Skip to main content
Erschienen in: Diabetology International 1/2010

01.11.2010 | Review article

Macrophage infiltration and cytokine release in adipose tissue: angiogenesis or inflammation?

verfasst von: Lindsay E. Wu, Samantha L. Hocking, David E. James

Erschienen in: Diabetology International | Ausgabe 1/2010

Einloggen, um Zugang zu erhalten

Abstract

The observation that obese adipose tissue was infiltrated by macrophages triggered the concept that type 2 diabetes is a low-grade inflammatory disease. In this review, we re-evaluate the role of macrophage infiltration, TNFα secretion and IKKβ/JNK signalling in insulin resistance, and put forward the hypothesis that these intermediates are important mediators of adipose tissue angiogenesis. Expansion of adipose tissue vasculature is essential to support adipose tissue growth during development and adipose tissue expansion in adulthood. We propose that a major role of so-called pro-inflammatory adipokines is to stimulate adipose tissue angiogenesis to support the nutrient requirements of expanding fat depots. Inhibition of angiogenesis overrides insulin resistance and obesity not by blocking the peripheral effects of the inflammatory pathway on insulin resistance, but rather by central effects on food intake. This unveils a possible feedback loop involving adipose angiogenesis and central regulation of food intake that is independent of a classical immune response.
Literatur
1.
Zurück zum Zitat Ferrannini E, et al. Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J Clin Invest. 1997;100(5):1166–73.PubMedCrossRef Ferrannini E, et al. Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J Clin Invest. 1997;100(5):1166–73.PubMedCrossRef
2.
Zurück zum Zitat Robbins DC, et al. Familial partial lipodystrophy: complications of obesity in the non-obese? Metabolism. 1982;31(5):445–52.PubMedCrossRef Robbins DC, et al. Familial partial lipodystrophy: complications of obesity in the non-obese? Metabolism. 1982;31(5):445–52.PubMedCrossRef
3.
Zurück zum Zitat Kim JY, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621–37.PubMedCrossRef Kim JY, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621–37.PubMedCrossRef
4.
Zurück zum Zitat Mori Y, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care. 1999;22(6):908–12.PubMedCrossRef Mori Y, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care. 1999;22(6):908–12.PubMedCrossRef
5.
Zurück zum Zitat Tan CY, Vidal-Puig A. Adipose tissue expandability: the metabolic problems of obesity may arise from the inability to become more obese. Biochem Soc Trans. 2008;36(Pt 5):935–40.PubMedCrossRef Tan CY, Vidal-Puig A. Adipose tissue expandability: the metabolic problems of obesity may arise from the inability to become more obese. Biochem Soc Trans. 2008;36(Pt 5):935–40.PubMedCrossRef
6.
Zurück zum Zitat Bjorntorp P. “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis. 1990;10(4):493–6.PubMed Bjorntorp P. “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis. 1990;10(4):493–6.PubMed
7.
Zurück zum Zitat Kissebah AH, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab. 1982;54(2):254–60.PubMedCrossRef Kissebah AH, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab. 1982;54(2):254–60.PubMedCrossRef
8.
Zurück zum Zitat Nielsen S, et al. Splanchnic lipolysis in human obesity. J Clin Invest. 2004;113(11):1582–8.PubMed Nielsen S, et al. Splanchnic lipolysis in human obesity. J Clin Invest. 2004;113(11):1582–8.PubMed
9.
Zurück zum Zitat Ravussin E, Smith SR. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann N Y Acad Sci. 2002;967:363–78.PubMedCrossRef Ravussin E, Smith SR. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann N Y Acad Sci. 2002;967:363–78.PubMedCrossRef
10.
Zurück zum Zitat Carey DG, et al. Effect of rosiglitazone on insulin sensitivity and body composition in type 2 diabetic patients [corrected]. Obes Res. 2002;10(10):1008–15.PubMedCrossRef Carey DG, et al. Effect of rosiglitazone on insulin sensitivity and body composition in type 2 diabetic patients [corrected]. Obes Res. 2002;10(10):1008–15.PubMedCrossRef
11.
Zurück zum Zitat Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2009;316(2):129–39. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2009;316(2):129–39.
12.
Zurück zum Zitat Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.PubMedCrossRef Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.PubMedCrossRef
13.
Zurück zum Zitat Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793–801.PubMedCrossRef Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793–801.PubMedCrossRef
14.
Zurück zum Zitat Halaas JL, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543–6.PubMedCrossRef Halaas JL, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543–6.PubMedCrossRef
15.
