Skip to main content
Erschienen in: Inflammation Research 12/2020

09.09.2020 | Original Research Paper

Macrophage-derived Wnt signaling increases endothelial permeability during skeletal muscle injury

verfasst von: S. Tusavitz, S. Keoonela, M. Kalkstein, S. McCormick, B. Gasser, M. Arrigale, P. Rafferty, A. C. Carpenter

Erschienen in: Inflammation Research | Ausgabe 12/2020

Einloggen, um Zugang zu erhalten

Abstract

Objective

The inflammatory response and the presence of macrophages are reported to be necessary for proper muscle regeneration. However, our understanding of the molecular mechanisms governing how macrophages signal to promote muscle regeneration is incomplete.

Methods and results

Here we conditionally deleted Wls, which is required for Wnt secretion, from macrophages and examined the impact on endothelial permeability following muscle injury. The expression of Wnt ligands and Wls was increased in the tibialis anterior (TA) of mice 2 days following BaCl2 injury. Loss of macrophage Wls inhibited the loss of endothelial barrier function, as measured by transendothelial resistance and Evans blue dye permeability assays. Interestingly, the blockade in endothelial permeability correlated with reduced VEGF levels and pretreatment of wild type endothelial cells with a VEGFR2 blocking antibody was sufficient to reduce endothelial permeability induced by stimulated macrophage supernatant. We also found that macrophage Wls-null TAs had myocytes with reduced cross-sectional area 7 day post-injury suggesting a delay in muscle regeneration.

