 English and 47,425 German RadLex terms were analyzed. 3507 (5.4%) of the Google Translate–rendered English to German translations were concordant with the official German RadLex terms when evaluated via character-by-character concordance. 3288 (6.9%) of the Google Translate–rendered German to English translations matched the corresponding English RadLex terms. Human review of a random sample of non-concordant machine translations revealed that 95.5% of such English to German translations were understandable, whereas 43.9% of such German to English translations were understandable. Combining both string matching and human review resulted in an overall Google Translate success rate of 95.7% for English to German translations and 47.8% for German to English translations. For certain radiologic text translation tasks, Google Translate may be a useful tool for translating multi-language radiology reports into a common language for natural language processing and subsequent labeling of datasets for machine learning. Indeed, string matching analysis alone is an incomplete method for evaluating machine translation. However, when human review of automated translation is also incorporated, measured performance improves. Additional evaluation using longer text samples and full imaging reports is needed. An apparent discordance between English to German versus German to English translation suggests that the direction of translation affects accuracy.
Literatur
3.
Zurück zum Zitat Adibuzzaman M, DeLaurentis P, Hill J, Benneyworth BD. Big data in healthcare - the promises, challenges and opportunities from a research perspective: a case study with a model database. AMIA . Annual Symposium proceedings AMIA Symposium. 2017;2017:384-392.PubMed Adibuzzaman M, DeLaurentis P, Hill J, Benneyworth BD. Big data in healthcare - the promises, challenges and opportunities from a research perspective: a case study with a model database. AMIA . Annual Symposium proceedings AMIA Symposium. 2017;2017:384-392.PubMed
14.
Zurück zum Zitat Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional transformers for language understanding. Published online October 10, 2018. Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional transformers for language understanding. Published online October 10, 2018.
Metadaten
Titel
Machine vs. Radiologist-Based Translations of RadLex: Implications for Multi-language Report Interoperability
verfasst von
Christian J. Park
Paul H. Yi
Hussain Al Yousif
Kenneth C. Wang
Publikationsdatum
15.02.2022
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 3/2022
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-022-00597-9

Neu im Fachgebiet Radiologie

Hölzerner Fremdkörper in der Orbita? Zuerst eine CT!

Besteht der Verdacht, dass ein Fremdkörper aus Holz in den Orbitalraum eingedrungen ist, spielt die Bildgebung eine entscheidende diagnostische Rolle. Was von CT und MRT zu erwarten ist, hat ein chinesisches Radiologenteam untersucht.

Diagnostik von Rippenfrakturen: KI schlägt Radiologen

Mensch gegen Maschine: Beim Erkennen von Rippenfrakturen in Röntgen- und CT-Aufnahmen entschied sich dieses Duell zugunsten der künstlichen Intelligenz (KI). Die Algorithmen zeigten eine höhere Sensitivität als ihre menschlichen Kollegen.

Ärztinnen überholen Ärzte bei Praxisgründungen

Bei Praxisgründungen haben inzwischen die Frauen deutlich die Nase vorn: Seit zehn Jahren wagen laut apoBank mehr Ärztinnen als Ärzte den Schritt in die Selbstständigkeit. In puncto Finanzierung sind sie aber vorsichtiger als die männlichen Kollegen.

Ambulante Behandlung darf länger dauern als stationäre

Ambulante Behandlungen haben Vorrang vor stationären - auch wenn diese läner dauern. Das hat das Bundessozialgericht klargestellt. Konkret ging es um Liposuktionen der Ober- und Unterschenkel.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.