Zurück zum Zitat Reitman ML, et al. Transgenic mice lacking white fat: models for understanding human lipoatrophic diabetes. Ann N Y Acad Sci. 1999;892:289–96.PubMedCrossRef Reitman ML, et al. Transgenic mice lacking white fat: models for understanding human lipoatrophic diabetes. Ann N Y Acad Sci. 1999;892:289–96.PubMedCrossRef
16.
Zurück zum Zitat Shimomura I, et al. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 1999;401(6748):73–6.PubMedCrossRef Shimomura I, et al. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 1999;401(6748):73–6.PubMedCrossRef
17.
Zurück zum Zitat Kim JK, et al. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem. 2000;275(12):8456–60.PubMedCrossRef Kim JK, et al. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem. 2000;275(12):8456–60.PubMedCrossRef
18.
Zurück zum Zitat Kolonin MG, et al. Reversal of obesity by targeted ablation of adipose tissue. Nat Med. 2004;10(6):625–32.PubMedCrossRef Kolonin MG, et al. Reversal of obesity by targeted ablation of adipose tissue. Nat Med. 2004;10(6):625–32.PubMedCrossRef
19.
Zurück zum Zitat Rupnick MA, et al. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci USA. 2002;99(16):10730–5.PubMedCrossRef Rupnick MA, et al. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci USA. 2002;99(16):10730–5.PubMedCrossRef
20.
Zurück zum Zitat Brakenhielm E, et al. Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ Res. 2004;94(12):1579–88.PubMedCrossRef Brakenhielm E, et al. Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ Res. 2004;94(12):1579–88.PubMedCrossRef
21.
Zurück zum Zitat Kim DH, Woods SC, Seeley RJ. Peptide designed to elicit apoptosis in adipose tissue endothelium reduces food intake and body weight. Diabetes. 2010;59(4):907–15. Kim DH, Woods SC, Seeley RJ. Peptide designed to elicit apoptosis in adipose tissue endothelium reduces food intake and body weight. Diabetes. 2010;59(4):907–15.
22.
Zurück zum Zitat Crandall DL, Hausman GJ, Kral JG. A review of the microcirculation of adipose, and angiogenic perspectives. Microcirculation. 1997;4(2):211–32.PubMedCrossRef Crandall DL, Hausman GJ, Kral JG. A review of the microcirculation of adipose, and angiogenic perspectives. Microcirculation. 1997;4(2):211–32.PubMedCrossRef
23.
Zurück zum Zitat Wosnitza M, et al. Plasticity of human adipose stem cells to perform adipogenic and endothelial differentiation. Differentiation. 2007;75(1):12–23.PubMedCrossRef Wosnitza M, et al. Plasticity of human adipose stem cells to perform adipogenic and endothelial differentiation. Differentiation. 2007;75(1):12–23.PubMedCrossRef
24.
Zurück zum Zitat Rehman J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8.PubMedCrossRef Rehman J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8.PubMedCrossRef
25.
Zurück zum Zitat Hutley LJ, et al. Human adipose tissue endothelial cells promote preadipocyte proliferation. Am J Physiol Endocrinol Metab. 2001;281(5):E1037–44.PubMed Hutley LJ, et al. Human adipose tissue endothelial cells promote preadipocyte proliferation. Am J Physiol Endocrinol Metab. 2001;281(5):E1037–44.PubMed
26.
Zurück zum Zitat Slavin BG, Ballard KW. Morphological studies on the adrenergic innervation of white adipose tissue. Anat Rec. 1978;191(3):377–89.PubMedCrossRef Slavin BG, Ballard KW. Morphological studies on the adrenergic innervation of white adipose tissue. Anat Rec. 1978;191(3):377–89.PubMedCrossRef
27.
Zurück zum Zitat Bartness TJ, Bamshad M. Innervation of mammalian white adipose tissue: implications for the regulation of total body fat. Am J Physiol. 1998;275(5 Pt 2):R1399–411.PubMed Bartness TJ, Bamshad M. Innervation of mammalian white adipose tissue: implications for the regulation of total body fat. Am J Physiol. 1998;275(5 Pt 2):R1399–411.PubMed
28.
Zurück zum Zitat Leibovich SJ, et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature. 1987;329(6140):630–2.PubMedCrossRef Leibovich SJ, et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature. 1987;329(6140):630–2.PubMedCrossRef
29.
Zurück zum Zitat Sunderkotter C, et al. Macrophages and angiogenesis. J Leukoc Biol. 1994;55(3):410–22.PubMed Sunderkotter C, et al. Macrophages and angiogenesis. J Leukoc Biol. 1994;55(3):410–22.PubMed
30.
Zurück zum Zitat Uchida C, et al. JNK as a positive regulator of angiogenic potential in endothelial cells. Cell Biol Int. 2008;32(7):769–76.PubMedCrossRef Uchida C, et al. JNK as a positive regulator of angiogenic potential in endothelial cells. Cell Biol Int. 2008;32(7):769–76.PubMedCrossRef
31.