Conclusion

Our results indicate that macrophage-derived Wnt signaling increases endothelial permeability in a VEGF-dependent fashion following muscle injury. Our findings implicate macrophages as a primary source of Wnt ligands following muscle injury and highlight the Wnt pathway as a therapeutic target following injury.
Literatur
1.
Zurück zum Zitat Brown LF, Yeo K, Berse B, Yeo T, Senger R, Dvorak HF, Van De Water L. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med. 1992;176(5):1375–9.CrossRef Brown LF, Yeo K, Berse B, Yeo T, Senger R, Dvorak HF, Van De Water L. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med. 1992;176(5):1375–9.CrossRef
2.
Zurück zum Zitat Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H. The role of vascular endothelial growth factor in wound healing. J Surg Res. 2009;153(2):347–58.PubMedCrossRef Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H. The role of vascular endothelial growth factor in wound healing. J Surg Res. 2009;153(2):347–58.PubMedCrossRef
3.
Zurück zum Zitat Muller WA. Mechanisms of leukocyte transendothelial migration. Ann Rev Path. 2011;6:323–44.CrossRef Muller WA. Mechanisms of leukocyte transendothelial migration. Ann Rev Path. 2011;6:323–44.CrossRef
4.
Zurück zum Zitat Koh TJ, Byer SC, Pucci AM, Sisson TH. Mice deficient in plasminogen activator inhibitor-1 have improved skeletal muscle regeneration. Am J Physiol. 2005;289(1):C217–C223223.CrossRef Koh TJ, Byer SC, Pucci AM, Sisson TH. Mice deficient in plasminogen activator inhibitor-1 have improved skeletal muscle regeneration. Am J Physiol. 2005;289(1):C217–C223223.CrossRef
5.
Zurück zum Zitat Lluis FJ, Roma M, Suelves M, Parra M, Aniorte G, Gallardo E, Illa I, Rodriguez L, Hughes SM, Carmeliet P, Roig M, Munoz-Canoves P. Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo. Blood. 2001;97(6):1703–11.PubMedCrossRef Lluis FJ, Roma M, Suelves M, Parra M, Aniorte G, Gallardo E, Illa I, Rodriguez L, Hughes SM, Carmeliet P, Roig M, Munoz-Canoves P. Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo. Blood. 2001;97(6):1703–11.PubMedCrossRef
6.
Zurück zum Zitat Lescaudron L, Peltekian E, Fontaine-Perus J, Paulin D, Zampieri M, Garcia L, Parrish E. Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul Discord. 1999;9(2):72–80.CrossRef Lescaudron L, Peltekian E, Fontaine-Perus J, Paulin D, Zampieri M, Garcia L, Parrish E. Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul Discord. 1999;9(2):72–80.CrossRef
7.
Zurück zum Zitat Martinez CO, McHale MJ, Wells JT, Ochoa O, Michalek JE, McManus LM, Shireman PK. Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R832–R842842.PubMedPubMedCentralCrossRef Martinez CO, McHale MJ, Wells JT, Ochoa O, Michalek JE, McManus LM, Shireman PK. Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R832–R842842.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Hsieh PL, Rybalko V, Baker AB, Suggs LJ, Farrar RP. Recruitment and therapeutic application of macrophages in skeletal muscles after hind limb ischemia. J Vasc Surg. 2018;67(6):1908–20.PubMedCrossRef Hsieh PL, Rybalko V, Baker AB, Suggs LJ, Farrar RP. Recruitment and therapeutic application of macrophages in skeletal muscles after hind limb ischemia. J Vasc Surg. 2018;67(6):1908–20.PubMedCrossRef
9.
Zurück zum Zitat Teixeira CF, Zamuner SR, Zuliani JP, Fernandes CM, Cruz-Hofling MA, Fernandes I, Chaves F, Gutierrez JM. Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected with Bothrops asper snake venom. Muscle Nerve. 2003;28(4):449–59.PubMedCrossRef Teixeira CF, Zamuner SR, Zuliani JP, Fernandes CM, Cruz-Hofling MA, Fernandes I, Chaves F, Gutierrez JM. Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected with Bothrops asper snake venom. Muscle Nerve. 2003;28(4):449–59.PubMedCrossRef
10.
Zurück zum Zitat Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J. 2011;25(1):358–69.PubMedPubMedCentralCrossRef Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J. 2011;25(1):358–69.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Latroche C, Weiss-Gayet M, Muller L, Gitiaux C, Leblanc P, Liot S, Ben-Larbi S, Abou-Khalil R, Verger N, Bardot P, Magnan M, Chretien F, Mounier R, Germain S, Chazaud B. Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages. Stem Cell Rep. 2017;9(6):2018–33.CrossRef Latroche C, Weiss-Gayet M, Muller L, Gitiaux C, Leblanc P, Liot S, Ben-Larbi S, Abou-Khalil R, Verger N, Bardot P, Magnan M, Chretien F, Mounier R, Germain S, Chazaud B. Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages. Stem Cell Rep. 2017;9(6):2018–33.CrossRef
12.
Zurück zum Zitat Banziger C, Soldini D, Schutt C, Zipperlen P, Hausmann G, Basler K. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell. 2006;125(3):509–22.PubMedCrossRef Banziger C, Soldini D, Schutt C, Zipperlen P, Hausmann G, Basler K. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell. 2006;125(3):509–22.PubMedCrossRef
13.