Zurück zum Zitat Ennis BW, et al. Inhibition of tumor growth, angiogenesis, and tumor cell proliferation by a small molecule inhibitor of c-Jun N-terminal kinase. J Pharmacol Exp Ther. 2005;313(1):325–32.PubMedCrossRef Ennis BW, et al. Inhibition of tumor growth, angiogenesis, and tumor cell proliferation by a small molecule inhibitor of c-Jun N-terminal kinase. J Pharmacol Exp Ther. 2005;313(1):325–32.PubMedCrossRef
32.
Zurück zum Zitat Lee DF, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell. 2007;130(3):440–55.PubMedCrossRef Lee DF, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell. 2007;130(3):440–55.PubMedCrossRef
33.
Zurück zum Zitat DeBusk LM, Massion PP, Lin PC. IkappaB kinase-alpha regulates endothelial cell motility and tumor angiogenesis. Cancer Res. 2008;68(24):10223–8.PubMedCrossRef DeBusk LM, Massion PP, Lin PC. IkappaB kinase-alpha regulates endothelial cell motility and tumor angiogenesis. Cancer Res. 2008;68(24):10223–8.PubMedCrossRef
34.
Zurück zum Zitat Lee DF, Hung MC. All roads lead to mTOR: integrating inflammation and tumor angiogenesis. Cell Cycle. 2007;6(24):3011–4.PubMedCrossRef Lee DF, Hung MC. All roads lead to mTOR: integrating inflammation and tumor angiogenesis. Cell Cycle. 2007;6(24):3011–4.PubMedCrossRef
35.
Zurück zum Zitat Yuan M, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001;293(5535):1673–7.PubMedCrossRef Yuan M, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001;293(5535):1673–7.PubMedCrossRef
36.
Zurück zum Zitat Arkan MC, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11(2):191–8.PubMedCrossRef Arkan MC, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11(2):191–8.PubMedCrossRef
37.
Zurück zum Zitat Lee YH, et al. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem. 2003;278(5):2896–902.PubMedCrossRef Lee YH, et al. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem. 2003;278(5):2896–902.PubMedCrossRef
38.
Zurück zum Zitat Hirosumi J, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.PubMedCrossRef Hirosumi J, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.PubMedCrossRef
39.
Zurück zum Zitat Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111–9.PubMed Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111–9.PubMed
40.
Zurück zum Zitat Weisberg SP, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.PubMed Weisberg SP, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.PubMed
41.
Zurück zum Zitat Xu H, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.PubMed Xu H, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.PubMed
42.
Zurück zum Zitat Kim JK, et al. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest. 2001;108(3):437–46.PubMed Kim JK, et al. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest. 2001;108(3):437–46.PubMed
43.
Zurück zum Zitat Ross R, et al. Localization of PDGF-B protein in macrophages in all phases of atherogenesis. Science. 1990;248(4958):1009–12.PubMedCrossRef Ross R, et al. Localization of PDGF-B protein in macrophages in all phases of atherogenesis. Science. 1990;248(4958):1009–12.PubMedCrossRef
44.
Zurück zum Zitat McLaren J, et al. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J Clin Invest. 1996;98(2):482–9.PubMedCrossRef McLaren J, et al. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J Clin Invest. 1996;98(2):482–9.PubMedCrossRef
45.
Zurück zum Zitat Chung ES, et al. Contribution of macrophages to angiogenesis induced by vascular endothelial growth factor receptor-3-specific ligands. Am J Pathol. 2009;175(5):1984–92.PubMedCrossRef Chung ES, et al. Contribution of macrophages to angiogenesis induced by vascular endothelial growth factor receptor-3-specific ligands. Am J Pathol. 2009;175(5):1984–92.PubMedCrossRef
46.
Zurück zum Zitat Pang C, et al. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab. 2008;295(2):E313–22.PubMedCrossRef Pang C, et al. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab. 2008;295(2):E313–22.PubMedCrossRef
47.
Zurück zum Zitat Sainson RC, et al. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood. 2008;111(10):4997–5007.PubMedCrossRef Sainson RC, et al. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood. 2008;111(10):4997–5007.PubMedCrossRef
48.
Zurück zum Zitat Niu J, et al. Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem. 2008;283(21):14542–51.PubMedCrossRef Niu J, et al. Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem. 2008;283(21):14542–51.PubMedCrossRef
49.
Zurück zum Zitat Chesney J, et al. An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol Med. 1999;5(3):181–91.PubMed Chesney J, et al. An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol Med. 1999;5(3):181–91.PubMed
50.
Zurück zum Zitat Fan Y, et al. Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab. 2008;28(1):90–8.PubMedCrossRef Fan Y, et al. Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab. 2008;28(1):90–8.PubMedCrossRef
51.
Zurück zum Zitat Kanda H, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494–505.PubMedCrossRef Kanda H, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494–505.PubMedCrossRef
52.
Zurück zum Zitat Cid MC, et al. Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J Clin Invest. 1993;91(3):977–85.PubMedCrossRef Cid MC, et al. Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J Clin Invest. 1993;91(3):977–85.PubMedCrossRef
53.
Zurück zum Zitat Park SJ, et al. Enhancement of angiogenic and vasculogenic potential of endothelial progenitor cells by haptoglobin. FEBS Lett. 2009;583(19):3235–40.PubMedCrossRef Park SJ, et al. Enhancement of angiogenic and vasculogenic potential of endothelial progenitor cells by haptoglobin. FEBS Lett. 2009;583(19):3235–40.PubMedCrossRef
54.
Zurück zum Zitat Irmak S, et al. Pro-angiogenic properties of orosomucoid (ORM). Exp Cell Res. 2009;315(18):3201–9.PubMedCrossRef Irmak S, et al. Pro-angiogenic properties of orosomucoid (ORM). Exp Cell Res. 2009;315(18):3201–9.PubMedCrossRef
55.
Zurück zum Zitat Phillips GD, et al. Macrophage colony-stimulating factor induces indirect angiogenesis in vivo. Wound Repair Regen. 1993;1(1):3–9.PubMedCrossRef Phillips GD, et al. Macrophage colony-stimulating factor induces indirect angiogenesis in vivo. Wound Repair Regen. 1993;1(1):3–9.PubMedCrossRef
56.
Zurück zum Zitat Choy LN, Rosen BS, Spiegelman BM. Adipsin and an endogenous pathway of complement from adipose cells. J Biol Chem. 1992;267(18):12736–41.PubMed Choy LN, Rosen BS, Spiegelman BM. Adipsin and an endogenous pathway of complement from adipose cells. J Biol Chem. 1992;267(18):12736–41.PubMed
57.
Zurück zum Zitat Rohrer B, et al. A targeted inhibitor of the alternative complement pathway reduces angiogenesis in a mouse model of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2009;50(7):3056–64.PubMedCrossRef Rohrer B, et al. A targeted inhibitor of the alternative complement pathway reduces angiogenesis in a mouse model of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2009;50(7):3056–64.PubMedCrossRef
58.
Zurück zum Zitat Park HY, et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med. 2001;33(2):95–102.PubMed Park HY, et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med. 2001;33(2):95–102.PubMed
59.
Zurück zum Zitat Anagnostoulis S, et al. Human leptin induces angiogenesis in vivo. Cytokine. 2008;42(3):353–7.PubMedCrossRef Anagnostoulis S, et al. Human leptin induces angiogenesis in vivo. Cytokine. 2008;42(3):353–7.PubMedCrossRef
60.
Zurück zum Zitat Kobayashi H, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res. 2004;94(4):e27–31.PubMedCrossRef Kobayashi H, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res. 2004;94(4):e27–31.PubMedCrossRef
61.
Zurück zum Zitat Shibata R, et al. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J Biol Chem. 2004;279(27):28670–4.PubMedCrossRef Shibata R, et al. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J Biol Chem. 2004;279(27):28670–4.PubMedCrossRef
62.
Zurück zum Zitat Ouchi N, et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem. 2004;279(2):1304–9.PubMedCrossRef Ouchi N, et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem. 2004;279(2):1304–9.PubMedCrossRef
63.
Zurück zum Zitat Liapakis IE, et al. Recombinant leptin administration improves early angiogenesis in full-thickness skin flaps: an experimental study. In Vivo. 2008;22(2):247–52.PubMed Liapakis IE, et al. Recombinant leptin administration improves early angiogenesis in full-thickness skin flaps: an experimental study. In Vivo. 2008;22(2):247–52.PubMed
64.
Zurück zum Zitat Dobson DE, et al. 1-Butyryl-glycerol: a novel angiogenesis factor secreted by differentiating adipocytes. Cell. 1990;61(2):223–30.PubMedCrossRef Dobson DE, et al. 1-Butyryl-glycerol: a novel angiogenesis factor secreted by differentiating adipocytes. Cell. 1990;61(2):223–30.PubMedCrossRef
65.
Zurück zum Zitat Silverman KJ, et al. Angiogenic activity of adipose tissue. Biochem Biophys Res Commun. 1988;153(1):347–52.PubMedCrossRef Silverman KJ, et al. Angiogenic activity of adipose tissue. Biochem Biophys Res Commun. 1988;153(1):347–52.PubMedCrossRef
66.