Zurück zum Zitat Bartscherer K, Pelte N, Ingelfinger D, Boutros M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell. 2006;125(3):523.PubMedCrossRef Bartscherer K, Pelte N, Ingelfinger D, Boutros M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell. 2006;125(3):523.PubMedCrossRef
14.
Zurück zum Zitat Goodman RM, Thombre S, Firtina Z, Gray D, Betts D, Roebuck J, Spana EP, Selva EM. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development. 2006;133(24):4901–11.PubMedCrossRef Goodman RM, Thombre S, Firtina Z, Gray D, Betts D, Roebuck J, Spana EP, Selva EM. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development. 2006;133(24):4901–11.PubMedCrossRef
15.
Zurück zum Zitat Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, Pei H, Chen L, Zheng JJ, Carroll TJ, Pollard JW, McMahon AP, Lang RA, Duffield JS. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci. 2010;107(9):4194–9.PubMedCrossRef Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, Pei H, Chen L, Zheng JJ, Carroll TJ, Pollard JW, McMahon AP, Lang RA, Duffield JS. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci. 2010;107(9):4194–9.PubMedCrossRef
16.
Zurück zum Zitat Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA. A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell. 2008;2(1):50–9.PubMedCrossRef Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA. A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell. 2008;2(1):50–9.PubMedCrossRef
17.
Zurück zum Zitat LeGrand F, Jones AE, Seale V, Scime A, Rudnicki MA. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell. 2009;4(6):535–47.CrossRef LeGrand F, Jones AE, Seale V, Scime A, Rudnicki MA. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell. 2009;4(6):535–47.CrossRef
18.
Zurück zum Zitat Polesskaya A, Seale P, Rudnicki MA. Wnt Signaling induces the myogenic specification of resident CD45+ stem cells during muscle regeneration. Cell. 2003;113(7):841–52.PubMedCrossRef Polesskaya A, Seale P, Rudnicki MA. Wnt Signaling induces the myogenic specification of resident CD45+ stem cells during muscle regeneration. Cell. 2003;113(7):841–52.PubMedCrossRef
19.
Zurück zum Zitat Zhao P, Hoffman EP. Embryonic Myogenesis pathways in muscle regeneration. Dev Dyn. 2004;229(2):380–92.PubMedCrossRef Zhao P, Hoffman EP. Embryonic Myogenesis pathways in muscle regeneration. Dev Dyn. 2004;229(2):380–92.PubMedCrossRef
20.
Zurück zum Zitat vonMaltzahn J, Chang NC, Bentzinger CF, Rudnicki MA. Wnt signaling in myogenesis. Trends Cell Biol. 2012;22(11):602–9.CrossRef vonMaltzahn J, Chang NC, Bentzinger CF, Rudnicki MA. Wnt signaling in myogenesis. Trends Cell Biol. 2012;22(11):602–9.CrossRef
21.
22.
Zurück zum Zitat Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP. Selective depletion of macrophages reveals distince, opposing roles during liver injury and repair. J Clin Invest. 2005;115(1):56–655.PubMedPubMedCentralCrossRef Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP. Selective depletion of macrophages reveals distince, opposing roles during liver injury and repair. J Clin Invest. 2005;115(1):56–655.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Stefater JA 3rd, Lewkowich I, Rao S, Mariggi G, Carpenter AC, Burr AR, Fan J, Ajima R, Molkentin JD, William BO, Wills-Karp M, Pollard JW, Yamaguchi T, Ferrara N, Gerhardt H, Lang RA. Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature. 2011;474(7352):511–5.PubMedPubMedCentralCrossRef Stefater JA 3rd, Lewkowich I, Rao S, Mariggi G, Carpenter AC, Burr AR, Fan J, Ajima R, Molkentin JD, William BO, Wills-Karp M, Pollard JW, Yamaguchi T, Ferrara N, Gerhardt H, Lang RA. Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature. 2011;474(7352):511–5.PubMedPubMedCentralCrossRef
26.
28.
Zurück zum Zitat Hedgepeth CM, Conrad LJ, Zhang HC, Lee VM, Klein PS. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol. 1997;185(1):82–91.PubMedCrossRef Hedgepeth CM, Conrad LJ, Zhang HC, Lee VM, Klein PS. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol. 1997;185(1):82–91.PubMedCrossRef
29.
Zurück zum Zitat Easwaran V, Lee SH, Inge L, Guo L, Goldbeck C, Garrett E, Wiesmann M, Garcia PD, Fuller JH, Chan V, Randazzo F, Gundel R, Warren RS, Escobedo J, Aukerman SL, Taylor RN, Fantl WJ. β-Catenin regulates vascular endothelial growth factor expression in colon cancer. Can Res. 2003;63:3145–53. Easwaran V, Lee SH, Inge L, Guo L, Goldbeck C, Garrett E, Wiesmann M, Garcia PD, Fuller JH, Chan V, Randazzo F, Gundel R, Warren RS, Escobedo J, Aukerman SL, Taylor RN, Fantl WJ. β-Catenin regulates vascular endothelial growth factor expression in colon cancer. Can Res. 2003;63:3145–53.
31.
Zurück zum Zitat Tojais NF, Peghaire C, Franzl N, Larrieu-Lahargue F, Jaspard B, Reynaud A, Moreau C, Couffinhal T, Duplàa C, Dufourcq P. Frizzled7 controls vascular permeability through the Wnt-canonical pathway and cross-talk with endothelial cell junction complexes. Cardiovas Res. 2014;103(2):291–303.CrossRef Tojais NF, Peghaire C, Franzl N, Larrieu-Lahargue F, Jaspard B, Reynaud A, Moreau C, Couffinhal T, Duplàa C, Dufourcq P. Frizzled7 controls vascular permeability through the Wnt-canonical pathway and cross-talk with endothelial cell junction complexes. Cardiovas Res. 2014;103(2):291–303.CrossRef