Zurück zum Zitat Hotamisligil GS, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665–8.PubMedCrossRef Hotamisligil GS, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665–8.PubMedCrossRef
67.
Zurück zum Zitat Gao Z, et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem. 2002;277(50):48115–21.PubMedCrossRef Gao Z, et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem. 2002;277(50):48115–21.PubMedCrossRef
68.
Zurück zum Zitat Aguirre V, et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277(2):1531–7.PubMedCrossRef Aguirre V, et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277(2):1531–7.PubMedCrossRef
69.
Zurück zum Zitat Aguirre V, et al. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000;275(12):9047–54.PubMedCrossRef Aguirre V, et al. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000;275(12):9047–54.PubMedCrossRef
70.
Zurück zum Zitat Kanety H, et al. Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem. 1995;270(40):23780–4.PubMedCrossRef Kanety H, et al. Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem. 1995;270(40):23780–4.PubMedCrossRef
71.
Zurück zum Zitat Pederson TM, Kramer DL, Rondinone CM. Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes. 2001;50(1):24–31.PubMedCrossRef Pederson TM, Kramer DL, Rondinone CM. Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes. 2001;50(1):24–31.PubMedCrossRef
72.
Zurück zum Zitat Hoehn KL, et al. IRS1-independent defects define major nodes of insulin resistance. Cell Metab. 2008;7(5):421–33.PubMedCrossRef Hoehn KL, et al. IRS1-independent defects define major nodes of insulin resistance. Cell Metab. 2008;7(5):421–33.PubMedCrossRef
73.
Zurück zum Zitat Prins JB, O’Rahilly S. Regulation of adipose cell number in man. Clin Sci (Lond). 1997;92(1):3–11. Prins JB, O’Rahilly S. Regulation of adipose cell number in man. Clin Sci (Lond). 1997;92(1):3–11.
74.
Zurück zum Zitat Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7(8):589–600.PubMedCrossRef Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7(8):589–600.PubMedCrossRef
75.
Zurück zum Zitat Voros G, et al. Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology. 2005;146(10):4545–54.PubMedCrossRef Voros G, et al. Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology. 2005;146(10):4545–54.PubMedCrossRef
76.
Zurück zum Zitat Silha JV, et al. Angiogenic factors are elevated in overweight and obese individuals. Int J Obes (Lond). 2005;29(11):1308–14.CrossRef Silha JV, et al. Angiogenic factors are elevated in overweight and obese individuals. Int J Obes (Lond). 2005;29(11):1308–14.CrossRef
77.
Zurück zum Zitat Miyazawa-Hoshimoto S, et al. Roles of degree of fat deposition and its localization on VEGF expression in adipocytes. Am J Physiol Endocrinol Metab. 2005;288(6):E1128–36.PubMedCrossRef Miyazawa-Hoshimoto S, et al. Roles of degree of fat deposition and its localization on VEGF expression in adipocytes. Am J Physiol Endocrinol Metab. 2005;288(6):E1128–36.PubMedCrossRef
78.
Zurück zum Zitat Marques BG, Hausman DB, Martin RJ. Association of fat cell size and paracrine growth factors in development of hyperplastic obesity. Am J Physiol. 1998;275(6 Pt 2):R1898–908.PubMed Marques BG, Hausman DB, Martin RJ. Association of fat cell size and paracrine growth factors in development of hyperplastic obesity. Am J Physiol. 1998;275(6 Pt 2):R1898–908.PubMed
79.
Zurück zum Zitat Borthwick GM, et al. Therapeutic levels of aspirin and salicylate directly inhibit a model of angiogenesis through a Cox-independent mechanism. FASEB J. 2006;20(12):2009–16.PubMedCrossRef Borthwick GM, et al. Therapeutic levels of aspirin and salicylate directly inhibit a model of angiogenesis through a Cox-independent mechanism. FASEB J. 2006;20(12):2009–16.PubMedCrossRef
80.
Zurück zum Zitat Sabio G, et al. Role of the hypothalamic-pituitary-thyroid axis in metabolic regulation by JNK1. Genes Dev. 2010;24(3):256–64. Sabio G, et al. Role of the hypothalamic-pituitary-thyroid axis in metabolic regulation by JNK1. Genes Dev. 2010;24(3):256–64.
81.
Zurück zum Zitat Jones GC, Riley GP. ADAMTS proteinases: a multi-domain multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther. 2005;7(4):160–9.PubMedCrossRef Jones GC, Riley GP. ADAMTS proteinases: a multi-domain multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther. 2005;7(4):160–9.PubMedCrossRef
82.
Zurück zum Zitat Hebbard LW, et al. T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res. 2008;68(5):1407–16.PubMedCrossRef Hebbard LW, et al. T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res. 2008;68(5):1407–16.PubMedCrossRef
83.
Zurück zum Zitat Im E, Venkatakrishnan A, Kazlauskas A. Cathepsin B regulates the intrinsic angiogenic threshold of endothelial cells. Mol Biol Cell. 2005;16(8):3488–500.PubMedCrossRef Im E, Venkatakrishnan A, Kazlauskas A. Cathepsin B regulates the intrinsic angiogenic threshold of endothelial cells. Mol Biol Cell. 2005;16(8):3488–500.PubMedCrossRef
84.
Zurück zum Zitat Berchem G, et al. Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene. 2002;21(38):5951–5.PubMedCrossRef Berchem G, et al. Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene. 2002;21(38):5951–5.PubMedCrossRef
85.
Zurück zum Zitat Chu FF, Olden K. The expression of ceruloplasmin an angiogenic glycoprotein, by mouse embryonic fibroblasts. Biochem Biophys Res Commun. 1985;126(1):15–24.PubMedCrossRef Chu FF, Olden K. The expression of ceruloplasmin an angiogenic glycoprotein, by mouse embryonic fibroblasts. Biochem Biophys Res Commun. 1985;126(1):15–24.PubMedCrossRef
86.
Zurück zum Zitat Girardi G, et al. Complement activation induces dysregulation of angiogenic factors and causes fetal loss. Am J Reprod Immunol. 2006;55(6):396–7.CrossRef Girardi G, et al. Complement activation induces dysregulation of angiogenic factors and causes fetal loss. Am J Reprod Immunol. 2006;55(6):396–7.CrossRef
87.
Zurück zum Zitat Rohrer B, et al. A targeted inhibitor of the alternative complement pathway reduces angiogenesis in a mouse model of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2009;50(7):3056–64.PubMedCrossRef Rohrer B, et al. A targeted inhibitor of the alternative complement pathway reduces angiogenesis in a mouse model of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2009;50(7):3056–64.PubMedCrossRef
88.
Zurück zum Zitat Pohle T, et al. Expression of decorin and biglycan in rat gastric tissue: effects of ulceration and basic fibroblast growth factor. Scand J Gastroenterol. 2001;36(7):683–9.PubMedCrossRef Pohle T, et al. Expression of decorin and biglycan in rat gastric tissue: effects of ulceration and basic fibroblast growth factor. Scand J Gastroenterol. 2001;36(7):683–9.PubMedCrossRef
89.
Zurück zum Zitat Braghetta P, et al. Expression of the EMILIN-1 gene during mouse development. Matrix Biol. 2002;21(7):603–9.PubMedCrossRef Braghetta P, et al. Expression of the EMILIN-1 gene during mouse development. Matrix Biol. 2002;21(7):603–9.PubMedCrossRef
90.
Zurück zum Zitat Huang SM, et al. Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res. 2002;62(15):4300–6.PubMed Huang SM, et al. Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res. 2002;62(15):4300–6.PubMed
91.
Zurück zum Zitat Han Z, et al. Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J. 2001;15(6):988–94.PubMedCrossRef Han Z, et al. Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J. 2001;15(6):988–94.PubMedCrossRef
92.
Zurück zum Zitat Nicosia RF, Bonanno E, Smith M. Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J Cell Physiol. 1993;154(3):654–61.PubMedCrossRef Nicosia RF, Bonanno E, Smith M. Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J Cell Physiol. 1993;154(3):654–61.PubMedCrossRef
93.
Zurück zum Zitat Hayashi I, et al. Suppressed angiogenesis in kininogen-deficiencies. Lab Invest. 2002;82(7):871–80.PubMed Hayashi I, et al. Suppressed angiogenesis in kininogen-deficiencies. Lab Invest. 2002;82(7):871–80.PubMed
94.
Zurück zum Zitat Song M, Cho SY. CD14 acts as an angiogenic factor by inducing basic fibroblast growth factor (bFGF). Bull Korean Chem Soc. 2007;28(9):1613–4.CrossRef Song M, Cho SY. CD14 acts as an angiogenic factor by inducing basic fibroblast growth factor (bFGF). Bull Korean Chem Soc. 2007;28(9):1613–4.CrossRef
95.
Zurück zum Zitat Nicosia RF, et al. Modulation of angiogenesis in vitro by laminin–entactin complex. Dev Biol. 1994;164(1):197–206.PubMedCrossRef Nicosia RF, et al. Modulation of angiogenesis in vitro by laminin–entactin complex. Dev Biol. 1994;164(1):197–206.PubMedCrossRef
96.