32.
Zurück zum Zitat Daneman R, Agalliu D, Zhou L, Kuhnert F, Kou C, Barres BA. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. PNAS. 2009;106(2):641–6.PubMedCrossRef Daneman R, Agalliu D, Zhou L, Kuhnert F, Kou C, Barres BA. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. PNAS. 2009;106(2):641–6.PubMedCrossRef
33.
Zurück zum Zitat Liebner S, Corado M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo MM, von Melchner H, Plate KH, Gerhardt H, Dejana E. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J of Cell Biol. 2008;183(3):409–417. Liebner S, Corado M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo MM, von Melchner H, Plate KH, Gerhardt H, Dejana E. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J of Cell Biol. 2008;183(3):409–417.
34.
Zurück zum Zitat Laksitorini MD, Yathindranath Y, Xiong W, Homback-Klonisch S, Miller DW. Modulation of Wnt/β-catenin signaling promotes blood-brain barrier phenotype in cultured brain endothelial cells. Sci Rep. 2018;9:19718.CrossRef Laksitorini MD, Yathindranath Y, Xiong W, Homback-Klonisch S, Miller DW. Modulation of Wnt/β-catenin signaling promotes blood-brain barrier phenotype in cultured brain endothelial cells. Sci Rep. 2018;9:19718.CrossRef
35.
Zurück zum Zitat Lim RG, Quan C, Reyes-Ortiz AM, Lutz SE, Kedaigle AJ, Gipson TA, Wu J, Vatine GD, Stocksdale J, Casale M, Svedsen CN, Fraenkel E, Housman DE, Agalliu D, Thompson LM. Huntington’s Disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits. Cell Rep. 2017;19:1365–77.PubMedPubMedCentralCrossRef Lim RG, Quan C, Reyes-Ortiz AM, Lutz SE, Kedaigle AJ, Gipson TA, Wu J, Vatine GD, Stocksdale J, Casale M, Svedsen CN, Fraenkel E, Housman DE, Agalliu D, Thompson LM. Huntington’s Disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits. Cell Rep. 2017;19:1365–77.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Skaria T, Bachli E, Schoedon G. Wnt5A/Ryk signaling affects barrier function in human vascular endothelial cells. Cell Adh Migr. 2017;11(1):24–38.PubMedCrossRef Skaria T, Bachli E, Schoedon G. Wnt5A/Ryk signaling affects barrier function in human vascular endothelial cells. Cell Adh Migr. 2017;11(1):24–38.PubMedCrossRef
37.
Zurück zum Zitat Kim J, Kim J, Kim DW, Ha Y, Ihm MH, Kim H, Song K, Lee I. Wnt5a induces endothelial inflammation via beta-catenin-independent signaling. J Immunol. 2010;185:1274–82.PubMedCrossRef Kim J, Kim J, Kim DW, Ha Y, Ihm MH, Kim H, Song K, Lee I. Wnt5a induces endothelial inflammation via beta-catenin-independent signaling. J Immunol. 2010;185:1274–82.PubMedCrossRef
38.
Zurück zum Zitat Gavard J. Endothelial permeability and VE-cadherin. Cell Ad Mig. 2013;7(6):465–71.CrossRef Gavard J. Endothelial permeability and VE-cadherin. Cell Ad Mig. 2013;7(6):465–71.CrossRef
39.
Zurück zum Zitat Cantini M, Carraro U. Macrophage-released factor stimulates selectively myogenic cells in primary muscle culture. J Neuropathol Exp Neurol. 1995;54:121–8.PubMedCrossRef Cantini M, Carraro U. Macrophage-released factor stimulates selectively myogenic cells in primary muscle culture. J Neuropathol Exp Neurol. 1995;54:121–8.PubMedCrossRef
40.
Zurück zum Zitat Cantini M, Giurisato E, Radu C, Tiozzo S, Pampinella F, Senigaglia D, Mazzoleni G, Vittiello L. Macrophage-secreted myogenic factors: a promising tool for greatly enhancing the proliferative capacity of myoblasts in vitro and in vivo. Neurologl Sci. 2002;23:189–94.CrossRef Cantini M, Giurisato E, Radu C, Tiozzo S, Pampinella F, Senigaglia D, Mazzoleni G, Vittiello L. Macrophage-secreted myogenic factors: a promising tool for greatly enhancing the proliferative capacity of myoblasts in vitro and in vivo. Neurologl Sci. 2002;23:189–94.CrossRef
41.
Zurück zum Zitat Ochoa O, Sun D, Reyes-Reyna SM, Waite LL, Michalek JE, McManus LM, Shireman PK. Delayed angiogenesis and VEGF production in CCR2-/- mice during impaired skeletal muscle regeneration. Am J Phys Reg Integr Comput Phys. 2007;293(2):R651–R661661. Ochoa O, Sun D, Reyes-Reyna SM, Waite LL, Michalek JE, McManus LM, Shireman PK. Delayed angiogenesis and VEGF production in CCR2-/- mice during impaired skeletal muscle regeneration. Am J Phys Reg Integr Comput Phys. 2007;293(2):R651–R661661.
Metadaten
Titel
Macrophage-derived Wnt signaling increases endothelial permeability during skeletal muscle injury
verfasst von
S. Tusavitz
S. Keoonela
M. Kalkstein
S. McCormick
B. Gasser
M. Arrigale
P. Rafferty
A. C. Carpenter
Publikationsdatum
09.09.2020
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 12/2020
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-020-01397-z

Weitere Artikel der Ausgabe 12/2020

Inflammation Research 12/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.