Zurück zum Zitat Hakuno D, et al. The potent angiogenic factor periostin accelerates degeneration and sclerosis of the cardiac valve complex. In: Proceeding of the 25th annual meeting of the ISHR, Japanese Section, December 5–6, 2008. J Mol Cell Cardiol. 2008;S8. Hakuno D, et al. The potent angiogenic factor periostin accelerates degeneration and sclerosis of the cardiac valve complex. In: Proceeding of the 25th annual meeting of the ISHR, Japanese Section, December 5–6, 2008. J Mol Cell Cardiol. 2008;S8.
97.
Zurück zum Zitat Isogai C, et al. Plasminogen activator inhibitor-1 promotes angiogenesis by stimulating endothelial cell migration toward fibronectin. Cancer Res. 2001;61(14):5587–94.PubMed Isogai C, et al. Plasminogen activator inhibitor-1 promotes angiogenesis by stimulating endothelial cell migration toward fibronectin. Cancer Res. 2001;61(14):5587–94.PubMed
98.
Zurück zum Zitat Canfield AE, Schor AM. Evidence that tenascin and thrombospondin-1 modulate sprouting of endothelial cells. J Cell Sci. 1995;108(Pt 2):797–809.PubMed Canfield AE, Schor AM. Evidence that tenascin and thrombospondin-1 modulate sprouting of endothelial cells. J Cell Sci. 1995;108(Pt 2):797–809.PubMed
99.
Zurück zum Zitat Asplin IR, et al. Differential regulation of the fibroblast growth factor (FGF) family by alpha(2)-macroglobulin: evidence for selective modulation of FGF-2-induced angiogenesis. Blood. 2001;97(11):3450–7.PubMedCrossRef Asplin IR, et al. Differential regulation of the fibroblast growth factor (FGF) family by alpha(2)-macroglobulin: evidence for selective modulation of FGF-2-induced angiogenesis. Blood. 2001;97(11):3450–7.PubMedCrossRef
100.
Zurück zum Zitat Fabre JE, et al. Tissue inhibition of angiotensin-converting enzyme activity stimulates angiogenesis in vivo. Circulation. 1999;99(23):3043–9.PubMed Fabre JE, et al. Tissue inhibition of angiotensin-converting enzyme activity stimulates angiogenesis in vivo. Circulation. 1999;99(23):3043–9.PubMed
101.
Zurück zum Zitat Cameron NE, Cotter MA, Robertson S. Angiotensin converting enzyme inhibition prevents development of muscle and nerve dysfunction and stimulates angiogenesis in streptozotocin-diabetic rats. Diabetologia. 1992;35(1):12–8.PubMedCrossRef Cameron NE, Cotter MA, Robertson S. Angiotensin converting enzyme inhibition prevents development of muscle and nerve dysfunction and stimulates angiogenesis in streptozotocin-diabetic rats. Diabetologia. 1992;35(1):12–8.PubMedCrossRef
102.
Zurück zum Zitat Brand M, et al. Angiotensinogen impairs angiogenesis in the chick chorioallantoic membrane. J Mol Med. 2007;85(5):451–60.PubMedCrossRef Brand M, et al. Angiotensinogen impairs angiogenesis in the chick chorioallantoic membrane. J Mol Med. 2007;85(5):451–60.PubMedCrossRef
103.
Zurück zum Zitat O’Reilly MS, et al. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science. 1999;285(5435):1926–8.PubMedCrossRef O’Reilly MS, et al. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science. 1999;285(5435):1926–8.PubMedCrossRef
104.
Zurück zum Zitat Yu P, et al. Beta2-glycoprotein I inhibits vascular endothelial growth factor and basic fibroblast growth factor induced angiogenesis through its amino terminal domain. J Thromb Haemost. 2008;6(7):1215–23.PubMedCrossRef Yu P, et al. Beta2-glycoprotein I inhibits vascular endothelial growth factor and basic fibroblast growth factor induced angiogenesis through its amino terminal domain. J Thromb Haemost. 2008;6(7):1215–23.PubMedCrossRef
105.
Zurück zum Zitat Rahimi N, Kazlauskas A. A role for cadherin-5 in regulation of vascular endothelial growth factor receptor 2 activity in endothelial cells. Mol Biol Cell. 1999;10(10):3401–7.PubMed Rahimi N, Kazlauskas A. A role for cadherin-5 in regulation of vascular endothelial growth factor receptor 2 activity in endothelial cells. Mol Biol Cell. 1999;10(10):3401–7.PubMed
106.
Zurück zum Zitat Hosokawa H, et al. Vascular endothelial cells that express dystroglycan are involved in angiogenesis. J Cell Sci. 2002;115(Pt 7):1487–96.PubMed Hosokawa H, et al. Vascular endothelial cells that express dystroglycan are involved in angiogenesis. J Cell Sci. 2002;115(Pt 7):1487–96.PubMed
107.
Zurück zum Zitat Ushio-Fukai M. Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res. 2006;71(2):226–35.PubMedCrossRef Ushio-Fukai M. Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res. 2006;71(2):226–35.PubMedCrossRef
108.
Zurück zum Zitat Akakura N, et al. The COOH-terminal globular domain of fibrinogen gamma chain suppresses angiogenesis and tumor growth. Cancer Res. 2006;66(19):9691–7.PubMedCrossRef Akakura N, et al. The COOH-terminal globular domain of fibrinogen gamma chain suppresses angiogenesis and tumor growth. Cancer Res. 2006;66(19):9691–7.PubMedCrossRef
109.
Zurück zum Zitat Ikenaka Y, et al. Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits tumor growth and angiogenesis in the TIMP-1 transgenic mouse model. Int J Cancer. 2003;105(3):340–6.PubMedCrossRef Ikenaka Y, et al. Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits tumor growth and angiogenesis in the TIMP-1 transgenic mouse model. Int J Cancer. 2003;105(3):340–6.PubMedCrossRef
110.
Zurück zum Zitat Tong Z, et al. Neutrophil gelatinase-associated lipocalin: a novel suppressor of invasion and angiogenesis in pancreatic cancer. Cancer Res. 2008;68(15):6100–8.PubMedCrossRef Tong Z, et al. Neutrophil gelatinase-associated lipocalin: a novel suppressor of invasion and angiogenesis in pancreatic cancer. Cancer Res. 2008;68(15):6100–8.PubMedCrossRef
111.
Zurück zum Zitat Rusnati M, et al. Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis. Blood. 2004;104(1):92–9.PubMedCrossRef Rusnati M, et al. Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis. Blood. 2004;104(1):92–9.PubMedCrossRef
112.
Zurück zum Zitat Apte RS, et al. Stimulation of neovascularization by the anti-angiogenic factor PEDF. Invest Ophthalmol Vis Sci. 2004;45(12):4491–7.PubMedCrossRef Apte RS, et al. Stimulation of neovascularization by the anti-angiogenic factor PEDF. Invest Ophthalmol Vis Sci. 2004;45(12):4491–7.PubMedCrossRef
113.
Zurück zum Zitat Gao G, et al. Kallikrein-binding protein inhibits retinal neovascularization and decreases vascular leakage. Diabetologia. 2003;46(5):689–98.PubMed Gao G, et al. Kallikrein-binding protein inhibits retinal neovascularization and decreases vascular leakage. Diabetologia. 2003;46(5):689–98.PubMed
114.
Zurück zum Zitat Chlenski A, et al. SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis. Cancer Res. 2002;62(24):7357–63.PubMed Chlenski A, et al. SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis. Cancer Res. 2002;62(24):7357–63.PubMed
115.
Zurück zum Zitat Chetty C, et al. Tissue inhibitor of metalloproteinase 3 suppresses tumor angiogenesis in matrix metalloproteinase 2-down-regulated lung cancer. Cancer Res. 2008;68(12):4736–45.PubMedCrossRef Chetty C, et al. Tissue inhibitor of metalloproteinase 3 suppresses tumor angiogenesis in matrix metalloproteinase 2-down-regulated lung cancer. Cancer Res. 2008;68(12):4736–45.PubMedCrossRef
116.
Zurück zum Zitat Kang SY, et al. Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and Tsp-1. Proc Natl Acad Sci USA. 2009;106(29):12115–20.PubMedCrossRef Kang SY, et al. Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and Tsp-1. Proc Natl Acad Sci USA. 2009;106(29):12115–20.PubMedCrossRef
117.
Zurück zum Zitat Tolsma SS, et al. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol. 1993;122(2):497–511.PubMedCrossRef Tolsma SS, et al. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol. 1993;122(2):497–511.PubMedCrossRef
118.
Zurück zum Zitat Volpert OV, et al. Inhibition of angiogenesis by thrombospondin-2. Biochem Biophys Res Commun. 1995;217(1):326–32.PubMedCrossRef Volpert OV, et al. Inhibition of angiogenesis by thrombospondin-2. Biochem Biophys Res Commun. 1995;217(1):326–32.PubMedCrossRef
Metadaten
Titel
Macrophage infiltration and cytokine release in adipose tissue: angiogenesis or inflammation?
verfasst von
Lindsay E. Wu
Samantha L. Hocking
David E. James
Publikationsdatum
01.11.2010
Verlag
Springer Japan
Erschienen in
Diabetology International / Ausgabe 1/2010
Print ISSN: 2190-1678
Elektronische ISSN: 2190-1686
DOI
https://doi.org/10.1007/s13340-010-0003-x

Weitere Artikel der Ausgabe 1/2010

Diabetology International 1/2010 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.